Machine Learning-Based Detection of Cognitive Impairment from Eye-Tracking in Smooth Pursuit Tasks
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject Enrolment
2.2. Assessment Procedures
2.2.1. Psychological Assessment
2.2.2. Neurological Examination
2.2.3. Eye-Tracking
2.3. Cohort Description
2.4. Data Analysis
- Investigating the statistical difference in the distribution of SPEM features extracted during eye-tracking between healthy and CI participants;
- Assessing the performance of machine learning algorithms on the task of predicting CI based on SPEM features.
2.4.1. Data Preprocessing
2.4.2. Statistical Analysis
2.4.3. Machine Learning Algorithms
2.4.4. Machine Learning Pipeline
- Considered the current folder as test set;
- Used the remaining 9 folds as a training set to optimise the algorithms’ hyperparameters with random search 5-fold cross validation;
- Selected the best values of the hyperparameters using CA as criterion;
- Evaluated the model by computing CA and AUC on the test fold.
3. Results
3.1. Statistical Analysis
3.2. ML Model Results
Algorithm | CA | AUC |
---|---|---|
Logistic regression | 0.619 ± 0.174 | 0.675 ± 0.236 |
Decision tree | 0.557 ± 0.150 | 0.561 ± 0.149 |
Random forest | 0.628 ± 0.152 | 0.625 ± 0.219 |
Naïve Bayes with Gaussian likelihood | 0.597 ± 0.136 | 0.672 ± 0.204 |
Support vector classifier | 0.530 ± 0.142 | 0.603 ± 0.182 |
Majority (dummy) | 0.548 ± 0.041 | 0.500 ± 0.000 |
4. Related Work
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Dementia |
CI | Cognitive Impairment |
MCI | Mild Cognitive Impairment |
References
- Jongsiriyanyong, S.; Limpawattana, P. Mild cognitive impairment in clinical practice: A review article. Am. J. Alzheimer’s Dis. Other Dement. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Flicker, C.; Ferris, S.H.; Reisberg, B. Mild cognitive impairment in the elderly. Neurology 1991, 41, 1006. [Google Scholar] [CrossRef] [PubMed]
- Farias, S.T.; Mungas, D.; Reed, B.R.; Harvey, D.; DeCarli, C. Progression of mild cognitive impairment to dementia in clinic-vs community-based cohorts. Arch. Neurol. 2009, 66, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.; Tiu, S.; Khan, F.; Baig, N.A. The Efficacy of Anti-amyloid Monoclonal Antibodies in Early Alzheimer’s Dementia: A Systematic Review. Ann. Indian Acad. Neurol. 2025, 10–4103. [Google Scholar] [CrossRef] [PubMed]
- Kaye, G.; Johnston, E.; Burke, J.; Gasson, N.; Marinovic, W. Differential Effects of Visual and Auditory Cognitive Tasks on Smooth Pursuit Eye Movements. Psychophysiology 2025, 62, e70069. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Gou, R.; Zhang, J.; Li, L. The role of frontal pursuit area in interaction between smooth pursuit eye movements and attention: A TMS study. J. Vis. 2021, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Diotaiuti, P.; Marotta, G.; Di Siena, F.; Vitiello, S.; Di Prinzio, F.; Rodio, A.; Di Libero, T.; Falese, L.; Mancone, S. Eye Tracking in Parkinson’s Disease: A Review of Oculomotor Markers and Clinical Applications. Brain Sci. 2025, 15, 362. [Google Scholar] [CrossRef] [PubMed]
- Popovic, Z.; Gilman Kuric, T.; Rajkovaca Latic, I.; Matosa, S.; Sadikov, A.; Groznik, V.; Georgiev, D.; Tomic, S. Correlation between non-motor symptoms and eye movements in Parkinson’s disease patients. Neurol. Sci. 2025, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xu, T.; Yang, X.; Yang, Q.; Zhu, Y.; Wan, M.; Xiao, X.; Zhang, S.; Ouyang, Z.; Fan, X.; et al. A detection model of cognitive impairment via the integrated gait and eye movement analysis from a large Chinese community cohort. Alzheimer Dement. 2024, 20, 1089–1101. [Google Scholar] [CrossRef]
- Tao, M.; Cui, L.; Du, Y.; Liu, X.; Wang, C.; Zhao, J.; Qiao, H.; Li, Z.; Dong, M. Analysis of eye movement features in patients with Alzheimer’s disease based on intelligent eye movement analysis and evaluation system. J. Alzheimer Dis. 2024, 102, 1249–1259. [Google Scholar] [CrossRef]
- Conradsson, M.; Rosendahl, E.; Littbrand, H.; Gustafson, Y.; Olofsson, B.; Lövheim, H. Usefulness of the Geriatric Depression Scale 15-item version among very old people with and without cognitive impairment. Aging Ment. Health 2013, 17, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Groznik, V.; Možina, M.; Lazar, T.; Georgiev, D.; Semeja, A.; Sadikov, A. Validation of reading as a predictor of mild cognitive impairment. Sci. Rep. 2025, 15, 12834. [Google Scholar] [CrossRef] [PubMed]
- Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry J. Psychiatry Late Life Allied Sci. 2006, 21, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Slachevsky, A.; Villalpando, J.M.; Sarazin, M.; Hahn-Barma, V.; Pillon, B.; Dubois, B. Frontal assessment battery and differential diagnosis of frontotemporal dementia and Alzheimer disease. Arch. Neurol. 2004, 61, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P.; Force, D.T. Diagnostic and Statistical Manual of Mental Disorders: DSM-5™, 5th ed.; American Psychiatric Publishing, Inc.: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Holmqvist, K.; Andersson, R. Eye-Tracking: A Comprehensive Guide to Methods, Paradigms and Measures; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Oyama, A.; Takeda, S.; Ito, Y.; Nakajima, T.; Takami, Y.; Takeya, Y.; Yamamoto, K.; Sugimoto, K.; Shimizu, H.; Shimamura, M.; et al. Novel Method for Rapid Assessment of Cognitive Impairment Using High-Performance Eye-Tracking Technology. Sci. Rep. 2019, 9, 12932. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Z.; Ren, W.; Zheng, H.; Liu, S.; Zhou, Y.; Ju, K.; Chen, Z. Enhancing Mild Cognitive Impairment Auxiliary Identification Through Multimodal Cognitive Assessment with Eye Tracking and Convolutional Neural Network Analysis. Biomedicines 2025, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Aloran, S.; Nakhleh, S.; Alrhmman, I.A. Developing a Non-Invasive Eye Tracking Screening Tool for early Detection of Alzheimer’s Disease. In Proceedings of the 2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI), Sirnak, Turkey, 25–26 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Groznik, V.; Možina, M.; Lazar, T.; Georgiev, D.; Sadikov, A. Gaze behaviour during reading as a predictor of mild cognitive impairment. In Proceedings of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Viartual, 27–30 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Sekar, A.; Panouillères, M.T.; Kaski, D. Detecting Abnormal Eye Movements in Patients with Neurodegenerative Diseases–Current Insights. Eye Brain 2024, 16, 3–16. [Google Scholar] [CrossRef] [PubMed]
Healthy | Borderline | MCI | Possible AD | CI | |
---|---|---|---|---|---|
N | 53 | 32 | 19 | 11 | 62 |
Gender | |||||
Female | 40 | 24 | 12 | 9 | 45 |
Male | 13 | 8 | 7 | 2 | 17 |
Age | |||||
Median | 63 | 68.5 | 72 | 83 | 72 |
Range | 48–83 | 60–87 | 43–91 | 72–94 | 43–94 |
MMSE | |||||
Mean | 28.98 | 28.38 | 26.79 | 23.64 | 27.05 |
ACE-R | |||||
Mean | 94.26 | 87.41 | 81.53 | 62.36 | 81.16 |
GDS–15 | |||||
Mean | 1.25 | 1.56 | 2.16 | 3.18 | 2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groznik, V.; De Gobbis, A.; Georgiev, D.; Semeja, A.; Sadikov, A. Machine Learning-Based Detection of Cognitive Impairment from Eye-Tracking in Smooth Pursuit Tasks. Appl. Sci. 2025, 15, 7785. https://doi.org/10.3390/app15147785
Groznik V, De Gobbis A, Georgiev D, Semeja A, Sadikov A. Machine Learning-Based Detection of Cognitive Impairment from Eye-Tracking in Smooth Pursuit Tasks. Applied Sciences. 2025; 15(14):7785. https://doi.org/10.3390/app15147785
Chicago/Turabian StyleGroznik, Vida, Andrea De Gobbis, Dejan Georgiev, Aleš Semeja, and Aleksander Sadikov. 2025. "Machine Learning-Based Detection of Cognitive Impairment from Eye-Tracking in Smooth Pursuit Tasks" Applied Sciences 15, no. 14: 7785. https://doi.org/10.3390/app15147785
APA StyleGroznik, V., De Gobbis, A., Georgiev, D., Semeja, A., & Sadikov, A. (2025). Machine Learning-Based Detection of Cognitive Impairment from Eye-Tracking in Smooth Pursuit Tasks. Applied Sciences, 15(14), 7785. https://doi.org/10.3390/app15147785