Simulation Study on the Effects of Environment and Structure on Bone Tissue Scaffold Flow Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Construction
2.1.1. Three-Dimensional Modeling Design
- 1.
- Pre-Processing
- 2.
- Fluent Solver Setup
- 3.
- Post-Processing
- Mesh Irrelevance Study
- Model Validity Test
2.1.2. Unit Cell Structure Design
- (1)
- Pore Size
- (2)
- Unit Cell Size
- (3)
- Unit Cell Shape
2.1.3. Design of Environmental Variables
- (1)
- Velocity
- (2)
- Temperature
2.2. Biomechanical Property Studies
2.2.1. WSS
2.2.2. Permeability
3. Results and Discussions
3.1. Velocity Effects on Unit Cell-Structured Bone Tissue Repair Scaffolds
3.2. Influence of Scaffold Structure on Bone Tissue Repair Scaffolds and Modulation
3.2.1. Aperture Size
3.2.2. Cell Size
3.2.3. Unit Cell Shapes
3.3. Effects and Regulation of Temperature on Unit Cell Structure Bone Tissue Repair Scaffolds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammed, A.; Jiménez, A.; Bidare, P.; Elshaer, A.; Memic, A.; Hassanin, H.; Essa, K. Review on Engineering of Bone Scaffolds Using Conventional and Additive Manufacturing Technologies. 3D Print. Addit. Manuf. 2024, 11, 1418–1440. [Google Scholar] [CrossRef]
- Jodati, H.; Yilmaz, B.; Evis, Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceram. Int. 2020, 46, 15725–15739. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.L.; Liu, K.X.; Gao, F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front. Pharmacol. 2023, 14, 1050954. [Google Scholar] [CrossRef] [PubMed]
- Samadi, A.; Salati, M.A.; Safari, A.; Jouyandeh, M.; Barani, M.; Chauhan, N.P.S.; Golab, E.G.; Zarrintaj, P.; Kar, S.; Seidi, F.; et al. Comparative review of piezoelectric biomaterials approach for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 2022, 33, 1555–1594. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, X.G.; Chen, H.; Li, X.; Liu, H.; Wang, J.C.; Qian, Z.H. “Metal-bone” scaffold for accelerated peri-implant endosseous healing. Front. Bioeng. Biotechnol. 2024, 11, 1334072. [Google Scholar] [CrossRef]
- Porter, J.R.; Ruckh, T.T.; Popat, K.C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 2009, 25, 1539–1560. [Google Scholar] [CrossRef]
- Schmidt, A.H. Autologous bone graft: Is it still the gold standard? Injury 2021, 52, S18–S22. [Google Scholar] [CrossRef]
- Zenebe, C.G. A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering. Biomed. Res. Int. 2022, 2022, 4996530. [Google Scholar] [CrossRef]
- Anandhapadman, A.; Venkateswaran, A.; Jayaraman, H.; Ghone, N.V. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol. Progr. 2022, 38, e3234. [Google Scholar] [CrossRef] [PubMed]
- Macías, I.; Alcorta-Sevillano, N.; Infante, A.; Rodríguez, C. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int. J. Mol. Sci. 2021, 22, 7724. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, T.X.; Chen, M.; Yao, K.; Huang, X.Q.; Zhang, B.; Li, Y.Z.; Liu, J.; Wang, Y.B.; Zhao, Z.H. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021, 6, 4110–4140. [Google Scholar] [CrossRef] [PubMed]
- Top, N.; Gökçe, H.; Şahin, I. Additive Manufacturing of Bio-Inspired Microstructures for Bone Tissue Engineering. Exp. Tech. 2023, 47, 1213–1227. [Google Scholar] [CrossRef]
- Black, C.R.M.; Vitali, G.; David, G.; Janos, K.; Tare, R.S.; Oreffo, R.O.C. Bone Tissue Engineering. Curr. Mol. Biol. Rep. 2015, 1, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pattanayak, I.; Dash, P.A.; Mohanty, S. Bioceramics: A review on design concepts toward tailor-made (multi)-functional materials for tissue engineering applications. J. Mater. Sci. 2023, 58, 3460–3484. [Google Scholar] [CrossRef]
- Guo, E.Q.; Wu, J.L.; Lu, H.R.; Wang, L.; Chen, Q. Tissue-engineered bones with adipose-derived stem cells-composite polymer for repair of bone defects. Regener. Med. 2022, 17, 643–657. [Google Scholar] [CrossRef]
- Manohar, S.S.; Das, C.; Kakati, V. Bone Tissue Engineering Scaffolds: Materials and Methods. 3D Print. Addit. Manuf. 2024, 11, 347–362. [Google Scholar] [CrossRef]
- Qu, H.; Zhang, W.; Li, Z.H.; Hou, L.Y.; Li, G.W.; Fuh, J.Y.H.; Wu, W.Z. Influence of Thermal Processing Conditions on Mechanical and Material Properties of 3D Printed Thin-Structures Using PEEK Material. Int. J. Precis. Eng. Manuf. 2022, 23, 689–699. [Google Scholar] [CrossRef]
- Madrid, A.P.M.; Vrech, S.M.; Sanchez, M.A.; Rodriguez, A.P. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Eng. C 2019, 100, 631–644. [Google Scholar] [CrossRef]
- Mohammadi, H.; Sepantafar, M.; Muhamad, N.; Sulong, A. How Does Scaffold Porosity Conduct Bone Tissue Regeneration? Adv. Eng. Mater. 2021, 23, 2100463. [Google Scholar] [CrossRef]
- Mukasheva, F.; Adilova, L.; Dyussenbinov, A.; Yernaimanova, B.; Abilev, M.; Akilbekova, D. Optimizing scaffold pore size for tissue engineering: Insights across various tissue types. Front. Bioeng. Biotechnol. 2024, 12, 1444986. [Google Scholar] [CrossRef]
- Sobral, J.M.; Caridade, S.G.; Sousa, R.A.; Mano, J.F.; Reis, R.L. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011, 7, 1009–1018. [Google Scholar] [CrossRef]
- Abbasi, N.; Hamlet, S.; Love, R.M.; Nguyen, N.T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Dias, M.R.; Fernandes, P.R.; Guedes, J.M.; Hollister, S.J. Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 2012, 45, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Melchels, F.P.W.; Barradas, A.M.C.; van Blitterswijk, C.A.; de Boer, J.; Feijen, J.; Grijpma, D.W. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 2010, 6, 4208–4217. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.L.; Marsal, È.; Planell, J.A.; Lacroix, D. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 2009, 30, 6142–6149. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.R.; Wang, H.; Chen, Q.Q.; Gang, H.L.; Zhou, Y.S.; Gu, S.J.; Liu, X.; Xu, W.L.; Zhang, B.C.; Yang, H.J. Polylactic acid scaffold with directional porous structure for large-segment bone repair. Int. J. Biol. Macromol. 2022, 216, 810–819. [Google Scholar] [CrossRef]
- Razi, H.; Checa, S.; Schaser, K.; Duda, G.N. Shaping scaffold structures in rapid manufacturing implants: A modeling approach toward mechano-biologically optimized configurations for large bone defect. J. Biomed. Mater. Res. Part B 2012, 100, 1736–1745. [Google Scholar] [CrossRef]
- Fabiano, B.; Andrada, P.; Simone, N.; Raffaella, P.; Rossella, B.; Andrea, M.; Franco, M. 3D FEM model to simulate Brownian motion inside trabecular tissue from human femoral head. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 10, 500–507. [Google Scholar] [CrossRef]
- Pengrong, O.; Hui, D.; Xijing, H.; Xuan, C.; Yibin, W.; Jialiang, L.; Haopeng, L.; Zhongmin, J. Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth. Mater. Des. 2019, 183, 108151. [Google Scholar] [CrossRef]
- Rahbari, A.; Montazerian, H.; Davoodi, E.; Homayoonfar, S. Predicting permeability of regular tissue engineering scaffolds: Scaling analysis of pore architecture, scaffold length, and fluid flow rate effects. Comput. Methods Biomech. Biomed. Engin 2017, 20, 231–241. [Google Scholar] [CrossRef]
- Gabrieli, R.; Schiavi, A.; Baino, F. Determining the Permeability of Porous Bioceramic Scaffolds: Significance, Overview of Current Methods and Challenges Ahead. Materials 2024, 17, 5522. [Google Scholar] [CrossRef]
- Pires, T.H.V.; Dunlop, J.W.C.; Castro, A.P.G.; Fernandes, P.R. Wall Shear Stress Analysis and Optimization in Tissue Engineering TPMS Scaffolds. Materials 2022, 15, 7375. [Google Scholar] [CrossRef]
- Maes, F.; Van Ransbeeck, P.; Van Oosterwyck, H.; Verdonck, P. Modeling fluid flow through irregular scaffolds for perfusion bioreactors. Biotechnol. Bioeng. 2009, 103, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Rita, V.J.; Colin, B.D.; Ralph, M.; Sandra, H. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach. PLoS One 2017, 12, e0180781. [Google Scholar]
- Jung, Y.; Torquato, S. Fluid permeabilities of triply periodic minimal surfaces. Phys. Rev. E 2005, 72, 056319. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.C.; Arns, C.H.; Hutmacher, D.W.; Milthorpe, B.K.; Sheppard, A.P.; Knackstedt, M.A. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 2009, 30, 1440–1451. [Google Scholar] [CrossRef]
- Mahammod, B.P.; Barua, E.; Deb, P.; Deoghare, A.B.; Pandey, K.M. Investigation of Physico-mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold. Arab. J. Sci. Eng. 2020, 45, 5505–5515. [Google Scholar] [CrossRef]
- Ali, D.; Ozalp, M.; Blanquer, S.B.G.; Onel, S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur. J. Mech. B Fluids 2020, 79, 376–385. [Google Scholar] [CrossRef]
Temperature (°C) | Pressure Difference Between the Inlet and Outlet (Pa) | Permeability (×10−8 m2) |
---|---|---|
37 | 0.5916 | 1.19064 |
39 | 0.5687 | 1.18523 |
41 | 0.5479 | 1.18379 |
43 | 0.5326 | 1.17839 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Zhang, Y.; Guo, Y. Simulation Study on the Effects of Environment and Structure on Bone Tissue Scaffold Flow Properties. Appl. Sci. 2025, 15, 8165. https://doi.org/10.3390/app15158165
Xiao Y, Zhang Y, Guo Y. Simulation Study on the Effects of Environment and Structure on Bone Tissue Scaffold Flow Properties. Applied Sciences. 2025; 15(15):8165. https://doi.org/10.3390/app15158165
Chicago/Turabian StyleXiao, Yameng, Yunshen Zhang, and Yun Guo. 2025. "Simulation Study on the Effects of Environment and Structure on Bone Tissue Scaffold Flow Properties" Applied Sciences 15, no. 15: 8165. https://doi.org/10.3390/app15158165
APA StyleXiao, Y., Zhang, Y., & Guo, Y. (2025). Simulation Study on the Effects of Environment and Structure on Bone Tissue Scaffold Flow Properties. Applied Sciences, 15(15), 8165. https://doi.org/10.3390/app15158165