Tectonic Characteristics and Geological Significance of the Yeba Volcanic Arc in the Southern Lhasa Terrane
Abstract
1. Introduction
2. Regional Geological Background
3. Structural Deformation Characteristics
3.1. D1 Deformation
3.2. D2 Deformation
3.3. D3 Deformation
4. Research Methods and Results
4.1. Research Methods
4.2. Results
5. Discussion
5.1. Phase D1 Deformation: Timing and Dynamical Context
5.2. Phase D2 Deformation: Timing and Dynamical Context
5.3. Phase D3 Deformation: Timing and Dynamical Context
6. Conclusions
- (1)
- Three distinct deformation phases are identified within the Yeba Group: the D1 phase—characterized by E-W-trending regional shear foliation (S1) formed through brittle–ductile shearing, associated with steeply plunging stretching lineations (plunge directions: 85–105°); coexisting hanging walls south-directed and north-directed shear-rotated porphyroclasts are observed; the D2 phase—marked by axial planar cleavage (S2) resulting from the folding of S1; S2 planes dip north or south with angles of 40–70°, and fold hinges plunge westward or NWW, indicating N-S-directed compression; and the D3 phase—represented by E-W-striking ductile shear zones that overprint both D1 and D2 structures, displaying hanging wall movement toward the NW.
- (2)
- During the Late Cretaceous (~90–79 Ma), driven by the northward subduction of the Neo-Tethys Ocean, the Cretaceous Gangdese retroarc basin experienced N-S compression. This tectonic regime triggered the development of a transpressional ductile shear zone within the Yeba Group at ~79 Ma, corresponding to the D1-phase deformation event. During the Late Cretaceous (~79–70 Ma), under a nearly N-S-oriented compressional stress regime, the subduction of the Neo-Tethyan oceanic lithosphere induced the overall upward extrusion of the Southern Gangdese back-arc basin, including the Yeba Group and its overlying strata. This process resulted in crustal shortening and the thickening of the upper crust in the Southern Gangdese, ultimately leading to the D2-phase folding deformation within the Yeba Group. During the Oligocene to Miocene (~31–15 Ma), the D3-phase deformation was a product of the tectonic transition of the Lhasa terrane from compression to lateral extension, driven by the combined effects of activity along the Gangdese thrust–reverse fault system (GCT) and the uplift of the Gangdese basement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.Y. Stratigraphy of orogenic belt: A case study of the Tethys orogenic belt in Sanjiang area. J. Stratigr. 1998, 22, 161–169, (In Chinese with English abstract). [Google Scholar]
- Wang, G.H.; Tang, J.X.; Li, D.; Mao, X.C.; Liu, Z.B.; Liang, X.; Song, Y.; Liu, J.Y. Field methods for orogenic belts: A case study of the Bangong Lake-Nujiang/Longmu Co-Shuanghu accretionary orogenic belt. Beijing Geol. Publ. House 2019, 1–203, (In Chinese with English abstract). [Google Scholar]
- Zhang, K.; He, W.; Jin, J.S.; Wang, J.; Xu, Y.; Zhang, X.; Yu, Y.; Lin, Q.; Luo, M.; Ji, J.; et al. Application of oceanic plate strata in tectonic stratigraphic division of orogenic belt. Geoscience 2020, 45, 2305–2325, (In Chinese with English abstract). [Google Scholar]
- Dong, Y.H.; Xu, J.F.; Zeng, Q.G.; Wang, Q.; Mao, G.Z.; Li, J. Is there an earlier Neo-Tethys subduction record than the Sangri Group arc volcanic rocks? Acta Petrol. Sin. 2006, 22, 661–668, (In Chinese with English abstract). [Google Scholar]
- Huang, F.; Xu, J.F.; Chen, J.L.; Kang, Z.Q.; Dong, Y.H. Early Jurassic Yeba Formation and Sangri Group volcanic rocks: Continental margin arc and intra-oceanic arc during the subduction of the Tethys Ocean? Acta Petrol. Sin. 2015, 31, 2089–2100, (In Chinese with English abstract). [Google Scholar]
- Zhu, D.C.; Pan, G.T.; Chung, S.L.; Liao, Z.L.; Wang, L.Q.; Li, G.M. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. Int. Geol. Rev. 2008, 50, 442–471. [Google Scholar] [CrossRef]
- Pan, G.T.; Mo, X.X.; Hou, Z.Q.; Zhu, D.C.; Wang, L.Q.; Li, G.M.; Zhao, Z.; Geng, Q.; Liao, Z. Space-time structure and evolution of the Gangdese orogenic belt. Acta Petrol. Sin. 2006, 22, 521–533, (In Chinese with English abstract). [Google Scholar]
- Xu, Z.Q.; Yang, J.S.; Li, H.B.; Ji, S.C.; Zhang, Z.M.; Liu, Y. India-Asia collision tectonics. Acta Petrol. Sin. 2011, 85, 1–33, (In Chinese with English abstract). [Google Scholar]
- Wu, Z.H.; Ye, P.S.; Hu, D.G.; Liu, Q.S. The thrust-nappe tectonic system in the northern Lhasa block. Geol. Rev. 2003, 49, 74–80, (In Chinese with English abstract). [Google Scholar]
- Hu, D.G.; Wu, Z.H.; Jiang, W.; Ye, P.S. Study on the metamorphic and deformation chronology of Precambrian gabbro in the western margin of Nam Co, northern Tibet. Acta Petrol. Sin. 2004, 20, 627–632, (In Chinese with English abstract). [Google Scholar]
- Ye, P.S.; Wu, Z.H.; Hu, D.G.; Jiang, W.; Yang, X.D. Geochemical characteristics and formation environment of the ophiolite on the west bank of Nam Co, Tibet. Mod. Geol. 2004, 18, 237–243, (In Chinese with English abstract). [Google Scholar]
- Zhong, K.H.; Li, L.; Zhou, H.W.; Bai, J.G.; Li, W.; Zhong, W.T.; Zhang, Y.; Lin, J.; Zheng, F.; Huang, X. Characteristics of Jiama-Kajunguo Nappe-Sliding Structural System in Tibet. Acta Geosci. Sin. 2012, 33, 411–423, (In Chinese with English abstract). [Google Scholar]
- Zhong, K.H.; Yao, D.; Duo, J.; Zheng, F.S.; Xu, C.H.; Huang, X.Y.; Lu, B.; Lin, J.; Bao, C.; Yan, G. Structural characteristics of Yeba Formation in Jiama-Qulong area, Tibet. Acta Geosci. Sin. 2013, 34, 75–86, (In Chinese with English abstract). [Google Scholar]
- Ma, S.W.; Xu, Z.Q.; Zhang, Z.K.; Ma, Y.; Zhao, Z.B.; Pang, X.; Zhao, X.; Wang, H. Structural deformation of Jiama copper polymetallic deposit in southern Tibet and its constraints on mineralization. Acta Petrol. Sin. 2016, 32, 227–245, (In Chinese with English abstract). [Google Scholar]
- Ma, Y.; Xu, Z.Q.; Li, G.W.; Ma, S.W.; Ma, X.X.; Chen, X.J.; Zhao, Z. The crustal deformation and the formation of the initial plateau of the Cretaceous back-arc basin in Gangdese, southern Tibet. Acta Petrol. Sin. 2017, 33, 3861–3872, (In Chinese with English abstract). [Google Scholar]
- Wang, L.Q. Geological Maps and Instructions of Qinghai-Tibet Plateau and Its Adjacent Areas; Geology Press: Beijing, China, 2013; (In Chinese with English abstract). [Google Scholar]
- Mo, X.X.; Dong, G.C.; Zhao, Z.D.; Zhou, S.; Wang, L.L.; Qiu, R.Z.; Zhang, F. Temporal and spatial distribution characteristics and crustal growth and evolution information of granite in Gangdise belt, Tibet. J. Univ. Geol. 2005, 11, 281–290, (In Chinese with English abstract). [Google Scholar]
- Mo, X.; Zhao, Z.; Deng, J.; Flower, M.; Yu, X.; Luo, Z.; Li, Y.; Zhou, S.; Dong, G.; Zhu, D.; et al. Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan plateau: Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; GeoScienceWorld: McLean, VA, USA, 2006; pp. 507–530. [Google Scholar] [CrossRef]
- Gou, J. A new understanding of the age of the Yeba Formation in Lhasa area. Tibet Geol. 1994, 52, 1–6, (In Chinese with English abstract). [Google Scholar]
- Yin, J.R.; Gou, J.; Pei, S.W.; Jiang, G.W. The Middle Jurassic bivalve fauna in the Yeba Formation of Lhasa block and its paleogeographic significance. Reg. Geol. China 1998, 17, 132–136, (In Chinese with English abstract). [Google Scholar]
- Mao, G.Z.; Hu, J.R. Characteristics and formation environment of Yeba Formation in Lhasa area. Tibet Geol. 2002, 12–18, (In Chinese with English abstract). [Google Scholar]
- Mo, X.; Hou, Z.; Niu, Y.; Dong, G.; Qu, X.; Zhao, Z.; Yang, Z. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 2007, 96, 225–242. [Google Scholar] [CrossRef]
- Xu, Z.; Dilek, Y.; Cao, H.; Yang, J.; Robinson, P.; Ma, C.; Chen, X. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. J. Asian Earth Sci. 2015, 105, 320–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Chen, K.L.; Liu, X.Y. Study on the Ar-Ar age spectrum and 39Ar core recoil loss mechanism of diagenetic mixed layer (I/S)-Taking the P-T boundary clay rock in Changxing area of Zhejiang Province as an example. Geol. Rev. 2006, 52, 556–561, (In Chinese with English abstract). [Google Scholar]
- Tang, Y.; Wang, G.H.; Feng, Y.P. Tectono-Stratigraphic Attributes and Evolution of the Yeba Volcanic Arc in the Southern Gangdese, Tibet. Earth Sci. Front. 2022, 29, 18, (In Chinese with English abstract). [Google Scholar]
- Dutta, D.; Mukherjee, S. Opposite shear senses: Geneses, global occurrences, numerical simulations and a case study from the Indian western Himalaya. J. Struct. Geol. 2019, 126, 357–392. [Google Scholar] [CrossRef]
- Gao, X. Study on Tectonic Deformation and Ore-Controlling Law in Jiama Area, Tibet. Ph.D. Dissertation, China University of Geosciences, Beijing, China, 2019; pp. 1–157, (In Chinese with English abstract). [Google Scholar]
- Chu, M.F.; Chung, S.L.; Song, B.; Liu, D.; O’Reilly, S.Y.; Pearson, N.J.; Ji, J.; Wen, D.J. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 2006, 34, 745–748. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Zhong, S.L.; Liu, C.Z. Age and petrogenesis of Gangdise batholith granite in southern Tibet. Sci. China Ser. D 2009, 39, 849–871, (In Chinese with English abstract). [Google Scholar]
- Wen, D.R.; Chung, S.L.; Song, B.; Iizuka, Y.; Yang, H.J.; Ji, J.; Liu, D.; Gallet, S. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos 2008, 105, 1–11. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Yang, J.S.; Li, H.B.; Zhang, J.X.; Zeng, L.S.; Jiang, M. The deep driving force of the Qinghai-Tibet Plateau and continental dynamics-terrane collision, collision orogeny and plateau uplift. Chin. Geol. 2006, 33, 221–238, (In Chinese with English abstract). [Google Scholar]
- Xu, Z.Q.; Yang, J.S.; Hou, Z.Q.; Zhang, Z.M.; Zeng, L.S.; Li, H.B. Some progress in the study of continental dynamics of the Qinghai-Tibet Plateau. Chin. Geol. 2016, 43, 1–42, (In Chinese with English abstract). [Google Scholar]
- Zhu, D.C.; Wang, Q.; Zhao, Z.D.; Chung, S.L.; Cawood, P.A.; Niu, Y.; Liu, S.A.; Wu, F.Y.; Mo, X.X. Magmatic record of India-Asia collision. Sci. Rep. 2015, 5, 14289. [Google Scholar] [CrossRef] [PubMed]
- Yin, A. Cenozoic tectonic evolution of the himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–131, Erratum in Earth-Sci. Rev. 2006, 79, 163–164. [Google Scholar] [CrossRef]
- Chen, M.; Niu, F.; Tromp, J.; Lenardic, A.; Lee, C.T.A.; Cao, W.; Ribeiro, J. Lithospheric foundering and underthrusting imaged beneath Tibet. Nat. Commun. 2017, 8, 15659. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Zeng, Q.G. Study on Xietongmen-Wuyu oblique-slip ductile shear zone in Tibet. Tibet Geol. 1995, 93–98, (In Chinese with English abstract). [Google Scholar]
- Song, P.F. The Tectonic Deformation Characteristics and Geological Significance of the Xietongmen-Numa Ductile Shear Zone in Lhasa, Tibet. Master’s Thesis, China University of Geosciences, Wuhan, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Meng, Y.K.; Xu, Z.Q.; Ma, S.W.; Yang, F.F.; Ma, X.X. The deformation characteristics and geochronological constraints of the Qushui ductile shear zone in the middle part of the Gangdese magmatic belt in southern Tibet. Geoscience 2016, 41, 1081–1098, (In Chinese with English abstract). [Google Scholar]
- Feng, Y.; Wang, G.; Meng, Y.; Li, D.; Xu, X.; Lu, Y.; Liu, H. Kinematics, strain patterns, rheology, and geochronology of Woka ductile shear zone: Product of uplift of Gangdese batholith and Great Counter Thrust activity. Geol. J. 2020, 55, 7251–7271. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Dai, J.; Xu, G.; Hou, Y.; Li, X. Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review. Earth-Sci. Rev. 2015, 143, 36–61. [Google Scholar] [CrossRef]
- Li, G.; Kohn, B.; Sandiford, M.; Xu, Z.; Seiler, C. Synorogenic morphotectonic evolution of the gangdese batholith, south tibet: Insights from low-temperature thermochronology. Geochemistry 2016, 17, 101–112. [Google Scholar] [CrossRef]
- Meng, Y.; Xu, Z.; Santosh, M.; Ma, X.; Chen, X.; Guo, G.; Liu, F. Late Triassic crustal growth in southern Tibet: Evidence from the Gangdese magmatic belt. Gondwana Res. 2016, 37, 449–464. [Google Scholar] [CrossRef]
- Wang, E.; Kamp, P.J.; Xu, G.; Hodges, K.V.; Meng, K.; Chen, L.; Wang, G.; Luo, H. Flexural bending of southern Tibet in a retro foreland setting. Sci. Rep. 2015, 5, 12076. [Google Scholar] [CrossRef] [PubMed]
T/℃ | 40Ar/39Ar | 1σ | 37Ar/39Ar | 1σ | 36Ar/39Ar | 1σ | 40Ar*/39Ark ± 2σ | (Age ± 2σ)/(Ma) |
---|---|---|---|---|---|---|---|---|
QY-4-08-07-1 | ||||||||
650 | 47.8759 | 0.2935 | 0.0000 | 0.0365 | 0.1332 | 0.0035 | 8.5259 ± 2.00 | 56.98 ± 13.13 |
720 | 32.6312 | 0.1955 | 0.0377 | 0.0052 | 0.0801 | 0.0020 | 8.9536 ± 1.15 | 59.79 ± 7.53 |
760 | 12.1054 | 0.0726 | 0.0262 | 0.0040 | 0.0063 | 0.0002 | 10.2532 ± 0.16 | 68.31 ± 1.07 |
800 | 12.0778 | 0.0724 | 0.0056 | 0.0035 | 0.0038 | 0.0002 | 10.9622 ± 0.16 | 72.94 ± 1.04 |
840 | 12.4625 | 0.0747 | 0.0048 | 0.0021 | 0.0029 | 0.0001 | 11.6004 ± 0.16 | 77.09 ± 1.01 |
880 | 12.9080 | 0.0774 | 0.0145 | 0.0019 | 0.0030 | 0.0001 | 12.0254 ± 0.16 | 79.86 ± 1.01 |
920 | 12.9852 | 0.0778 | 0.0077 | 0.0028 | 0.0034 | 0.0001 | 11.9715 ± 0.16 | 79.51 ± 1.06 |
960 | 13.0825 | 0.0785 | 0.0000 | 0.0057 | 0.0042 | 0.0002 | 11.8372 ± 0.19 | 78.63 ± 1.26 |
1010 | 13.2857 | 0.0797 | 0.0000 | 0.0044 | 0.0051 | 0.0002 | 11.7836 ± 0.20 | 78.28 ± 1.31 |
1060 | 13.5294 | 0.0814 | 0.0000 | 0.0057 | 0.0068 | 0.0003 | 11.5320 ± 0.21 | 76.65 ± 1.39 |
1120 | 13.4162 | 0.0805 | 0.0000 | 0.0055 | 0.0073 | 0.0003 | 11.2494 ± 0.22 | 74.81 ± 1.41 |
1180 | 15.5438 | 0.0936 | 0.0000 | 0.0051 | 0.0142 | 0.0006 | 11.3405 ± 0.36 | 75.40 ± 2.36 |
1400 | 74.0110 | 0.4567 | 0.0827 | 0.0288 | 0.1918 | 0.0049 | 17.3288 ± 2.83 | 113.98 ± 18.04 |
QY-4-08-07-4 | ||||||||
600 | 102.6731 | 0.6659 | 0.0000 | 0.0357 | 0.3372 | 0.0085 | 3.0288 ± 4.88 | 20.24 ± 32.40 |
680 | 21.1695 | 0.1271 | 0.0069 | 0.0074 | 0.0451 | 0.0012 | 7.8560 ± 0.70 | 52.03 ± 4.55 |
720 | 32.0797 | 0.1929 | 0.0000 | 0.0123 | 0.0761 | 0.0019 | 9.5996 ± 1.11 | 63.37 ± 7.21 |
760 | 15.5099 | 0.0930 | 0.0000 | 0.0040 | 0.0154 | 0.0004 | 10.9568 ± 0.28 | 72.16 ± 1.78 |
800 | 13.0571 | 0.0782 | 0.0197 | 0.0042 | 0.0057 | 0.0002 | 11.3624 ± 0.19 | 74.77 ± 1.24 |
840 | 13.4171 | 0.0804 | 0.0000 | 0.0020 | 0.0046 | 0.0002 | 12.0430 ± 0.17 | 79.16 ± 1.11 |
880 | 13.3756 | 0.0803 | 0.0000 | 0.0044 | 0.0045 | 0.0002 | 12.0449 ± 0.18 | 79.17 ± 1.17 |
920 | 13.7178 | 0.0822 | 0.0009 | 0.0015 | 0.0047 | 0.0001 | 12.3181 ± 0.17 | 80.92 ± 1.10 |
960 | 13.9281 | 0.0835 | 0.0000 | 0.0053 | 0.0066 | 0.0003 | 11.9906 ± 0.21 | 78.82 ± 1.33 |
1020 | 14.3419 | 0.0863 | 0.0000 | 0.0124 | 0.0072 | 0.0004 | 12.2173 ± 0.27 | 80.28 ± 1.74 |
1100 | 15.3101 | 0.0918 | 0.0003 | 0.0031 | 0.0108 | 0.0003 | 12.1103 ± 0.22 | 79.59 ± 1.43 |
1180 | 16.8142 | 0.1008 | 0.0080 | 0.0035 | 0.0145 | 0.0004 | 12.5203 ± 0.27 | 82.22 ± 1.72 |
1260 | 29.3409 | 0.1801 | 0.0000 | 0.0329 | 0.0433 | 0.0016 | 16.5397 ± 0.95 | 107.84 ± 6.03 |
1400 | 57.7973 | 0.3797 | 0.0000 | 0.0584 | 0.1253 | 0.0035 | 20.7632 ± 2.05 | 134.38 ± 12.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Yuan, Z.; Chen, M.; Wang, G. Tectonic Characteristics and Geological Significance of the Yeba Volcanic Arc in the Southern Lhasa Terrane. Appl. Sci. 2025, 15, 8145. https://doi.org/10.3390/app15158145
Fan Z, Yuan Z, Chen M, Wang G. Tectonic Characteristics and Geological Significance of the Yeba Volcanic Arc in the Southern Lhasa Terrane. Applied Sciences. 2025; 15(15):8145. https://doi.org/10.3390/app15158145
Chicago/Turabian StyleFan, Zhengzhe, Zhengren Yuan, Minghui Chen, and Genhou Wang. 2025. "Tectonic Characteristics and Geological Significance of the Yeba Volcanic Arc in the Southern Lhasa Terrane" Applied Sciences 15, no. 15: 8145. https://doi.org/10.3390/app15158145
APA StyleFan, Z., Yuan, Z., Chen, M., & Wang, G. (2025). Tectonic Characteristics and Geological Significance of the Yeba Volcanic Arc in the Southern Lhasa Terrane. Applied Sciences, 15(15), 8145. https://doi.org/10.3390/app15158145