Regional Landslide Hazard and Risk Assessment Considering Landslide Spatial Aggregation and Hydrological Slope Units
Abstract
1. Introduction
2. Methodology
2.1. Modelling Process of LRA
- (1)
- Establishment of landslide database. We identified the predisposing factors for the formation of landslides in the study area by field investigations and literature research. Based on remote sensing interpretation and field investigation data, a database containing information on the spatial distribution of landslides and the characteristics of related predisposing factors was established. In this study, the hydrological slope unit was adopted as the basic evaluation unit.
- (2)
- Analysis of correlations between landslide occurrence and predisposing factors. We established the connection between landslide occurrence and the predisposing factors through the DFR method. Based on this, an index system for landslide risk assessment was established.
- (3)
- Landslide hazard map. We conducted the LHA of the study area using the AHP and RF methods. In the process of calculating the landslide hazard, the frequency ratio and the dual-frequency ratio were the input variables.
- (4)
- Evaluation of LHA models. Based on the ROC curve and distribution characteristics of various levels of landslide hazard, we analyzed the LHA outputs obtained by different methods for the study area.
- (5)
- Vulnerability assessment. We used the AHP method to obtain the vulnerability zoning map of the study area for the calculation of the landslide risk.
- (6)
- Landslide risk map. Based on the above assessment of the landslide hazard and vulnerability, we calculated the landslide risk of the study area. During this procedure, the landslide hazard data with the highest accuracy were selected as the input variables for landslide risk calculation.
2.2. Analysis of Landslide Spatial Aggregation
2.3. Modeling Approaches
2.3.1. AHP Model
2.3.2. RF Model
2.4. Model Evaluation
3. Study Area and Data
3.1. Study Area
3.2. Landslide Inventory
3.3. Landslide Predisposing Factors
3.3.1. Geomorphological Factors
3.3.2. Geological Factors
3.3.3. Hydrological and Surface Cover Factors
3.4. Vulnerability Factors
4. Results
4.1. Landslide Hazard
4.1.1. Results of the AHP Model
4.1.2. Results of the RF Model
4.1.3. Evaluation of the LHA Models
4.2. Vulnerability
4.3. Landslide Risk
5. Discussion
5.1. Application of LAIFR
5.2. Analysis of the Landslide Risk in the Study Area
5.3. Prospects for Further Research
5.3.1. Selection of Predisposing Factors
5.3.2. Evaluation Unit
5.3.3. Evaluation of the LRA Model
6. Conclusions
- (1)
- The DFR method can effectively quantify the degree of landslide spatial aggregation and has a good application effect. Based on the ROC curve and distribution patterns of the LHIs, the model evaluation indicates that the DFR method can practically improve the prediction performance of LHA models.
- (2)
- Compared with the AHP model, the RF model has higher accuracy in this study. Furthermore, the prediction performance of the DFR-RF model is the best. The landslide hazard map generated by a single type of LHA model often has high uncertainty, and it is better to comprehensively analyze the performance of multiple LHA models to determine the final LHIs.
- (3)
- The coverage of zones with high and very high landslide risks is very small, and they are mainly distributed along the roads on the southern side of Aoyitake Town. The zones with medium landslide risks are largely concentrated in the Gaizi River valley between Aoyitake and Bulunkou, and some are also found around Dabudaer and the county town of Taxkorgan. Our research provides a reference for local disaster risk prevention and control.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic hierarchy process |
AUC | Area under the curve |
CI | Consistency index |
CR | Consistency ratio |
DFR | Dual-frequency ratio |
FR | Frequency ratio |
GDP | Gross domestic product |
KKH | Karakoram Highway |
LHA | Landslide hazard assessment |
LHI | Landslide hazard index |
LRA | Landslide risk assessment |
NDVI | Normalized difference vegetation index |
PF | Predisposing factor |
PGA | Peak ground acceleration |
RF | Random forest |
RI | Random index |
ROC | Receiver operating characteristic |
VF | Vulnerability factor |
References
- van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope Movement Types and Processes; Transportation Research Board; National Academy of Sciences: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Alvioli, M.; Loche, M.; Jacobs, L.; Grohmann, C.H.; Abraham, M.T.; Gupta, K.; Satyam, N.; Scaringi, G.; Bornaetxea, T.; Rossi, M.; et al. A benchmark dataset and workflow for landslide susceptibility zonation. Earth-Sci. Rev. 2024, 258, 104927. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Bourenane, H.; Meziani, A.A.; Benamar, D.A. Application of GIS-based statistical modeling for landslide susceptibility mapping in the city of Azazga, Northern Algeria. Bull. Eng. Geol. Environ. 2021, 80, 7333–7359. [Google Scholar] [CrossRef]
- Quesada-Roman, A. Landslide risk index map at the municipal scale for Costa Rica. Int. J. Disaster Risk Reduct. 2021, 56, 102144. [Google Scholar] [CrossRef]
- Nie, W.; Tian, C.; Song, D.; Liu, X.; Wang, E. Disaster process and multisource information monitoring and warning method for rainfall-triggered landslide: A case study in the southeastern coastal area of China. Nat. Hazards 2025, 121, 2535–2564. [Google Scholar] [CrossRef]
- Iverson, R.M.; George, D.L.; Allstadt, K.; Reid, M.E.; Collins, B.D.; Vallance, J.W.; Schilling, S.P.; Godt, J.W.; Cannon, C.M.; Magirl, C.S.; et al. Landslide mobility and hazards: Implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 2015, 412, 197–208. [Google Scholar] [CrossRef]
- Laimer, H.J. Anthropogenically induced landslides—A challenge for railway infrastructure in mountainous regions. Eng. Geol. 2017, 222, 92–101. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Peng, J.; Zhou, Y.; Wang, S.; Chen, Y.; Tang, Y. Fatal landslides in China from 1940 to 2020: Occurrences and vulnerabilities. Landslides 2023, 20, 1243–1264. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Fell, R.; Cororninas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z.; Eng, J.T.-J.-T.C.L. Guidelines for landslide susceptibility, hazard and risk-zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Chang, M.; Cui, P.; Dou, X.; Su, F. Quantitative risk assessment of landslides over the China-Pakistan economic corridor. Int. J. Disaster Risk Reduct. 2021, 63, 102441. [Google Scholar] [CrossRef]
- Gao, Z.; Ding, M.; Huang, T.; Liu, X.; Hao, Z.; Hu, X.; Xi, C. Landslide risk assessment of high-mountain settlements using Gaussian process classification combined with improved weight-based generalized objective function. Int. J. Disaster Risk Reduct. 2022, 67, 102662. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, V. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. J. Mt. Sci. 2018, 15, 808–824. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Li, Y.; Qi, S.; Zheng, B.; Yao, X.; Guo, S.; Zou, Y.; Lu, X.; Tang, F.; Guo, X.; Waqar, M.F.; et al. Multi-Scale Engineering Geological Zonation for Linear Projects in Mountainous Regions: A Case Study of National Highway 318 Chengdu-Shigatse Section. Remote Sens. 2023, 15, 4619. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Wang, S.; Lari, S. Regional landslide susceptibility zoning with considering the aggregation of landslide points and the weights of factors. Landslides 2014, 11, 399–409. [Google Scholar] [CrossRef]
- Yi, X.; Shang, Y.; Liang, S.; Meng, H.; Meng, Q.; Shao, P.; Cui, Z. Landslide Susceptibility Mapping Considering Landslide Spatial Aggregation Using the Dual-Frequency Ratio Method: A Case Study on the Middle Reaches of the Tarim River Basin. Remote Sens. 2025, 17, 381. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Huang, F.; Tao, S.; Li, D.; Lian, Z.; Catani, F.; Huang, J.; Li, K.; Zhang, C. Landslide Susceptibility Prediction Considering Neighborhood Characteristics of Landslide Spatial Datasets and Hydrological Slope Units Using Remote Sensing and GIS Technologies. Remote Sens. 2022, 14, 4436. [Google Scholar] [CrossRef]
- Liu, L.-L.; Zhang, Y.-L.; Xiao, T.; Yang, C. A frequency ratio-based sampling strategy for landslide susceptibility assessment. Bull. Eng. Geol. Environ. 2022, 81, 360. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide Susceptibility Mapping: Machine and Ensemble Learning Based on Remote Sensing Big Data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- Liu, B.; Han, S.Y.; Gong, H.; Zhou, Z.L.; Zhang, D. Disaster resilience assessment based on the spatial and temporal aggregation effects of earthquake-induced hazards. Environ. Sci. Pollut. Res. 2020, 27, 29055–29067. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Pang, B.; Dong, W.F.; Li, D.H.; Huang, Z.Y. Interaction of landslide spatial patterns and river canyon landforms: Insights into the Three Parallel Rivers Area, southeastern Tibetan Plateau. Sci. Total Environ. 2024, 914, 169935. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, S.; Li, X.; Jiang, Y.; Wei, W.; Wang, Z.; Bai, Y. An integrated approach for landslide susceptibility mapping by considering spatial correlation and fractal distribution of clustered landslide data. Landslides 2019, 16, 715–728. [Google Scholar] [CrossRef]
- Chang, Z.L.; Huang, F.M.; Huang, J.S.; Jiang, S.H.; Liu, Y.T.; Meena, S.R.; Catani, F. An updating of landslide susceptibility prediction from the perspective of space and time. Geosci. Front. 2023, 14, 101619. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Shang, Y.J.; Park, H.D.; Yang, Z.F. Engineering geological zonation using interaction matrix of geological factors: An example from one section of Sichuan-Tibet Highway. Geosci. J. 2005, 9, 375–387. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H.; Marui, H.; Kanno, T. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar] [CrossRef]
- Rao Tummala, V.M.; Ling, H. A Note on the Computation of the Mean Random Consistency Index of the Analytic Hierarchy Process (Ahp). Theory Decis. 1998, 44, 221–230. [Google Scholar] [CrossRef]
- Woo, T.-H.; Lese, U.-C. Safeguard Assessment in Nuclear Power Plants (NPPs) Operations Using Analytic Hierarchy Process (AHP) and Production Function. Energy Explor. Exploit. 2011, 29, 337–355. [Google Scholar] [CrossRef]
- Dijkstra, T.K. On the extraction of weights from pairwise comparison matrices. Cent. Eur. J. Oper. Res. 2013, 21, 103–123. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hasan, M.; Kotov, A.; Idalski Carcone, A.; Dong, M.; Naar, S.; Brogan Hartlieb, K. A study of the effectiveness of machine learning methods for classification of clinical interview fragments into a large number of categories. J. Biomed. Inform. 2016, 62, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Y.; Xue, W.F.; Shahabi, H.; Li, S.J.; Hong, H.Y.; Wang, X.J.; Bian, H.Y.; Zhang, S.; Pradhan, B.; et al. Modeling flood susceptibility using data-driven approaches of naive Bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef] [PubMed]
- Micheletti, N.; Foresti, L.; Robert, S.; Leuenberger, M.; Pedrazzini, A.; Jaboyedoff, M.; Kanevski, M. Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping. Math. Geosci. 2014, 46, 33–57. [Google Scholar] [CrossRef]
- Broeckx, J.; Vanmaercke, M.; Duchateau, R.; Poesen, J. A data-based landslide susceptibility map of Africa. Earth-Sci. Rev. 2018, 185, 102–121. [Google Scholar] [CrossRef]
- Wu, Y.L.; Ke, Y.T.; Chen, Z.; Liang, S.Y.; Zhao, H.L.; Hong, H.Y. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena 2020, 187, 104396. [Google Scholar] [CrossRef]
- Yi, X.; Shang, Y.; Shao, P.; Meng, H. A dataset of spatial distributions and attributes of typical rockfalls and landslides in the China-Pakistan Economic Corridor from 1970 to 2020. China Sci. Data 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Wang, X.L.; Clague, J.J.; Crosta, G.B.; Sun, J.; Stead, D.; Qi, S.; Zhang, L. Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges. Eng. Geol. 2021, 292, 106281. [Google Scholar] [CrossRef]
- Huang, F.; Pan, L.; Fan, X.; Jiang, S.-H.; Huang, J.; Zhou, C. The uncertainty of landslide susceptibility prediction modeling: Suitability of linear conditioning factors. Bull. Eng. Geol. Environ. 2022, 81, 182. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, J.; Cui, W.; Chen, D.; Zhang, J.; Lu, H.; Maeda, E.E.; Zeng, Z.; Beck, H.E. Elevation Regulates the Response of Climate Heterogeneity to Climate Change. Geophys. Res. Lett. 2024, 51, e2024GL109483. [Google Scholar] [CrossRef]
- Buckley, J.; Widmer, A.; Mescher, M.C.; De Moraes, C.M. Variation in growth and defence traits among plant populations at different elevations: Implications for adaptation to climate change. J. Ecol. 2019, 107, 2478–2492. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Jiang, S.-H.; Yao, C.; Fan, X.; Catani, F.; Chang, Z.; Zhou, X.; Huang, J.; Liu, K. Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory. Earth-Sci. Rev. 2024, 250, 104700. [Google Scholar] [CrossRef]
- GB/T 50218-2014; Standard for Engineering Classification of Rock Mass, 1st ed. China Planning Press: Beijing, China, 2014.
- Chen, Z.; Scott, C.; Keating, D.; Clarke, A.; Das, J.; Arrowsmith, R. Quantifying and analysing rock trait distributions of rocky fault scarps using deep learning. Earth Surf. Proc. Land. 2023, 48, 1234–1250. [Google Scholar] [CrossRef]
- Li, X.; Pierce, I.K.D.; Ai, M.; Luo, Q.; Li, C.; Zheng, W.; Zhang, P. Active tectonics and landform evolution in the Longxian-Baoji Fault Zone, Northeast Tibet, China, determined using combined ridge and stream profiles. Geomorphology 2022, 410, 108279. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Haritashya, U.K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E.S.; Steiner, J.; et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 2016, 351, aac8353. [Google Scholar] [CrossRef] [PubMed]
- Unal, E.O.; Kocaman, S.; Gokceoglu, C. Impact assessment of geohazards triggered by 6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) on the natural gas pipelines. Eng. Geol. 2024, 334, 107508. [Google Scholar] [CrossRef]
- Pacheco Quevedo, R.; Velastegui-Montoya, A.; Montalván-Burbano, N.; Morante-Carballo, F.; Korup, O.; Daleles Rennó, C. Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides 2023, 20, 967–982. [Google Scholar] [CrossRef]
- Qiu, H.; Su, L.; Tang, B.; Yang, D.; Ullah, M.; Zhu, Y.; Kamp, U. The effect of location and geometric properties of landslides caused by rainstorms and earthquakes. Earth Surf. Proc. Land. 2024, 49, 2067–2079. [Google Scholar] [CrossRef]
- Liu, X.L.; Lei, J.Z. A method for assessing regional debris flow risk: An application in Zhaotong of Yunnan province (SW China). Geomorphology 2003, 52, 181–191. [Google Scholar] [CrossRef]
- Ding, M.T.; Heiser, M.; Hubl, J.; Fuchs, S. Regional vulnerability assessment for debris flows in China-a CWS approach. Landslides 2016, 13, 537–550. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Xiong, J.N.; Cheng, W.M.; Wang, N.; He, W.; He, Y.F.; Liu, J.; Yang, G.; Wang, J.Y.; Yang, J.W. Assessment and spatiotemporal analysis of global flood vulnerability in 2005-2020. Int. J. Disaster Risk Reduct. 2022, 80, 103201. [Google Scholar] [CrossRef]
- Sun, D.; Xu, J.; Wen, H.; Wang, Y. An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility Mapping: Application in Two Areas of Three Gorges Reservoir, China. J. Earth Sci. 2020, 31, 1068–1086. [Google Scholar] [CrossRef]
- Chang, Z.L.; Huang, J.S.; Huang, F.M.; Bhuyan, K.; Meena, S.R.; Catani, F. Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models. Gondwana Res. 2023, 117, 307–320. [Google Scholar] [CrossRef]
- Bueechi, E.; Klimeš, J.; Frey, H.; Huggel, C.; Strozzi, T.; Cochachin, A. Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—A comparison of different approaches. Landslides 2019, 16, 395–407. [Google Scholar] [CrossRef]
- Huang, F.M.; Tao, S.Y.; Chang, Z.L.; Huang, J.S.; Fan, X.M.; Jiang, S.H.; Li, W.B. Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments. Landslides 2021, 18, 3715–3731. [Google Scholar] [CrossRef]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 | 1.49 | 1.52 | 1.54 |
Predisposing Factor | Data Source | Resolution or Scale |
---|---|---|
Elevation, slope, aspect, and topographic relief | Geospatial Data Cloud (https://www.gscloud.cn) (accessed on 6 June 2024) | 30 m |
Rock group and fault density | Geological map (accessed on 6 June 2024) | 1:250,000 |
PGA | China Earthquake Administration (https://www.cea.gov.cn/cea/index/index.html) (accessed on 24 June 2024) | 1:250,000 |
Annual precipitation | WorldClim (https://www.worldclim.org) (accessed on 26 December 2024) | 1 km |
Population density and GDP density | Resource and Environmental Science Data Platform (https://www.resdc.cn) (accessed on 26 December 2024) | 1 km |
River density, road density, and mine density | National Platform for Common Geospatial Information Services (https://map.tianditu.gov.cn) (accessed on 26 December 2024) | 30 m |
NDVI and land use | National Cryosphere Desert Data Center (http://www.ncdc.ac.cn) (accessed on 23 January 2025) | 1:10,000 |
Predisposing Factor | Value | FR | LAIFR | DFR |
---|---|---|---|---|
Elevation (m) (PF1) | 1254–1726 | 0.013 | 1.000 | 0.013 |
1726–2304 | 4.847 | 0.507 | 2.456 | |
2304–2904 | 3.283 | 0.477 | 1.567 | |
2904–3482 | 2.193 | 0.423 | 0.929 | |
3482–3932 | 1.131 | 0.474 | 0.536 | |
3932–4381 | 0.132 | 0.500 | 0.066 | |
4381–4917 | 0.312 | 0.846 | 0.264 | |
4917–6715 | 0.000 | 0.000 | 0.000 | |
Aspect (°) (PF2) | −1 | 0.000 | 0.000 | 0.000 |
0–22.5, 337.5–0 | 0.000 | 0.000 | 0.000 | |
22.5–67.5 | 0.241 | 0.500 | 0.121 | |
67.5–112.5 | 0.492 | 0.731 | 0.360 | |
112.5–157.5 | 1.512 | 0.393 | 0.593 | |
157.5–202.5 | 1.171 | 0.424 | 0.496 | |
202.5–247.5 | 0.876 | 0.618 | 0.541 | |
247.5–292.5 | 0.522 | 0.632 | 0.330 | |
292.5–337.5 | 0.198 | 1.000 | 0.198 | |
Slope (°) (PF3) | 0–7 | 0.046 | 0.400 | 0.018 |
7–12 | 0.563 | 0.500 | 0.281 | |
12–16 | 1.069 | 0.400 | 0.428 | |
16–21 | 2.773 | 0.361 | 1.001 | |
21–26 | 1.028 | 0.732 | 0.752 | |
26–30 | 1.700 | 0.443 | 0.752 | |
30–35 | 2.842 | 0.525 | 1.491 | |
>35 | 0.963 | 0.750 | 0.722 | |
Topographic relief (m) (PF4) | 0–52 | 0.043 | 0.400 | 0.017 |
52–108 | 0.604 | 0.488 | 0.295 | |
108–163 | 1.753 | 0.397 | 0.697 | |
163–214 | 2.028 | 0.446 | 0.904 | |
214–262 | 1.220 | 0.500 | 0.610 | |
262–320 | 2.308 | 0.459 | 1.059 | |
320–398 | 2.235 | 0.714 | 1.596 | |
398–621 | 1.319 | 0.571 | 0.753 | |
Rock group (PF5) | Very hard | 1.587 | 0.526 | 0.835 |
Hard | 0.945 | 0.824 | 0.778 | |
Less hard | 1.705 | 0.440 | 0.750 | |
Soft | 1.288 | 0.495 | 0.638 | |
Very soft | 0.529 | 0.356 | 0.188 | |
Water | 0.738 | 0.500 | 0.369 | |
Fault density (km/km2) (PF6) | 0–0.12 | 0.317 | 0.510 | 0.162 |
0.12–0.28 | 1.174 | 0.350 | 0.411 | |
0.28–0.40 | 1.523 | 0.535 | 0.814 | |
0.40–0.50 | 1.406 | 0.545 | 0.767 | |
0.50–0.62 | 3.370 | 0.493 | 1.660 | |
0.62–0.78 | 2.167 | 0.543 | 1.176 | |
0.78–0.98 | 0.696 | 0.333 | 0.232 | |
0.98–1.22 | 1.702 | 0.800 | 1.362 | |
PGA (g) (PF7) | 0.20 | 0.641 | 0.684 | 0.439 |
0.30 | 1.122 | 0.466 | 0.522 | |
0.40 | 0.072 | 0.500 | 0.036 | |
River density (km/km2) (PF8) | 0–0.15 | 0.082 | 0.500 | 0.041 |
0.15–0.36 | 1.097 | 0.500 | 0.549 | |
0.36–0.60 | 1.619 | 0.496 | 0.803 | |
0.60–0.90 | 2.639 | 0.430 | 1.134 | |
0.90–1.27 | 0.414 | 0.583 | 0.241 | |
1.27–1.70 | 0.151 | 0.667 | 0.101 | |
1.70–2.36 | 0.000 | 0.000 | 0.000 | |
2.36–3.35 | 0.000 | 0.000 | 0.000 | |
NDVI (PF9) | −1.00–−0.13 | 0.000 | 0.000 | 0.000 |
−0.13–0.06 | 0.393 | 0.857 | 0.337 | |
0.06–0.17 | 1.936 | 0.426 | 0.824 | |
0.17–0.27 | 0.878 | 0.563 | 0.494 | |
0.27–0.40 | 0.288 | 0.500 | 0.144 | |
0.40–0.56 | 0.637 | 0.588 | 0.375 | |
0.56–0.71 | 0.046 | 1.000 | 0.046 | |
0.71–1.00 | 0.000 | 0.000 | 0.000 | |
Annual precipitation (mm) (PF10) | 50–71 | 0.437 | 0.588 | 0.257 |
71–89 | 2.712 | 0.422 | 1.143 | |
89–103 | 0.419 | 0.651 | 0.273 | |
103–124 | 0.213 | 0.800 | 0.170 | |
124–151 | 0.051 | 1.000 | 0.051 | |
151–203 | 0.000 | 0.000 | 0.000 | |
203–287 | 0.000 | 0.000 | 0.000 | |
287–420 | 0.000 | 0.000 | 0.000 |
Vulnerability Factor | Value | |||||
---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | |
Population density (persons/km2) (VF1) | 0–827 | 827–2893 | 2893–5475 | 5475–10,123 | 10,123–17,457 | 17,457–26,339 |
GDP density (CNY 10,000/km2) (VF2) | 0–5 | 5–15 | 15–29 | 29–45 | 45–61 | 61–76 |
Road density (km/km2) (VF3) | 0–0.27 | 0.27–1.06 | 1.06–2.34 | 2.34–3.92 | 3.92–6.02 | 6.02–9.58 |
Mine density (points/km2) (VF4) | 0–0.10 | 0.10–0.32 | 0.32–0.55 | 0.55–0.77 | 0.77–1.00 | 1.00–1.38 |
Land use (VF5) | Unused land | Water | Grassland | Woodland | Farmland | Building land |
Predisposing Factor | PF1 | PF2 | PF3 | PF4 | PF5 | PF6 | PF7 | PF8 | PF9 | PF10 | Weight |
---|---|---|---|---|---|---|---|---|---|---|---|
PF1 | 1 | 0.216 | |||||||||
PF2 | 1/5 | 1 | 0.050 | ||||||||
PF3 | 1/2 | 4 | 1 | 0.162 | |||||||
PF4 | 1/3 | 3 | 1/2 | 1 | 0.116 | ||||||
PF5 | 1/4 | 2 | 1/3 | 1/2 | 1 | 0.079 | |||||
PF6 | 1/2 | 4 | 1 | 2 | 3 | 1 | 0.162 | ||||
PF7 | 1/5 | 1 | 1/4 | 1/3 | 1/2 | 1/4 | 1 | 0.050 | |||
PF8 | 1/6 | 1/2 | 1/5 | 1/4 | 1/3 | 1/5 | 1/2 | 1 | 0.031 | ||
PF9 | 1/7 | 1/3 | 1/6 | 1/5 | 1/4 | 1/6 | 1/3 | 1/2 | 1 | 0.019 | |
PF10 | 1/3 | 3 | 1/2 | 1 | 2 | 1/2 | 3 | 4 | 5 | 1 | 0.116 |
Vulnerability Factor | VF1 | VF2 | VF3 | VF4 | VF5 | Weight |
---|---|---|---|---|---|---|
VF1 | 1 | 0.378 | ||||
VF2 | 1/2 | 1 | 0.271 | |||
VF3 | 1/3 | 1/2 | 1 | 0.185 | ||
VF4 | 1/4 | 1/3 | 1/2 | 1 | 0.120 | |
VF5 | 1/6 | 1/5 | 1/4 | 1/3 | 1 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Shang, Y.; Meng, H.; Meng, Q.; Shao, P.; Ahmed, I. Regional Landslide Hazard and Risk Assessment Considering Landslide Spatial Aggregation and Hydrological Slope Units. Appl. Sci. 2025, 15, 8068. https://doi.org/10.3390/app15148068
Yi X, Shang Y, Meng H, Meng Q, Shao P, Ahmed I. Regional Landslide Hazard and Risk Assessment Considering Landslide Spatial Aggregation and Hydrological Slope Units. Applied Sciences. 2025; 15(14):8068. https://doi.org/10.3390/app15148068
Chicago/Turabian StyleYi, Xuetao, Yanjun Shang, He Meng, Qingsen Meng, Peng Shao, and Izhar Ahmed. 2025. "Regional Landslide Hazard and Risk Assessment Considering Landslide Spatial Aggregation and Hydrological Slope Units" Applied Sciences 15, no. 14: 8068. https://doi.org/10.3390/app15148068
APA StyleYi, X., Shang, Y., Meng, H., Meng, Q., Shao, P., & Ahmed, I. (2025). Regional Landslide Hazard and Risk Assessment Considering Landslide Spatial Aggregation and Hydrological Slope Units. Applied Sciences, 15(14), 8068. https://doi.org/10.3390/app15148068