A Multicomponent Face Verification and Identification System
Abstract
1. Introduction
1.1. Related Work
1.2. Our Contribution
2. Materials and Methods
2.1. System’s Architecture
- A face verification and identification process is achieved via the Mobile App block (see Section 3.2).
- A face identification process is achieved via the Mixed Reality glasses block (see Section 3.3).
2.2. Deep Learning Model for the Face Identification and Verification
2.2.1. Dataset Curation
- Resizing: All images were resized to a standard dimension of 160 by 160 pixels.
- Normalization: The pixel values of the images were normalized to achieve a mean of 0 and a standard deviation of 1.
- Histogram equalization: Histogram equalization was applied to augment the contrast of the images.
2.2.2. Implementation Details
2.2.3. Pre-Trained Models
- FaceNet: A deep convolutional network devised by Google for face recognition [23].
- Dlib (baseline): A toolkit encompassing various machine learning algorithms, including face recognition [63,64]. Specifically the dlib_face_recognition_resnet_model_v1, a 29-layer ResNet trained on a cleaned subset of MS-Celeb-1M and producing 128-D embeddings, was employed [65,66]. Dlib’s ResNet offers a compact (12 MB) C++ inference engine with zero external dependencies, widely adopted on edge devices and often used in academic baselines. A lightweight CNN such as LeNet-5 does not reach acceptable accuracy on modern benchmarks; hence, Dlib is a more realistic “classical” baseline.
2.2.4. Similarity Measure and Evaluation Methodology
- Face identification: This entails matching a given face image to a known identity in a database. The Rank-1 identification rate [71], defined as the percentage of test images for which the correct identity is ranked first, served as the evaluation metric. The Rank-5 identification rate represents the percentage of test images for which the correct identity is within the top 5 matches (or ranks) from the database.
3. Results
3.1. Face Identification and Verification Results
3.2. FACE-VI Mobile Application
3.3. Mixed Reality Glasses
3.4. Web-Based UI
3.5. Middeware
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AUC-ROC | Area under the receiver operating characteristic curve |
CNN | Convolutional neural networks |
DET | Detection error tradeoff |
DL | Deep learning |
DNN | Deep neural network |
FACE-VI | Face verification-identification |
FAR | False acceptance rate |
FNR | False negative rate |
LFW | Labeled Faces in the Wild |
GFLOPs | Giga floating point operations |
MR | Mixed reality |
UI | User interface |
YTF | YouTube Faces |
References
- Public-IvS. Available online: http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/LBL/main.htm (accessed on 14 February 2025).
- Kortli, Y.; Jridi, M.; Al Falou, A.; Atri, M. Face Recognition Systems: A Survey. Sensors 2020, 20, 342. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mu, X.; Li, S.; Peng, H. A Review of Face Recognition Technology. IEEE Access 2020, 8, 139110–139120. [Google Scholar] [CrossRef]
- Samatas, G.G.; Papakostas, G.A. Biometrics: Going 3D. Sensors 2022, 22, 6364. [Google Scholar] [CrossRef]
- Jayaraman, U.; Gupta, P.; Gupta, S.; Arora, G.; Tiwari, K. Recent development in face recognition. Neurocomputing 2020, 408, 231–245. [Google Scholar] [CrossRef]
- Waller, B.M.; Kavanagh, E.; Micheletta, J.; Clark, P.R.; Whitehouse, J. The face is central to primate multicomponent signals. Int. J. Primatol. 2024, 45, 526–542. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, V.K.; Singh, A. A Review Paper on Facial Recognition Techniques. In Proceedings of the 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 11–13 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 617–621. [Google Scholar] [CrossRef]
- Sanchez-Moreno, A.S.; Olivares-Mercado, J.; Hernandez-Suarez, A.; Toscano-Medina, K.; Sanchez-Perez, G.; Benitez-Garcia, G. Efficient Face Recognition System for Operating in Unconstrained Environments. J. Imaging 2021, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Guérin, J.; Gibaru, O.; Thiery, S.; Nyiri, E. CNN features are also great at unsupervised classification. arXiv 2017, arXiv:1707.01700. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Douklias, A.; Karagiannidis, L.; Misichroni, F.; Amditis, A. Design and Implementation of a UAV-Based Airborne Computing Platform for Computer Vision and Machine Learning Applications. Sensors 2022, 22, 2049. [Google Scholar] [CrossRef]
- Maltezos, E.; Doulamis, A.; Ioannidis, C. Improving the visualisation of 3D textured models via shadow detection and removal. In Proceedings of the 2017 9th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), Athens, Greece, 6–8 September 2017; pp. 161–164. [Google Scholar] [CrossRef]
- Park, J.; Yang, H.; Roh, H.-J.; Jung, W.; Jang, G.-J. Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images. Cancers 2022, 14, 3400. [Google Scholar] [CrossRef]
- Bansal, A.; Ranjan, R.; Castillo, C.D.; Chellappa, R. Deep CNN Face Recognition: Looking at the Past and the Future. In Deep Learning-Based Face Analytics; Ratha, N.K., Patel, V.M., Chellappa, R., Eds.; Advances in Computer Vision and Pattern Recognition; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Wang, W. The development of face recognition in accuracy and speed: A Review. In Proceedings of the 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 28–29 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 79–89. [Google Scholar] [CrossRef]
- Boutros, F.; Damer, N.; Kuijper, A. QuantFace: Towards Lightweight Face Recognition by Synthetic Data Low-bit Quantization. arXiv 2022, arXiv:2206.10526. [Google Scholar] [CrossRef]
- Perez-Montes, F.; Olivares-Mercado, J.; Sanchez-Perez, G.; Benitez-Garcia, G.; Prudente-Tixteco, L.; Lopez-Garcia, O. Analysis of Real-Time Face-Verification Methods for Surveillance Applications. J. Imaging 2023, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning. arXiv 2021, arXiv:2106.11342. [Google Scholar] [CrossRef]
- Han, F.; Ling, Q.-H.; Huang, D.-S. Modified constrained learning algorithms incorporating additional functional constraints into neural networks. Inf. Sci. 2008, 178, 907–919. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Tang, X. Deep Learning Face Representation from Predicting 10,000 Classes. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1891–1898. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Tang, X. Deep Learning Face Representation by Joint Identification-Verification. arXiv 2014, arXiv:1406.4773. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Bai, T.; Wei, Z.; Huang, C. Targeting Ultimate Accuracy: Face Recognition via Deep Embedding. arXiv 2015, arXiv:1506.07310. [Google Scholar] [CrossRef]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 815–823. [Google Scholar] [CrossRef]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine Vision Conference 2015, Swansea, UK, 7–10 September 2015; British Machine Vision Association: Durham, UK, 2015; pp. 41.1–41.12. [Google Scholar] [CrossRef]
- Wu, X.; He, R.; Sun, Z.; Tan, T. A Light CNN for Deep Face Representation with Noisy Labels. arXiv 2015, arXiv:1511.02683. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, J.; Huang, B. Towards End-to-End Face Recognition through Alignment Learning. arXiv 2017, arXiv:1701.07174. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, X.; Kot, A. Deep Coupled ResNet for Low-Resolution Face Recognition. IEEE Signal Process. Lett. 2018, 25, 526–530. [Google Scholar] [CrossRef]
- Nam, G.; Choi, H.; Cho, J.; Kim, I.-J. PSI-CNN: A Pyramid-Based Scale-Invariant CNN Architecture for Face Recognition Robust to Various Image Resolutions. Appl. Sci. 2018, 8, 1561. [Google Scholar] [CrossRef]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4685–4694. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, S.; Huang, Z.; Zhou, F. MagFace: A Universal Representation for Face Recognition and Quality Assessment. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 14220–14229. [Google Scholar] [CrossRef]
- Ju, Y.-J.; Lee, G.-H.; Hong, J.-H.; Lee, S.-W. Complete Face Recovery GAN: Unsupervised Joint Face Rotation and De-Occlusion from a Single-View Image. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1173–1183. [Google Scholar] [CrossRef]
- Boutros, F.; Siebke, P.; Klemt, M.; Damer, N.; Kirchbuchner, F.; Kuijper, A. PocketNet: Extreme Lightweight Face Recognition Network Using Neural Architecture Search and Multistep Knowledge Distillation. IEEE Access 2022, 10, 46823–46833. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Gao, X.; Han, Z. MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices. In Biometric Recognition; Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10996, pp. 428–438. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features From Cheap Operations. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1577–1586. [Google Scholar] [CrossRef]
- Hoo, S.C.; Ibrahim, H.; Suandi, S.A. ConvFaceNeXt: Lightweight Networks for Face Recognition. Mathematics 2022, 10, 3592. [Google Scholar] [CrossRef]
- Kim, S.; An, B.S.; Lee, E.C. Comparative Analysis of AI-Based Facial Identification and Expression Recognition Using Upper and Lower Facial Regions. Appl. Sci. 2023, 13, 6070. [Google Scholar] [CrossRef]
- Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. Electronics 2020, 9, 1188. [Google Scholar] [CrossRef]
- Merler, M.; Ratha, N.; Feris, R.S.; Smith, J.R. Diversity in Faces. arXiv 2019, arXiv:1901.10436. [Google Scholar] [CrossRef]
- Filntisis, P.P.; Retsinas, G.; Paraperas-Papantoniou, F.; Katsamanis, A.; Roussos, A.; Maragos, P. Visual Speech-Aware Perceptual 3D Facial Expression Reconstruction from Videos. arXiv 2022, arXiv:2207.11094. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3730–3738. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Z.; Yang, J.; Han, Z.; Liang, C. Unlabeled Data Assistant: Improving Mask Robustness for Face Recognition. IEEE Trans. Inf. Forensics Secur. 2024, 19, 3109–3123. [Google Scholar] [CrossRef]
- Gururaj, H.L.; Soundarya, B.C.; Priya, S.; Shreyas, J.; Flammini, F. A Comprehensive Review of Face Recognition Techniques, Trends, and Challenges. IEEE Access 2024, 12, 107903–107926. [Google Scholar] [CrossRef]
- Huber, M.; Luu, A.T.; Terhörst, P.; Damer, N. Efficient Explainable Face Verification based on Similarity Score Argument Backpropagation. In Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 4724–4733. [Google Scholar] [CrossRef]
- AI Act|Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (accessed on 14 February 2025).
- Anwar, A.; Raychowdhury, A. Masked Face Recognition for Secure Authentication. arXiv 2020, arXiv:2008.11104. [Google Scholar] [CrossRef]
- Mensah, J.A.; Appati, J.K.; Boateng, E.K.A.; Ocran, E.; Asiedu, L. FaceNet recognition algorithm subject to multiple constraints: Assessment of the performance. Sci. Afr. 2024, 23, e02007. [Google Scholar] [CrossRef]
- Rexha, B.; Shala, G.; Xhafa, V. Increasing Trustworthiness of Face Authentication in Mobile Devices by Modeling Gesture Behavior and Location Using Neural Networks. Future Internet 2018, 10, 17. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.-H.; Yoo, J.-H.; Jung, S.-H.; Huh, J.-H. Face Recognition at a Distance for a Stand-Alone Access Control System. Sensors 2020, 20, 785. [Google Scholar] [CrossRef] [PubMed]
- Chillaron, M.; Dunai, L.; Fajarnes, G.P.; Lengua, I.L. Face detection and recognition application for Android. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 003132–003136. [Google Scholar] [CrossRef]
- Valenzuela, W.; Soto, J.E.; Zarkesh-Ha, P.; Figueroa, M. Face Recognition on a Smart Image Sensor Using Local Gradients. Sensors 2021, 21, 2901. [Google Scholar] [CrossRef]
- Talahua, J.S.; Buele, J.; Calvopiña, P.; Varela-Aldás, J. Facial Recognition System for People with and without Face Mask in Times of the COVID-19 Pandemic. Sustainability 2021, 13, 6900. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Wang, Z.; Tian, H. Research on face recognition technology based on an improved LeNet-5 system. In Proceedings of the 2022 International Seminar on Computer Science and Engineering Technology (SCSET), Indianapolis, IN, USA, 8–9 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 121–123. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, N.; Hu, B.; Zhang, Y.; Qiu, J.; Cai, W. Implementation and Performance of Face Recognition Payment System Securely Encrypted by SM4 Algorithm. Information 2022, 13, 316. [Google Scholar] [CrossRef]
- Ríos-Sánchez, B.; Costa-da-Silva, D.; Martín-Yuste, N.; Sánchez-Ávila, C. Deep Learning for Facial Recognition on Single Sample per Person Scenarios with Varied Capturing Conditions. Appl. Sci. 2019, 9, 5474. [Google Scholar] [CrossRef]
- Reddy, T.J.; Ganesh, M.S.; Kumar Reddy, M.H.; Bhandhavya, C.; Jansi, R. Deep Learning-Powered Face Detection and Recognition for Challenging Environments. In Proceedings of the 2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), Bengaluru, India, 4–6 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1453–1459. [Google Scholar] [CrossRef]
- Durai, S.; Sujithra, T.; Satyam, B.V.; Keshetty, S.N.; Sagar, C.N.S.; Charan, A.S. Real Time Facial Recognition-Based Criminal Identification Using MTCNN. In Proceedings of the 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 10–12 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1261–1265. [Google Scholar] [CrossRef]
- Živković, N.; Žarić, N. Development and implementation of a facial recognition intrusion detection system. In Proceedings of the 2024 28th International Conference on Information Technology (IT), Zabljak, Montenegro, 21–24 February 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Medvedev, I.; Shadmand, F.; Cruz, L.; Gonçalves, N. Towards Facial Biometrics for ID Document Validation in Mobile Devices. Appl. Sci. 2021, 11, 6134. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, H.; Lei, Z.; Shi, H.; Yang, F.; Yi, D.; Qi, G.; Li, S.Z. Large-Scale Bisample Learning on ID Versus Spot Face Recognition. Int. J. Comput. Vis. 2019, 127, 684–700. [Google Scholar] [CrossRef]
- Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 26 January 2022).
- MaoCai. Pytorch_Face_Recognition. Python. 31 March 2022. Available online: https://github.com/QuasarLight/Pytorch_Face_Recognition (accessed on 21 November 2023).
- King, D.E. Dlib-ml: A Machine Learning Toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- OpenCV—Open Computer Vision Library. Available online: https://opencv.org/ (accessed on 14 February 2025).
- dlib C++ Library. Available online: https://dlib.net/ (accessed on 7 July 2025).
- davisking GitHub. Davisking/Dlib-Models: Trained Model Files for Dlib Example Programs. Available online: https://github.com/davisking/dlib-models (accessed on 7 July 2025).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- MobileNet v2|PyTorch. Available online: https://pytorch.org/hub/pytorch_vision_mobilenet_v2/ (accessed on 14 February 2025).
- Martindez-Diaz, Y.; Luevano, L.S.; Mendez-Vazquez, H.; Nicolas-Diaz, M.; Chang, L.; Gonzalez-Mendoza, M. ShuffleFaceNet: A Lightweight Face Architecture for Efficient and Highly-Accurate Face Recognition. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2721–2728. [Google Scholar] [CrossRef]
- Ye, J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model. 2011, 53, 91–97. [Google Scholar] [CrossRef]
- Deshpande, M.; Karypis, G. Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. 2004, 22, 143–177. [Google Scholar] [CrossRef]
- Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Y.; Shen, P.; Li, S.; Li, J.; Huang, F.; Li, Y.; Cui, Z. Consistent Instance False Positive Improves Fairness in Face Recognition. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 578–586. [Google Scholar] [CrossRef]
- Gopakumar, R.; Kotegar, K.A.; Vishal Anand, M. A Quantitative Study on the FaceNet System. In Advanced Computational and Communication Paradigms; Borah, S., Gandhi, T.K., Piuri, V., Eds.; Lecture Notes in Networks and Systems; Springer Nature: Singapore, 2023; Volume 535, pp. 211–223. [Google Scholar] [CrossRef]
- Akingbesote, D.; Zhan, Y.; Maskeliūnas, R.; Damaševičius, R. Improving Accuracy of Face Recognition in the Era of Mask-Wearing: An Evaluation of a Pareto-Optimized FaceNet Model with Data Preprocessing Techniques. Algorithms 2023, 16, 292. [Google Scholar] [CrossRef]
Model | Rank-1 (%) | Rank-5 (%) | Inference Time (ms) |
---|---|---|---|
Dlib (baseline) | 79.5 | 81.3 | 30 |
ArcFace | 92 | 96.1 | 97 |
MobileNetV2 | 85.2 | 89.6 | 20 |
FaceNet | 91.8 | 95.8 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douklias, A.; Zorzos, I.; Maltezos, E.; Nousis, V.; Bolierakis, S.N.; Karagiannidis, L.; Ouzounoglou, E.; Amditis, A. A Multicomponent Face Verification and Identification System. Appl. Sci. 2025, 15, 8161. https://doi.org/10.3390/app15158161
Douklias A, Zorzos I, Maltezos E, Nousis V, Bolierakis SN, Karagiannidis L, Ouzounoglou E, Amditis A. A Multicomponent Face Verification and Identification System. Applied Sciences. 2025; 15(15):8161. https://doi.org/10.3390/app15158161
Chicago/Turabian StyleDouklias, Athanasios, Ioannis Zorzos, Evangelos Maltezos, Vasilis Nousis, Spyridon Nektarios Bolierakis, Lazaros Karagiannidis, Eleftherios Ouzounoglou, and Angelos Amditis. 2025. "A Multicomponent Face Verification and Identification System" Applied Sciences 15, no. 15: 8161. https://doi.org/10.3390/app15158161
APA StyleDouklias, A., Zorzos, I., Maltezos, E., Nousis, V., Bolierakis, S. N., Karagiannidis, L., Ouzounoglou, E., & Amditis, A. (2025). A Multicomponent Face Verification and Identification System. Applied Sciences, 15(15), 8161. https://doi.org/10.3390/app15158161