Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Substrates, Water, and Seed Characteristics
2.2.1. Soil
2.2.2. Biochar
2.2.3. Vermicompost Leachate
2.2.4. Irrigation Water
2.2.5. Plant Material
2.3. Treatments and Experimental Design
2.4. Installation Procedure
2.5. Soil Characteristics Analysis
2.6. Agronomic Characteristics Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Parameters
3.2. Agronomic Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basak, N.; Rai, A.K.; Barman, A.; Mandal, S.; Sundha, P.; Bedwal, S.; Kumar, S.; Yadav, R.K.; Sharma, P.C. Salt Affected Soils: Global Perspectives. In Soil Health and Environmental Sustainability: Application of Geospatial Technology; Shit, P.K., Adhikary, P.P., Bhunia, G.S., Sengupta, D., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 107–129. ISBN 978-3-031-09270-1. [Google Scholar]
- Lin, H.-I.; Yu, Y.-Y.; Wen, F.-I.; Liu, P.-T. Status of Food Security in East and Southeast Asia and Challenges of Climate Change. Climate 2022, 10, 40. [Google Scholar] [CrossRef]
- Baum, Z.; Palatnik, R.R.; Kan, I.; Rapaport-Rom, M. Economic Impacts of Water Scarcity Under Diverse Water Salinities. Water Econs. Policy 2016, 02, 1550013. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Boari, F.; Mastro, M.A.; Cantore, V. Effect of Water Salinity and Irrigation Regime on Maize (Zea mays L.) Cultivated on Clay Loam Soil and Irrigated by Furrow in Southern Italy. Agric. Water Manag. 2019, 222, 118–124. [Google Scholar] [CrossRef]
- Amer, K.H. Corn Crop Response under Managing Different Irrigation and Salinity Levels. Agric. Water Manag. 2010, 97, 1553–1563. [Google Scholar] [CrossRef]
- Lavado Status and Sustainable Management of Salt Affected Soils in Latin America. 2021. Available online: https://www.fao.org/fileadmin/user_upload/GSP/GSAS21/day1/017_Lavado.pdf (accessed on 20 April 2025).
- Pérez Porras, W.E.; Arévalo Aranda, Y.G.; Palomino Paccua, L.; Quintanilla Rosas, J.; Ortiz Dongo, L.F.; Duarte Guardia, S. Manual de Producción de Enmiendas Orgánicas para Restablecer la Fertilidad del Suelo; Instituto Nacional de Innovación Agraria: Lima, Peru, 2022; ISBN 978-9972-44-110-3.
- Zuniga, L. Transformation of the Hyper-Arid Desert Soils in Arequipa Peru During Four Decades of Irrigated Agriculture. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2020; pp. 1–127. Available online: https://hammer.purdue.edu/articles/thesis/Transformation_of_the_hyperarid_desert_soils_in_Arequipa_Peru_during_four_decades_of_irrigated_agriculture/13099850?file=25167272 (accessed on 11 April 2025).
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual Effects of Biochar on Improving Growth, Physiology and Yield of Wheat under Salt Stress. Agric. Water Manag. 2015, 158, 61–68. [Google Scholar] [CrossRef]
- Rupay, J.; Pérez, W.E.; Solórzano-Acosta, R.; Quintanilla, J.; Cruz, J.; Cosme, R.; Rupay, J.; Pérez, W.E.; Solórzano-Acosta, R.; Quintanilla, J.; et al. Variación de La Emisión de CO2 Temporal, CO2 Acumulado y Mejora de Características Asociadas a La Fertilidad de Un Suelo Ácido Mediante La Aplicación de Biochar. Folia Amaz. 2023, 32, e32672. [Google Scholar] [CrossRef]
- Petmuenwai, N.; Srihaban, P.; Kume, T.; Yamamoto, T.; Iwai, C.B. Remediating Severely Salt-Affected Soil with Vermicompost and Organic Amendments for Cultivating Salt-Tolerant Crops as a Functional Food Source. Agronomy 2024, 14, 1745. [Google Scholar] [CrossRef]
- Hafez, E.M.; Omara, A.E.D.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing Hazard Impacts of Soil Salinity and Water Stress on Wheat Plants by Soil Application of Vermicompost and Biochar. Physiol. Plant. 2021, 172, 587–602. [Google Scholar] [CrossRef]
- Oyege, I.; Balaji Bhaskar, M.S. Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Nayak, H.; Rai, S.; Mahto, R.; Rani, P.; Yadav, S.; Kumar Prasad, S.; Kumar Singh, R. Vermiwash: A Potential Tool for Sustainable Agriculture. J. Pharmacogn. Phytochem. 2019, 5, 308–312. [Google Scholar]
- Kamali, M.; Sweygers, N.; Al-Salem, S.; Appels, L.; Aminabhavi, T.M.; Dewil, R. Biochar for Soil Applications-Sustainability Aspects, Challenges and Future Prospects. Chem. Eng. J. 2022, 428, 131189. [Google Scholar] [CrossRef]
- Kocsis, T.; Ringer, M.; Biró, B. Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks. Appl. Sci. 2022, 12, 4051. [Google Scholar] [CrossRef]
- Mao, X.; Yang, Y.; Guan, P.; Geng, L.; Ma, L.; Di, H.; Liu, W.; Li, B. Remediation of Organic Amendments on Soil Salinization: Focusing on the Relationship between Soil Salts and Microbial Communities. Ecotoxicol. Environ. Saf. 2022, 239, 113616. [Google Scholar] [CrossRef] [PubMed]
- Enebe, M.C.; Erasmus, M. Vermicomposting Technology—A Perspective on Vermicompost Production Technologies, Limitations and Prospects. J. Environ. Manag. 2023, 345, 118585. [Google Scholar] [CrossRef]
- MIDAGRI Maíz. Available online: https://www.midagri.gob.pe/portal/30-sector-agrario/maiz/250-maiz?start=2 (accessed on 9 April 2025).
- Huanuqueño, E. Desarrollo de Híbridos Simples de Maíz Popcorn Morado Mediante Métodos Convencionales. Ph.D. Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 2023. [Google Scholar]
- Sadzawka, R.A.; Carrasco, R.M.; Grez, Z.R.; Mora, G.M. Métodos de Análisis de Compost 2005; Serie Actas INIA n° 30; Instituto de Investigaciones Agropecuarias: Santiago, Chile; 152 p.
- Biochar Standards. International Biochar Initiative. Available online: https://biochar-international.org/biochar-standards/ (accessed on 26 May 2025).
- EBC and WBC Guidelines & Documents. Available online: https://www.european-biochar.org/en/ct/2-EBC-and-WBC-guidelines-documents (accessed on 26 May 2025).
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of Cow Manure Biochar on Maize Productivity under Sandy Soil Condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Beretta, A.N.; Silbermann, A.V.; Paladino, L.; Torres, D.; Kassahun, D.; Musselli, R.; García Lamohte, A. Soil Texture Analyses Using a Hydrometer: Modification of the Bouyoucos Method. Cienc. E Investig. Agrar. Rev. Latinoam. De Cienc. De La Agric. 2014, 41, 263–271. [Google Scholar] [CrossRef]
- Guadarrama-Pérez, V.H.; Robledo-Pérez, R.M.; Treviño-Quintanilla, L.G.; Carrillo-Morales, M.; Guadarrama-Pérez, O.; Hernández-Romano, J. Soil Properties That Affect the Adsorption of ΦITL-1 and ΦRSP Bacteriophages. J. Soils Sediments 2024, 24, 2974–2985. [Google Scholar] [CrossRef]
- Ortiz-Ojeda, P.; Ogata-Gutiérrez, K.; Zúñiga-Dávila, D. Evaluation of Plant Growth Promoting Activity and Heavy Metal Tolerance of Psychrotrophic Bacteria Associated with Maca (Lepidium meyenii Walp.) Rhizosphere. AIMS Microbiol. 2017, 3, 279–292. [Google Scholar] [CrossRef]
- Calvo, P.; Ormeño-Orrillo, E.; Martínez-Romero, E.; Zúñiga, D. Characterization of Bacillus Isolates of Potato Rhizosphere from Andean Soils of Peru and Their Potential PGPR Characteristics. Braz. J. Microbiol. 2010, 41, 899–906. [Google Scholar] [CrossRef]
- Yu, X.; Shi, P.; Schrader, J.; Niklas, K.J. Nondestructive Estimation of Leaf Area for 15 Species of Vines with Different Leaf Shapes. Am. J. Bot. 2020, 107, 1481–1490. [Google Scholar] [CrossRef]
- Samaniego-Vivanco, T.D.; Pérez, W.E.; Lastra-Paúcar, S.; Verme-Mustiga, E.; Solórzano-Acosta, R. The fermented liquid biofertilizer use derived from slaughterhouse waste improves maize crop yield. Trop. Subtrop. Agroecosyst. 2024, 27. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples)†. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Wu, J.; Wong, A.C.M. A Note on Determining the p-Value of Bartlett’s Test of Homogeneity of Variances. Commun. Stat.—Theory Methods 2003, 32, 91–101. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Dehghanipoodeh, S.; Wright, G.C. Vermicompost Leachate Reduces Some Negative Effects of Salt Stress in Pomegranate. Int. J. Recycl. Org. Waste Agric. 2017, 6, 255–263. [Google Scholar] [CrossRef]
- Čabilovski, R.; Manojlović, M.S.; Popović, B.M.; Radojčin, M.T.; Magazin, N.; Petković, K.; Kovačević, D.; Lakićević, M.D. Vermicompost and Vermicompost Leachate Application in Strawberry Production: Impact on Yield and Fruit Quality. Horticulturae 2023, 9, 337. [Google Scholar] [CrossRef]
- Becagli, M.; Guglielminetti, L.; Cardelli, R. Effects of Combined Biochar and Vermicompost Solution on Leachate Characterization and Nitrogen Balance from a Greenhouse Tomato (Solanum lycopersicum) Cultivation Soil. Commun. Soil Sci. Plant Anal. 2021, 52, 1879–1893. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P. Influences of Vermicomposts on Field Strawberries: Part 2. Effects on Soil Microbiological and Chemical Properties. Bioresour. Technol. 2006, 97, 831–840. [Google Scholar] [CrossRef]
- Romero-Tepal, E.M.; Contreras-Blancas, E.; Navarro-Noya, Y.E.; Ruíz-Valdiviezo, V.M.; Luna-Guido, M.; Gutiérrez-Miceli, F.A.; Dendooven, L. Changes in the Bacterial Community Structure in Stored Wormbed Leachate. J. Mol. Microbiol. Biotechnol. 2014, 24, 105–113. [Google Scholar] [CrossRef]
- Raza, S.T.; Wu, J.; Rene, E.R.; Ali, Z.; Chen, Z. Reuse of Agricultural Wastes, Manure, and Biochar as an Organic Amendment: A Review on Its Implications for Vermicomposting Technology. J. Clean. Prod. 2022, 360, 132200. [Google Scholar] [CrossRef]
- Xiao, C.; Fang, Y.; Wang, S.; He, K. The Alleviation of Ammonium Toxicity in Plants. J. Integr. Plant Biol. 2023, 65, 1362–1368. [Google Scholar] [CrossRef]
- Duan, F.; Wei, Z.; Soualiou, S.; Zhou, W. Nitrogen Partitioning in Maize Organs and Underlined Mechanisms from Different Plant Density Levels and N Application Rate in China. Field Crops Res. 2023, 294, 108874. [Google Scholar] [CrossRef]
- Phuong, N.T.K.; Khoi, C.M.; Ritz, K.; Linh, T.B.; Minh, D.D.; Duc, T.A.; Sinh, N.V.; Linh, T.T.; Toyota, K. Influence of Rice Husk Biochar and Compost Amendments on Salt Contents and Hydraulic Properties of Soil and Rice Yield in Salt-Affected Fields. Agronomy 2020, 10, 1101. [Google Scholar] [CrossRef]
- Asadi, H.; Ghorbani, M.; Rezaei-Rashti, M.; Abrishamkesh, S.; Amirahmadi, E.; Chengrong, C.; Gorji, M. Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Sci. 2021, 28, 325–343. [Google Scholar] [CrossRef]
- Singh Karam, D.; Nagabovanalli, P.; Sundara Rajoo, K.; Fauziah Ishak, C.; Abdu, A.; Rosli, Z.; Melissa Muharam, F.; Zulperi, D. An Overview on the Preparation of Rice Husk Biochar, Factors Affecting Its Properties, and Its Agriculture Application. J. Saudi Soc. Agric. Sci. 2022, 21, 149–159. [Google Scholar] [CrossRef]
- Yang, J.; Lei, J.; Zhang, F.; Li, Y.; Gao, J.; Deng, L.; Yang, M. Biochar Application Induces Different Responses of Bacterial and Fungal Communities to Metabolic Limitation. Land Degrad. Dev. 2024, 35, 1888–1901. [Google Scholar] [CrossRef]
- Kramer, C.; Gleixner, G. Soil Organic Matter in Soil Depth Profiles: Distinct Carbon Preferences of Microbial Groups during Carbon Transformation. Soil Biol. Biochem. 2008, 40, 425–433. [Google Scholar] [CrossRef]
- Dangi, S.; Gao, S.; Duan, Y.; Wang, D. Soil Microbial Community Structure Affected by Biochar and Fertilizer Sources. Appl. Soil Ecol. 2020, 150, 103452. [Google Scholar] [CrossRef]
- Godlewska, P.; Ok, Y.S.; Oleszczuk, P. THE DARK SIDE OF BLACK GOLD: Ecotoxicological Aspects of Biochar and Biochar-Amended Soils. J. Hazard. Mater. 2021, 403, 123833. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Qadir, A.A.; Alserae, H.; Raza, A.; Mohy-Ud-Din, W. Organic Amendment–Mediated Reclamation and Build-up of Soil Microbial Diversity in Salt-Affected Soils: Fostering Soil Biota for Shaping Rhizosphere to Enhance Soil Health and Crop Productivity. Environ. Sci. Pollut. Res. 2023, 30, 109889–109920. [Google Scholar] [CrossRef]
- Lyu, H.; He, Y.; Tang, J.; Hecker, M.; Liu, Q.; Jones, P.D.; Codling, G.; Giesy, J.P. Effect of Pyrolysis Temperature on Potential Toxicity of Biochar If Applied to the Environment. Environ. Pollut. 2016, 218, 1–7. [Google Scholar] [CrossRef]
- Rabby, M.I.I.; Uddin, M.W.; Sheikh, M.R.; Bhuiyan, H.K.; Mumu, T.A.; Islam, F.; Sultana, A. Thermal Performance of Gasifier Cooking Stoves: A Systematic Literature Review. F1000Research 2023, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Carril, P.; Becagli, M.; Celletti, S.; Fedeli, R.; Loppi, S.; Cardelli, R. Biofertilization with Liquid Vermicompost-Activated Biochar Enhances Microbial Activity and Soil Properties. Soil Syst. 2024, 8, 54. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Liu, X.; Lu, Y.; Wang, Y. Saline-Alkali Soil Applied with Vermicompost and Humic Acid Fertilizer Improved Macroaggregate Microstructure to Enhance Salt Leaching and Inhibit Nitrogen Losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
Characteristics | Unit | Value | Method |
---|---|---|---|
Sand | % | 69.3 | Sedimentation |
Silt | % | 16.3 | Sedimentation |
Clay | % | 14.4 | Sedimentation |
Textural Class | Sandy loam | Hydrometer Method | |
pH(1:1) | --- | 7.7 | Potentiometer Method (inoLab® pH 7310) |
EC(e) | dS m−1 | 14.2 | Potentiometer Method (inoLab® Cond 7310) |
CaCO3 | % | 2.8 | Titration Method |
OM | % | 0.38 | Dry Combustion (LECO CN828, LECO Ltd., St. Joseph, MI, USA) |
TC | % | 0.83 | Dry Combustion |
TOC | % | 0.22 | Dry Combustion |
Pa | mg kg−1 | 71.7 | Modified Olsen Method |
Ka | mg kg−1 | 594 | Ammonium Acetate Extract |
CEC | Cmol kg−1 | 23.3 | Ammonium Acetate Extract |
Ca2+ | Cmol kg−1 | 16.8 | Inductively Coupled Plasma Mass Spectrometry (ICP–MS) (Perkin Elmer NexION 2000 Series P, Perkin Elmer Inc., Shelton, CT, USA) |
Mg2+ | Cmol kg−1 | 2.8 | ICP–MS |
K+ | Cmol kg−1 | 1.5 | ICP–MS |
Na+ | Cmol kg−1 | 2.2 | ICP–MS |
As | mg kg−1 | 22.34 | ICP–MS |
Ba | mg kg−1 | 62.76 | ICP–MS |
Cd | mg kg−1 | 0.14 | ICP–MS |
Cr | mg kg−1 | 5.4 | ICP–MS |
Hg | mg kg−1 | 0.24 | ICP–MS |
Pb | mg kg−1 | 10.58 | ICP–MS |
Treatments | Proportion in Volume | |
---|---|---|
Soil | Biochar | |
T0 | 4.0 | 0 |
T1 | 4.0 | 0 |
T2 | 3.2 | 0.8 |
T3 | 3.6 | 0.4 |
Treatment | ECe | TN | TOC | Ca | K | Na |
---|---|---|---|---|---|---|
dS m−1 | Percentage | cmol kg−1 | ||||
Control | 4.33 ± 1.75 ab | 0.00112 ± 0.00046 | 0.734 ± 0.095 bc | 8.597 ± 0.818 a | 0.539 ± 0.201 b | 0.574 ± 0.244 ab |
Leachate | 3.43 ± 1.42 b | 0.0009 | 0.684 ± 0.098 c | 7.428 ± 0.568 bc | 1.044 ± 0.253 a | 0.42 ± 0.104 b |
Biochar | 5.55 ± 1.44 a | 0.00101 ± 0.00035 | 1.16 ± 0.38 a | 8.1 ± 0.290 ab | 0.688 ± 0.040 b | 0.812 ± 0.266 a |
Leachate + Biochar | 3.37 ± 1.73 b | 0.00093 ± 0.00005 | 1.037 ± 0.338 ab | 7.272 ± 0.590 c | 0.996 ± 0.060 a | 0.382 ± 0.174 b |
p-value | 0.0136 | 0.3451 | <0.0004 | <0.0001 | <0.0001 | <0.0002 |
Significance | * | ns | *** | **** | **** | *** |
Treatment | Mesophilic Aerobes | Bacillus spp. | Actinomycetes | Molds and Yeasts | Pseudomonas spp. |
---|---|---|---|---|---|
log10 (CFU g−1) | log10 (MPN g−1) | ||||
Control | 6.4 ± 0.13 b | 6.04 ± 0.17 | 6.19 ± 0.26 | 4.18 ± 0.18 c | 1.99 ± 0.77 |
Leachate | 6.49 ± 0.15 b | 6.08 ± 0.13 | 6.25 ± 0.14 | 4.38 ± 0.24 bc | 1.44 ± 0.75 |
Biochar | 6.64 ± 0.1 a | 6.25 ± 0.2 | 6.3 ± 0.26 | 4.63 ± 0.18 a | 1.49 ± 0.84 |
Leachate + Biochar | 6.53 ± 0.12 ab | 6.11 ± 0.14 | 6.12 ± 0.11 | 4.49 ± 0.27 ab | 1.72 ± 0.81 |
p-value | 0.0021 | 0.1585 | 0.2029 | 0.0012 | <0.4741 |
Significance | ** | ns | ns | ** | ns |
Treatment | Fresh Weight | Leaf Dry Weight | Number of Leaves | Stem Diameter | Leaf Area | Height |
---|---|---|---|---|---|---|
g | n° | cm | cm2 | cm | ||
Control | 74.48 ± 13.08 ab | 0.05052 ± 0.00037 | 6.7 ± 0.5712 a | 10.97 ± 1.198 ab | 1199 ± 279.9 a | 145.7 ± 16.93 |
Leachate | 62.74 ± 12.76 b | 0.05055 ± 0.000491 | 6.4 ± 0.6806 ab | 9.61 ± 1.429 c | 929 ± 278.7 b | 137.5 ± 17.56 |
Biochar | 79.17 ± 11.22 a | 0.05063 ± 0.00032 | 6.1 ± 0.6407 b | 11.83 ± 1.592 a | 972.8 ± 300.4 ab | 143.9 ± 16.08 |
Leachate + Biochar | 68.27 ± 7.69 ab | 0.05057 ± 0.00029 | 5.9 ± 0.5525 b | 10.4 ± 1.23 bc | 847.6 ± 228.6 b | 145.7 ± 12.21 |
p-value | 0.0153 | 0.9268 | 0.0006 | <0.0001 | 0.0009 | 0.3114 |
Significance | * | ns | *** | **** | *** | ns |
Treatment | Grain Weight per Corncob | Corncob Length | Corncob Diameter | Popcorn Yield |
---|---|---|---|---|
g | cm | g Plant−1 | ||
Control | 20.9 ± 6.66 a | 8.424 ± 1.603 a | 2.773 ± 0.26 a | 24.01 ± 7.89 a |
Leachate | 10.68 ± 5.94 b | 5.739 ± 1.286 c | 2.367 ± 0.333 b | 13.06 ± 7.69 c |
Biochar | 15.12 ± 6.84 b | 7.681 ± 1.967 ab | 2.721 ± 0.295 a | 19.02 ± 6.53 ab |
Leachate + Biochar | 14.14 ± 4.17 b | 6.879 ± 1.126 bc | 2.655 ± 0.248 a | 16.65 ± 4.78 bc |
p-value | <0.0001 | <0.0001 | 0.0003 | <0.0001 |
Significance | **** | **** | *** | **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas-Aratoma, B.; Pérez, W.E.; Ortiz-Dongo, L.F.; Arévalo-Aranda, Y.; Solórzano-Acosta, R. Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil. Appl. Sci. 2025, 15, 8041. https://doi.org/10.3390/app15148041
Rivas-Aratoma B, Pérez WE, Ortiz-Dongo LF, Arévalo-Aranda Y, Solórzano-Acosta R. Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil. Applied Sciences. 2025; 15(14):8041. https://doi.org/10.3390/app15148041
Chicago/Turabian StyleRivas-Aratoma, Brenda, Wendy E. Pérez, Luis Felipe Ortiz-Dongo, Yuri Arévalo-Aranda, and Richard Solórzano-Acosta. 2025. "Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil" Applied Sciences 15, no. 14: 8041. https://doi.org/10.3390/app15148041
APA StyleRivas-Aratoma, B., Pérez, W. E., Ortiz-Dongo, L. F., Arévalo-Aranda, Y., & Solórzano-Acosta, R. (2025). Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil. Applied Sciences, 15(14), 8041. https://doi.org/10.3390/app15148041