Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System
Abstract
1. Introduction
2. Element Test of Viscoelastic and Rotational Friction Damper
2.1. Configuration of VE with RF Damper
2.2. Damper Design and Material
- is elastic stiffness;
- is damping coefficient;
- is elastic shear modulus;
- is shear viscous damping constant;
- is VE surface area;
- is loss factor;
- h is VE thickness;
- is shear stress;
- is shear strain;
- is angular frequency;
- is displacement.
- is moment capacity;
- is number of layers;
- is internal radius;
- is outer radius;
- is friction coefficient;
- is clamping force.
2.3. Specimen Setup
2.3.1. Viscoelastic Damper Test
2.3.2. Rotational Friction Damper Test
2.4. Loading Protocol
2.5. Damper Hysteresis
2.5.1. Viscoelastic Damper
2.5.2. Rotational Friction Damper
3. Shake Table Test of Six-Story Coupled Wall System with Damper
3.1. Shake Table Test Procedure
3.2. Test Setup
3.3. Input Waves
3.4. Measurement Scheme
3.5. Experimental Test Results of the Six-Story Frame
3.5.1. Natural Frequency Under White Noise
3.5.2. Results Under Sinusoidal Waves
3.5.3. Results Under Kokuji Waves
4. Numerical Analysis Using STERA 3D
4.1. Objectives
4.2. Numerical Model of VE Damper
4.3. Numerical Model of RF Damper
4.4. Verification with Numerical Analysis (STERA 3D)
Numerical Model of Six-Story Coupled Wall System with Dampers
- is the total rotation at the element joint;
- is the element deformation at direction x;
- is the elastic element rotation;
- is the nonlinear element rotation due to the RF damper;
- is the nonlinear element rotation due to the shear deformation of the VE damper.
4.5. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paulay, T.; Priestley, M.J.N. Seismic Design of Reinforced Concrete and Masonry Buildings; Wiley: New York, NY, USA, 1992; Volume 768. [Google Scholar]
- Gonzalez, E. Seismic Response of Diagonally Reinforced Slender Coupling Beams. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2001. [Google Scholar]
- Aiken, I. Passive Energy Dissipation Hardware and Applications. In Proceedings of the Los Angeles County and SEAOSC Symposium on Passive Energy Dissipation Systems for New and Existing Buildings, Los Angeles, CA, USA, 19 July 1996. [Google Scholar]
- Soong, T.T.; Dargush, G.F. Passive Energy Dissipation and Active Control. In Structural Engineering Handbook; CRC Press LLC: Boca Raton, FL, USA, 1999; pp. 1–28. [Google Scholar]
- Christopoulos, C.; Filiatrault, A. Principles of Supplemental Damping and Seismic Isolation; IUSS Press: Pavia, Italy, 2006. [Google Scholar]
- Montgomery, M.; Christopoulos, C. Experimental Validation of Viscoelastic Coupling Dampers for Enhanced Dynamic Performance of High-Rise Buildings. J. Struct. Eng. 2015, 141, 04014145. [Google Scholar] [CrossRef]
- Men, J.; Wang, Q.; Zhang, D.; Fan, Q.; Zhou, C.H.; Huang, C. Experimental and numerical study on cyclic behavior of a shape-optimized composite metallic yield damper with two-phase energy dissipation. Structures 2023, 53, 1012–1029. [Google Scholar] [CrossRef]
- Nyabongo, X.; Li, X. Development of energy-early-dissipated braces based on web buckling of low-yield I-section steel. J. Constr. Steel Res. 2024, 217, 108672. [Google Scholar] [CrossRef]
- Yang, S.; Liang, S.; Zhu, X.; Dang, L.; Shen, T.; Zhou, S. Experimental and theoretical research on a shear-bending-metallic-damper with a double-phased yield mechanism. J. Constr. Steel Res. 2023, 203, 107839. [Google Scholar] [CrossRef]
- Fitzgerald, T.F.; Anagnos, T.; Goodson, M.; Zsutty, T. Slotted Bolted Connections in Aseismic Design for Concentrically Braced Connections. Earthq. Spectra 1989, 5, 383–391. [Google Scholar] [CrossRef]
- Cavallaro, G.F.; Francavilla, A.; Latour, M.; Piluso, V.; Rizzano, G. Experimental Behaviour of Innovative Thermal Spray Coating Materials for FREEDAM Joints. Compos. Part B-Eng. 2017, 115, 289–299. [Google Scholar] [CrossRef]
- Tartaglia, R.; D’Aniello, M.; Campiche, A.; Latour, M. Symmetric Friction Dampers in Beam-to-Column Joints for Low-Damage Steel MRFs. J. Constr. Steel Res. 2021, 184, 106791. [Google Scholar] [CrossRef]
- D’Antimo, M.; Latour, M.; Demonceau, J.F. Drop-Weight Impact Tests on Free from Damage Beam to Column Connections. J. Constr. Steel Res. 2022, 192, 107215. [Google Scholar] [CrossRef]
- Colajanni, P.; La Mendola, L.; Monaco, A.; Pagnotta, S. Seismic Performance of Earthquake-Resilient RC Frames Made with HSTC Beams and Friction Damper Devices. J. Earthq. Eng. 2022, 26, 7787–7813. [Google Scholar] [CrossRef]
- Steneker, P.; Wiebe, L.; Filiatrault, A. Seismic Response Comparison of Steel MRFs with Yielding and Low-Damage Connections. J. Constr. Steel Res. 2021, 179, 106502. [Google Scholar] [CrossRef]
- Hashemi, A.; Zarnani, P.; Masoudnia, R.; Quenneville, P. Seismic resistant rocking coupled walls with innovative Resilient Slip Friction (RSF) joints. J. Constr. Steel Res. 2017, 129, 215–226. [Google Scholar] [CrossRef]
- Freddi, F.; Dimopoulos, C.A.; Karavasilis, T.L. Experimental Evaluation of a Rocking Damage-Free Steel Column Base with Friction Devices. J. Struct. Eng. 2020, 146, 04020217. [Google Scholar] [CrossRef]
- Elettore, E.; Freddi, F.; Latour, M.; Rizzano, G. Design and Analysis of a Seismic Resilient Steel Moment Resisting Frame Equipped with Damage-Free Self-Centering Column Bases. J. Constr. Steel Res. 2021, 179, 106543. [Google Scholar] [CrossRef]
- Javidan, M.M.; Kim, J. A Rotational Friction Damper-Brace for Seismic Design of Resilient Framed Structures. J. Build. Eng. 2022, 51, 104248. [Google Scholar] [CrossRef]
- Monir, H.S.; Zeynali, K. A Modified Friction Damper for Diagonal Bracing of Structures. J. Constr. Steel Res. 2013, 87, 17–30. [Google Scholar] [CrossRef]
- Saito, T.; Majima, R.; Yamasaki, Y.; Sakai, S.; Nishimura, E.; Ryujin, H. Multilayer Vibration Control System Using Block and Tackle Part3 Outline of 6-Story Shear Deformation Specimen and Shaking Table Test. In Summary of Technical Papers, Annual Meeting; Architecture Institute of Japan: Tokyo, Japan, 2024; pp. 645–646. [Google Scholar]
- Nakamura, Y.; Kaneko, M. Mechanical Modeling of Viscoelastic Damper with Amplitude- and Frequency-Dependent Properties. Proc. Second World Conf. Struct. Control 1998, 1, 181–190. [Google Scholar]
- Saito, T. Structural Earthquake Response Analysis, STERA_3D Version 11.5. Available online: http://www.rc.ace.tut.ac.jp/saito/software-e.html (accessed on 1 October 2024).
Type of Material | Width (mm) | Length (mm) | Radius (mm) | Thickness (mm) | No. of Layer |
---|---|---|---|---|---|
VE layer | 40 | 70 | - | 5 | 2 |
SUS plate | 156 | 156 | - | 2 | 4 |
Friction disk | - | - | 75 | 12 | 4 |
Element Test | Viscoelastic Damper | Friction Damper |
---|---|---|
Frequency (Hz) | 0.5, 1.0 | 0.5 |
Clamping force (kN) | 0 | 0, 2, 5, 6, 8, 10 |
Test | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Clamping Force (kN) | 0 | 2 | 5 | 6 | 8 | 10 |
Story | Stiffness (N/mm) | Weight (N) | Height (mm) |
---|---|---|---|
6 | 245.5 | 4021.6 | 300 |
5 | 237.6 | 2594.0 | 300 |
4 | 194.2 | 2545.2 | 300 |
3 | 226.7 | 2839.6 | 300 |
2 | 188.1 | 2545.2 | 300 |
1 | 186.4 | 2173.2 | 300 |
0 | - | - | - |
Total | - | 16,718.8 | 1800 |
White Noise Intensity (gal) | Shear Wall Natural Frequency (Hz) | Shear Wall + RF Natural Frequency (Hz) | Shear Wall + VE Natural Frequency (Hz) |
---|---|---|---|
40 | 1.48 | 2.43 | 2.32 |
80 | 1.07 | 1.98 | 1.71 |
120 | 1.07 | 1.77 | 1.48 |
160 | 1.07 | 1.77 | 1.48 |
200 | - | 1.48 | 1.48 |
Parameter | |||||||
---|---|---|---|---|---|---|---|
Value | 1 | 2 | 10 | 10 | 3 | 2 | 1 |
Number of Friction Surfaces (N) | Clamping Force (Q) | Fric. Coefficient (μ) | ||
---|---|---|---|---|
2 | 10 kN | 75 mm | 5 mm | 0.2 |
) | ||
---|---|---|
150 kNmm | 84.23 kN/mm | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, Z.N.E.; Majima, R.; Saito, T. Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System. Appl. Sci. 2025, 15, 8185. https://doi.org/10.3390/app15158185
Mustafa ZNE, Majima R, Saito T. Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System. Applied Sciences. 2025; 15(15):8185. https://doi.org/10.3390/app15158185
Chicago/Turabian StyleMustafa, Zafira Nur Ezzati, Ryo Majima, and Taiki Saito. 2025. "Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System" Applied Sciences 15, no. 15: 8185. https://doi.org/10.3390/app15158185
APA StyleMustafa, Z. N. E., Majima, R., & Saito, T. (2025). Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System. Applied Sciences, 15(15), 8185. https://doi.org/10.3390/app15158185