Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables
Abstract
1. Introduction
1.1. Motivation and Context
1.2. Problem Statement and Research Objectives
- We propose a three-stage feature selection pipeline combining variance filtering, hierarchical correlation clustering, and a meta-heuristic wrapper, specifically tailored for photovoltaic power forecasting.
- We perform a dual-perspective feature-importance analysis using tree-based permutation scores and information-theory metrics, providing a robust and explainable understanding of the key weather parameters.
- We use areal meteorological data instead of module-embedded sensors, enabling generalizable and sensor-free forecasting solutions suitable for locations without detailed instrumentation.
- We identify that irradiance-related variables dominate predictive power, while many commonly used variables (e.g., humidity, wind speed, wind direction) contribute minimally or even negatively, which is critical for model simplification and deployment.
- We release a high-resolution, real-world dataset (covering 15 min intervals over two years) and provide open access to the data for reproducibility and further research.
2. Literature Review
2.1. Overview of PV Power Prediction
2.1.1. Physical Models
2.1.2. Statistical and AI Methods
2.1.3. Hybrid Methods
2.2. Feature Selection and Feature Importance
3. Data Collection and Preprocessing
3.1. Description of Data Sources
3.1.1. Module-Level Measurements
3.1.2. Local Weather Parameters
4. Methodology
4.1. Feature Selection Methods
4.1.1. Variance-Based Feature Selection
4.1.2. Hierarchical Correlation Clustering
4.1.3. Meta-Heuristic Feature Selection
4.2. Feature Importance
4.2.1. Tree-Based Feature Importance
4.2.2. Information-Theory Feature Importance
5. Results and Discussion
5.1. Feature Selection Results
5.1.1. Variance Analysis Results
5.1.2. Hierarchical Correlation Clustering Results
5.1.3. Meta-Heuristic Feature Selection Results
5.2. Feature-Importance Results
5.2.1. Tree-Based Feature-Importance Results
5.2.2. Information-Theory Feature-Importance Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, K.; Qi, X.; Liu, H. Photovoltaic Power Forecasting Based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Gao, M.; Li, J.; Hong, F.; Long, D. Day-Ahead Power Forecasting in a Large-Scale Photovoltaic Plant Based on Weather Classification Using LSTM. Energy 2019, 187, 115838. [Google Scholar] [CrossRef]
- Sharadga, H.; Hajimirza, S.; Balog, R.S. Time Series Forecasting of Solar Power Generation for Large-Scale Photovoltaic Plants. Renew Energy 2020, 150, 797–807. [Google Scholar] [CrossRef]
- Kim, G.G.; Choi, J.H.; Park, S.Y.; Bhang, B.G.; Nam, W.J.; Cha, H.L.; Park, N.; Ahn, H.-K. Prediction Model for PV Performance with Correlation Analysis of Environmental Variables. IEEE J. Photovolt. 2019, 9, 832–841. [Google Scholar] [CrossRef]
- Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.-J. A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Esen, V.; Sağlam, Ş.; Oral, B.; Esen, Ö.C. Toward Class AAA LED Large Scale Solar Simulator with Active Cooling System for PV Module Tests. IEEE J. Photovolt. 2021, 12, 364–371. [Google Scholar] [CrossRef]
- Hajjaj, C.; El Ydrissi, M.; Azouzoute, A.; Oufadel, A.; El Alani, O.; Boujoudar, M.; Abraim, M.; Ghennioui, A. Comparing Photovoltaic Power Prediction: Ground-Based Measurements vs. Satellite Data Using an ANN Model. IEEE J. Photovolt. 2023, 13, 998–1006. [Google Scholar] [CrossRef]
- Pretto, S.; Ogliari, E.; Niccolai, A.; Nespoli, A. A New Probabilistic Ensemble Method for an Enhanced Day-Ahead PV Power Forecast. IEEE J. Photovolt. 2022, 12, 581–588. [Google Scholar] [CrossRef]
- Sangrody, H.; Zhou, N.; Zhang, Z. Similarity-Based Models for Day-Ahead Solar PV Generation Forecasting. IEEE Access 2020, 8, 104469–104478. [Google Scholar] [CrossRef]
- Alaraj, M.; Kumar, A.; Alsaidan, I.; Rizwan, M.; Jamil, M. Energy Production Forecasting from Solar Photovoltaic Plants Based on Meteorological Parameters for Qassim Region, Saudi Arabia. IEEE Access 2021, 9, 83241–83251. [Google Scholar] [CrossRef]
- Liu, R.; Wei, J.; Sun, G.; Muyeen, S.M.; Lin, S.; Li, F. A Short-Term Probabilistic Photovoltaic Power Prediction Method Based on Feature Selection and Improved LSTM Neural Network. Electr. Power Syst. Res. 2022, 210, 108069. [Google Scholar] [CrossRef]
- Yang, L.; Cui, X.; Li, W. A Method for Predicting Photovoltaic Output Power Based on PCC-GRA-PCA Meteorological Elements Dimensionality Reduction Method. Int. J. Green Energy 2024, 21, 2327–2340. [Google Scholar] [CrossRef]
- Guo, W.; Xu, L.; Wang, T.; Zhao, D.; Tang, X. Photovoltaic Power Prediction Based on Hybrid Deep Learning Networks and Meteorological Data. Sensors 2024, 24, 1593. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, T.; Qu, W.; Wang, W. Photovoltaic Power Prediction Based on VMD-BRNN-TSP. Mathematics 2023, 11, 1033. [Google Scholar] [CrossRef]
- Wang, C. A Prediction Model of Photovoltaic Power Generation Based on Association Rules and BP-AdaBoost Algorithm. In Proceedings of the Proceedings—2024 2nd International Conference on Mechatronics, IoT and Industrial Informatics, ICMIII, Melbourne, Australia, 12 June 2024; Institute of Electrical and Electronics Engineers Inc.: Melbourne, Australia, 2024; pp. 1–6. [Google Scholar]
- Atencio Espejo, F.E.; Grillo, S.; Luini, L. Photovoltaic Power Production Estimation Based on Numerical Weather Predictions. In Proceedings of the 2019 IEEE Milan PowerTech, PowerTech, Milan, Italy, 23–27 June 2019; Institute of Electrical and Electronics Engineers Inc.: Milan, Italy, 2019. [Google Scholar]
- Harrou, F.; Kadri, F.; Sun, Y.; Harrou, F.; Kadri, F.; Sun, Y. Forecasting of Photovoltaic Solar Power Production Using LSTM Approach. In Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems; IntechOpen: London, UK, 1 April 2020. [Google Scholar]
- Zhao, B.; Ge, X.; Xue, M.; Zhang, X.; Xu, W. Research on Model for Photovoltaic System Power Forecasting. In Proceedings of the ICED 2010 Proceedings, Nanjing, China, 13–16 September 2010; pp. 9–13. [Google Scholar]
- Mayer, M.J.; Gróf, G. Extensive Comparison of Physical Models for Photovoltaic Power Forecasting. Appl. Energy 2021, 283, 116239. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Jain, A. Enhancing Power Prediction of Photovoltaic Systems: Leveraging Dynamic Physical Model for Irradiance-to-Power Conversion. arXiv 2024, arXiv:2402.11897. [Google Scholar]
- Jogunuri, S.; FT, J.; Stonier, A.A.; Peter, G.; Jayaraj, J.; Ganji, V. Random Forest Machine Learning Algorithm Based Seasonal Multi-step Ahead Short-term Solar Photovoltaic Power Output Forecasting. IET Renew. Power Gener. 2024, 19, e12921. [Google Scholar] [CrossRef]
- Tuncar, E.A.; Sağlam, Ş.; Oral, B. A Review of Short-Term Wind Power Generation Forecasting Methods in Recent Technological Trends. Energy Rep. 2024, 12, 197–209. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Congedo, P.M.; Malvoni, M. Photovoltaic Power Forecasting Using Statistical Methods: Impact of Weather Data. IET Sci. Meas. Technol. 2014, 8, 90–97. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, N.; Gong, L.; Jiang, M. Prediction of Photovoltaic Power Output Based on Similar Day Analysis, Genetic Algorithm and Extreme Learning Machine. Energy 2020, 204, 117894. [Google Scholar] [CrossRef]
- Graditi, G.; Ferlito, S.; Adinolfi, G. Comparison of Photovoltaic Plant Power Production Prediction Methods Using a Large Measured Dataset. Renew. Energy 2016, 90, 513–519. [Google Scholar] [CrossRef]
- Sun, C.; Chu, X.; Ye, H. A Bayesian Structural Time Series Approach for Forecasting Photovoltaic Power Generation. In Proceedings of the IEEE 2023 International Conference on Power System Technology (PowerCon), Jinan, China, 21–22 September 2023; pp. 1–6. [Google Scholar]
- Serrano Ardila, V.M.; Maciel, J.N.; Ledesma, J.J.G.; Ando Junior, O.H. Fuzzy Time Series Methods Applied to (In) Direct Short-Term Photovoltaic Power Forecasting. Energies 2022, 15, 845. [Google Scholar] [CrossRef]
- Sumorek, M.; Idzkowski, A. Time Series Forecasting for Energy Production in Stand-Alone and Tracking Photovoltaic Systems Based on Historical Measurement Data. Energies 2023, 16, 6367. [Google Scholar] [CrossRef]
- Chen, X.; Xie, B.; Zhang, P.; Qiu, X. Research on Wind and Solar Power Generation Forecasting Based on SARIMA-LSTM Model. In Proceedings of the IEEE 2023 3rd International Conference on New Energy and Power Engineering (ICNEPE), Huzhou, China, 24–26 November 2023; pp. 695–699. [Google Scholar]
- Li, Y.; Su, Y.; Shu, L. An ARMAX Model for Forecasting the Power Output of a Grid Connected Photovoltaic System. Renew. Energy 2014, 66, 78–89. [Google Scholar] [CrossRef]
- Gaboitaolelwe, J.; Zungeru, A.M.; Yahya, A.; Lebekwe, C.K.; Vinod, D.N.; Salau, A.O. Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison. IEEE Access 2023, 11, 40820–40845. [Google Scholar] [CrossRef]
- AlKandari, M.; Ahmad, I. Solar Power Generation Forecasting Using Ensemble Approach Based on Deep Learning and Statistical Methods. Appl. Comput. Inform. 2024, 20, 231–250. [Google Scholar] [CrossRef]
- Zazoum, B. Solar Photovoltaic Power Prediction Using Different Machine Learning Methods. Energy Rep. 2022, 8, 19–25. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Alrbai, M.; Qawasmeh, B.R. Extreme Learning Machines for Solar Photovoltaic Power Predictions. Energies 2018, 11, 2725. [Google Scholar] [CrossRef]
- Nespoli, A.; Leva, S.; Mussetta, M.; Ogliari, E.G.C. A Selective Ensemble Approach for Accuracy Improvement and Computational Load Reduction in Ann-Based Pv Power Forecasting. IEEE Access 2022, 10, 32900–32911. [Google Scholar] [CrossRef]
- Amiri, A.F.; Chouder, A.; Oudira, H.; Silvestre, S.; Kichou, S. Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection. Energies 2024, 17, 3078. [Google Scholar] [CrossRef]
- Abdulai, D.; Gyamfi, S.; Diawuo, F.A.; Acheampong, P. Data Analytics for Prediction of Solar PV Power Generation and System Performance: A Real Case of Bui Solar Generating Station, Ghana. Sci. Afr. 2023, 21, e01894. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Aruna, M.; Elumalai, P.V.; Karthik, K.; Khan, S.A.; Asif, M.; Rao, K.S. Advancing Solar PV Panel Power Prediction: A Comparative Machine Learning Approach in Fluctuating Environmental Conditions. Case Stud. Therm. Eng. 2024, 59, 104459. [Google Scholar] [CrossRef]
- Tahir, M.F.; Yousaf, M.Z.; Tzes, A.; El Moursi, M.S.; El-Fouly, T.H.M. Enhanced Solar Photovoltaic Power Prediction Using Diverse Machine Learning Algorithms with Hyperparameter Optimization. Renew. Sustain. Energy Rev. 2024, 200, 114581. [Google Scholar] [CrossRef]
- Ganesh, R.; Saha, T.K.; Kumar, M.L.S.S. Implementation of Optimized Extreme Learning Machine-Based Energy Storage Scheme for Grid Connected Photovoltaic System. J. Energy Storage 2024, 88, 111611. [Google Scholar] [CrossRef]
- Tercha, W.; Tadjer, S.A.; Chekired, F.; Canale, L. Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems. Energies 2024, 17, 1124. [Google Scholar] [CrossRef]
- AlSharabi, K.; Bin Salamah, Y.; Aljalal, M.; Abdurraqeeb, A.M.; Alturki, F.A. Long-Term Forecasting of Solar Irradiation in Riyadh, Saudi Arabia, Using Machine Learning Techniques. Big Data Cogn. Comput. 2025, 9, 21. [Google Scholar] [CrossRef]
- Matsushima, F.; Aoki, M.; Nakamura, Y.; Verma, S.C.; Ueda, K.; Imanishi, Y. Multi-Timescale Voltage Control Method Using Limited Measurable Information with Explainable Deep Reinforcement Learning. Energies 2025, 18, 653. [Google Scholar] [CrossRef]
- Andrew, N. Machine Learning Yearning: Technical Strategy for AI Engineers, in the Era of Deep Learning, 1st ed.; Deeplearning.AI: Palo Alto, CA, USA, 2018; Volume 1. [Google Scholar]
- Li, G.; Wang, H.; Zhang, S.; Xin, J.; Liu, H. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach. Energies 2019, 12, 2538. [Google Scholar] [CrossRef]
- Kermia, M.H.; Abbes, D.; Bosche, J. Photovoltaic Power Prediction Using a Recurrent Neural Network RNN. In Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunisia, 28 September–1 October 2020; pp. 545–549. [Google Scholar]
- Kusuma, V.; Privadi, A.; Budi, A.L.S.; Putri, V.L.B. Photovoltaic Power Forecasting Using Recurrent Neural Network Based on Bayesian Regularization Algorithm. In Proceedings of the 2021 IEEE International Conference in Power Engineering Application (ICPEA), Shah Alam, Malaysia, 8–9 March 2021; pp. 109–114. [Google Scholar]
- Narayanan, S.; Kumar, R.; Ramadass, S.; Ramasamy, J. Hybrid Forecasting Model Integrating RNN-LSTM for Renewable Energy Production. Electr. Power Compon. Syst. 2024, 1–19. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Mahmoud, K. Accurate Photovoltaic Power Forecasting Models Using Deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Dhaked, D.K.; Dadhich, S.; Birla, D. Power Output Forecasting of Solar Photovoltaic Plant Using LSTM. Green Energy Intell. Transp. 2023, 2, 100113. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Sodsong, N.; Yu, K.M.; Ouyang, W. Short-Term Solar PV Forecasting Using Gated Recurrent Unit with a Cascade Model. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019; pp. 292–297. [Google Scholar]
- Gao, Y.; Qi, S.; Ponoćko, J. Assessing Critical Data Types for Deep Leaming-Based PV Generation Forecasting. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; pp. 1–6. [Google Scholar]
- Zameer, A.; Jaffar, F.; Shahid, F.; Muneeb, M.; Khan, R.; Nasir, R. Short-Term Solar Energy Forecasting: Integrated Computational Intelligence of LSTMs and GRU. PLoS ONE 2023, 18, e0285410. [Google Scholar] [CrossRef] [PubMed]
- Thipwangmek, N.; Suetrong, N.; Taparugssanagorn, A.; Tangparitkul, S.; Promsuk, N. Enhancing Short-Term Solar Photovoltaic Power Forecasting Using a Hybrid Deep Learning Approach. IEEE Access 2024, 12, 108928–108941. [Google Scholar] [CrossRef]
- Qu, J.; Qian, Z.; Pei, Y. Day-Ahead Hourly Photovoltaic Power Forecasting Using Attention-Based CNN-LSTM Neural Network Embedded with Multiple Relevant and Target Variables Prediction Pattern. Energy 2021, 232, 120996. [Google Scholar] [CrossRef]
- Lim, S.-C.; Huh, J.-H.; Hong, S.-H.; Park, C.-Y.; Kim, J.-C. Solar Power Forecasting Using CNN-LSTM Hybrid Model. Energies 2022, 15, 8233. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y. Short-Term Self Consumption PV Plant Power Production Forecasts Based on Hybrid CNN-LSTM, ConvLSTM Models. Renew. Energy 2021, 177, 101–112. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Li, P.; Zhou, K.; Lu, X.; Yang, S. A Hybrid Deep Learning Model for Short-Term PV Power Forecasting. Appl. Energy 2020, 259, 114216. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, Y.; Liu, Q.; Ye, X. A Hybrid Machine Learning Forecasting Model for Photovoltaic Power. Energy Rep. 2024, 11, 5125–5138. [Google Scholar] [CrossRef]
- Thaker, J.; Höller, R. Hybrid Model for Intra-Day Probabilistic PV Power Forecast. Renew. Energy 2024, 232, 121057. [Google Scholar] [CrossRef]
- Asiedu, S.T.; Nyarko, F.K.A.; Boahen, S.; Effah, F.B.; Asaaga, B.A. Machine Learning Forecasting of Solar PV Production Using Single and Hybrid Models over Different Time Horizons. Heliyon 2024, 10, e28898. [Google Scholar] [CrossRef] [PubMed]
- Tercha, W.; Zahraoui, Y.; Mekhilef, S.; Korõtko, T.; Rosin, A. A Hybrid Model ANN-LSTM Architecture for PV Power Forecasting: A Review and Implementation. In Technological and Innovative Progress in Renewable Energy Systems: Proceedings of the 2024 International Renewable Energy Days (IREN Days’ 2024); Springer: Berlin/Heidelberg, Germany, 2024; pp. 43–47. [Google Scholar]
- Yang, S.; Luo, Y. Short-Term Photovoltaic Power Prediction Based on RF-SGMD-GWO-BiLSTM Hybrid Models. Energy 2025, 316, 134545. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Alrbai, M.; Alahmer, H.; Rinchi, B.; Alahmer, A. Enhancing Solar Photovoltaic Energy Production Prediction Using Diverse Machine Learning Models Tuned with the Chimp Optimization Algorithm. Sci. Rep. 2024, 14, 18583. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Peng, S.-T.; Wu, P.-S.; Tseng, M.-L. High-Accuracy Photovoltaic Power Prediction under Varying Meteorological Conditions: Enhanced and Improved Beluga Whale Optimization Extreme Learning Machine. Energies 2024, 17, 2309. [Google Scholar] [CrossRef]
- Radhi, S.M.; Al-Majidi, S.D.; Abbod, M.F.; Al-Raweshidy, H.S. Machine Learning Approaches for Short-Term Photovoltaic Power Forecasting. Energies 2024, 17, 4301. [Google Scholar] [CrossRef]
- Li, D.; Zhu, D.; Tao, T.; Qu, J. Power Generation Prediction for Photovoltaic System of Hose-Drawn Traveler Based on Machine Learning Models. Processes 2023, 12, 39. [Google Scholar] [CrossRef]
- Kiani, F.; Nematzadeh, S.; Anka, F.A.; Findikli, M.A. Chaotic Sand Cat Swarm Optimization. Mathematics 2023, 11, 2340. [Google Scholar] [CrossRef]
- Nematzadeh, S.; Kiani, F.; Torkamanian-Afshar, M.; Aydin, N. Tuning Hyperparameters of Machine Learning Algorithms and Deep Neural Networks Using Metaheuristics: A Bioinformatics Study on Biomedical and Biological Cases. Comput. Biol. Chem. 2022, 97, 107619. [Google Scholar] [CrossRef] [PubMed]
- Anka, F.; Agaoglu, N.; Nematzadeh, S.; Torkamanian-afshar, M.; Gharehchopogh, F.S. Advances in Artificial Rabbits Optimization: A Comprehensive Review. Arch. Comput. Methods Eng. 2024, 32, 2113–2148. [Google Scholar] [CrossRef]
- Haupt, T.; Trull, O.; Moog, M. PV Production Forecast Using Hybrid Models of Time Series with Machine Learning Methods. Energies 2025, 18, 2692. [Google Scholar] [CrossRef]
- Guo, Y.; Song, Y.; Lai, Z.; Wang, X.; Wang, L.; Qin, H. Learning Coupled Meteorological Characteristics Aids Short-Term Photovoltaic Interval Prediction Methods. Energies 2025, 18, 308. [Google Scholar] [CrossRef]
- Thipwangmek, N.; Woradit, K.; Suetrong, N.; Promsuk, N. Feature Selection Approaches for Short-Term Solar Photovoltaic Power Forecasting. In Proceedings of the IEEE 2024 13th International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 9–13 November 2024; pp. 252–257. [Google Scholar]
- Miao, J.; Niu, L. A Survey on Feature Selection. Procedia Comput. Sci. 2016, 91, 919–926. [Google Scholar] [CrossRef]
- Al Iqbal, R. Empirical Learning Aided by Weak Domain Knowledge in the Form of Feature Importance. In Proceedings of the 2011 International Conference on Multimedia and Signal Processing, Guilin, China, 14–15 May 2011; Volume 1, pp. 126–130. [Google Scholar]
- Massaoudi, M.; Chihi, I.; Sidhom, L.; Trabelsi, M.; Refaat, S.S.; Oueslati, F.S. PV Power Forecasting Using Weighted Features for Enhanced Ensemble Method. arXiv 2019, arXiv:1910.09404. [Google Scholar]
- Open-Meteo Historical Weather. Available online: https://open-meteo.com/en/docs/historical-weather-api (accessed on 8 March 2025).
- Google Earth. Available online: https://earth.google.com/web/search/ (accessed on 27 February 2025).
- Keddouda, A.; Ihaddadene, R.; Boukhari, A.; Atia, A.; Arıcı, M.; Lebbihiat, N.; Ihaddadene, N. Photovoltaic Module Temperature Prediction Using Various Machine Learning Algorithms: Performance Evaluation. Appl. Energy 2024, 363, 123064. [Google Scholar] [CrossRef]
- Sharma, P.; Goyal, P. Analysing the Effects of Solar Insolation and Temperature on PV Cell Characteristics. Mater. Today Proc. 2021, 45, 5539–5543. [Google Scholar]
- Ayadi, F.; Colak, I.; Genc, N.; Bulbul, H.I. Impacts of Wind Speed and Humidity on the Performance of Photovoltaic Module. In Proceedings of the 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3–6 November 2019; pp. 229–233. [Google Scholar]
- Plyta, F. Optical Design of a Fully LED-Based Solar Simulator. Doctoral Thesis, Loughborough University, Loughborough, UK, 2015. [Google Scholar]
- Burduhos, B.-G.; Vişa, I.; Duţă, A.; Neagoe, M. Analysis of the Conversion Efficiency of Five Types of Photovoltaic Modules during High Relative Humidity Time Periods. IEEE J. Photovolt. 2018, 8, 1716–1724. [Google Scholar] [CrossRef]
- Berk, Z. Chapter 22—Dehydration. In Food Process Engineering and Technology; Berk, Z., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 459–510. ISBN 978-0-12-373660-4. [Google Scholar]
- Del Pero, C.; Aste, N.; Leonforte, F. The Effect of Rain on Photovoltaic Systems. Renew. Energy 2021, 179, 1803–1814. [Google Scholar] [CrossRef]
- Sengupta, S.; Sengupta, S.; Chanda, C.K.; Saha, H. Modeling the Effect of Relative Humidity and Precipitation on Photovoltaic Dust Accumulation Processes. IEEE J. Photovolt. 2021, 11, 1069–1077. [Google Scholar] [CrossRef]
- Ghazi, S.; Ip, K. The Effect of Weather Conditions on the Efficiency of PV Panels in the Southeast of UK. Renew. Energy 2014, 69, 50–59. [Google Scholar] [CrossRef]
- Boettcher, F.; Renner, C.H.; Waldl, H.-P.; Peinke, J. On the Statistics of Wind Gusts. Bound. Layer Meteorol. 2003, 108, 163–173. [Google Scholar] [CrossRef]
- Vasel, A.; Iakovidis, F. The Effect of Wind Direction on the Performance of Solar PV Plants. Energy Convers. Manag. 2017, 153, 455–461. [Google Scholar] [CrossRef]
- Liang, S.; Wang, J. (Eds.) Chapter 5– Solar Radiation. In Advanced Remote Sensing, 2nd ed.; Academic Press: New York, NY, USA, 2020; pp. 157–191. ISBN 978-0-12-815826-5. [Google Scholar] [CrossRef]
- Kirk, A.P. Chapter 2—From Nuclear Fusion to Sunlight. In Solar Photovoltaic Cells; Kirk, A.P., Ed.; Academic Press: Oxford, UK, 2015; pp. 9–24. ISBN 978-0-12-802329-7. [Google Scholar] [CrossRef]
- Bozsik, N.; Szeberényi, A.; Bozsik, N. Impact of Climate Change on Electric Energy Production from Medium-Size Photovoltaic Module Systems Based on RCP Climate Scenarios. Energies 2024, 17, 4009. [Google Scholar] [CrossRef]
- Povinec, P.P.; Hirose, K.; Aoyama, M.; Tateda, Y. Chapter 8—Summary. In Fukushima Accident, 2nd ed.; Povinec, P.P., Hirose, K., Aoyama, M., Tateda, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 519–531. [Google Scholar] [CrossRef]
- Ferré, J.; Rokem, A.; Buffalo, E.A.; Kutz, J.N.; Fairhall, A. Non-Stationary Dynamic Mode Decomposition. IEEE Access 2023, 11, 117159–117176. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Tiwari, M. Fusion of Chi-Square and Z-Test Statistics for Feature Selection with Machine Learning Techniques in Intrusion Detection. In International Conference on Advanced Network Technologies and Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2023; pp. 206–224. [Google Scholar]
Parameter | Best 1 | Best 2 | Best 3 | Best 4 | Best 5 |
---|---|---|---|---|---|
apparent_temperature | ✓ | ✓ | ✓ | ||
diffuse_radiation_instant | ✓ | ✓ | ✓ | ||
wind_speed_10m | ✓ | ✓ | |||
direct_radiation_instant | ✓ | ||||
terrestrial_radiation_instant | ✓ | ||||
Average | 0.9097 | 0.9093 | 0.9091 | 0.9090 | 0.9086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nematzadeh, S.; Esen, V. Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables. Appl. Sci. 2025, 15, 8005. https://doi.org/10.3390/app15148005
Nematzadeh S, Esen V. Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables. Applied Sciences. 2025; 15(14):8005. https://doi.org/10.3390/app15148005
Chicago/Turabian StyleNematzadeh, Sajjad, and Vedat Esen. 2025. "Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables" Applied Sciences 15, no. 14: 8005. https://doi.org/10.3390/app15148005
APA StyleNematzadeh, S., & Esen, V. (2025). Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables. Applied Sciences, 15(14), 8005. https://doi.org/10.3390/app15148005