Theoretical Exploration of Isomerization Pathways in H2SO4·HX (X = OH, Cl, Br) Complexes
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. The H2SO4 + H2O System
3.2. The H2SO4 + HCl System
3.3. The H2SO4 + HBr System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stolzenburg, D.; Simon, M.; Ranjithkumar, A.; Kürten, A.; Lehtipalo, K.; Gordon, H.; Ehrhart, S.; Finkenzeller, H.; Pichelstorfer, L.; Nieminen, T. Enhanced growth rate of atmospheric particles from sulfuric acid. Atmos. Chem. Phys. 2020, 20, 7359–7372. [Google Scholar] [CrossRef]
- Malila, J. On the early studies recognizing the role of sulphuric acid in atmospheric haze and new particle formation. Tellus B Chem. Phys. Meteorol. 2018, 70, 1–11. [Google Scholar] [CrossRef]
- Berndt, T.; Hoffmann, E.H.; Tilgner, A.; Stratmann, F.; Herrmann, H. Direct sulfuric acid formation from the gas-phase oxidation of reduced-sulfur compounds. Nat. Commun. 2023, 14, 4849. [Google Scholar] [CrossRef] [PubMed]
- Kürten, A.; Jokinen, T.; Simon, M.; Sipilä, M.; Sarnela, N.; Junninen, H.; Adamov, A.; Almeida, J.; Amorim, A.; Bianchi, F. Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proc. Natl. Acad. Sci. USA 2014, 111, 15019–15024. [Google Scholar] [CrossRef]
- Johnson, J.S.; Jen, C.N. A sulfuric acid nucleation potential model for the atmosphere. Atmos. Chem. Phys. 2022, 22, 8287–8297. [Google Scholar] [CrossRef]
- Parkinson, C.D.; Gao, P.; Schulte, R.; Bougher, S.W.; Yung, Y.L.; Bardeen, C.G.; Wilquet, V.; Vandaele, A.C.; Mahieux, A.; Tellmann, S. Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles. Planet. Space Sci. 2015, 113, 205–218. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, X.; Shao, W.D.; Bierson, C.J.; Cui, J. A simple condensation model for the H2SO4-H2O gas-cloud system on Venus. J. Geophys. Res. Planets 2022, 127, e2021JE007060. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, X.; Crisp, D.; Bardeen, C.G.; Yung, Y.L. Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus. Icarus 2014, 231, 83–98. [Google Scholar] [CrossRef]
- Balci, F.M. Theoretical investigation of hydrogen bonding in the H2SO4···HNO3 system. Comput. Theor. Chem. 2017, 1117, 41–46. [Google Scholar] [CrossRef]
- Hazra, M.K.; Ghoshal, S.; Mahata, P.; Maiti, B. Sulfuric acid decomposition chemistry above Junge layer in Earth’s atmosphere concerning ozone depletion and healing. Commun. Chem. 2019, 2, 75. [Google Scholar] [CrossRef]
- Liu, M.; Matsui, H. Secondary organic aerosol formation regulates cloud condensation nuclei in the global remote troposphere. Geophys. Res. Lett. 2022, 49, e2022GL100543. [Google Scholar] [CrossRef]
- Ianni, J.; Bandy, A. A theoretical study of the hydrates of (H2SO4)2 and its implications for the formation of new atmospheric particles. J. Mol. Struct. Theochem. 2000, 497, 19–37. [Google Scholar] [CrossRef]
- Fox, L.E.; Wofsy, S.C.; Worsnop, D.R.; Zahniser, M.S. Metastable phases in polar stratospheric aerosols. Science 1995, 267, 351–355. [Google Scholar] [CrossRef]
- Del Negro, L.A.; Fahey, D.W.; Donnelly, S.G.; Gao, R.S.; Keim, E.R.; Wamsley, R.C.; Woodbridge, E.L.; Dye, J.E.; Baumgardner, D.; Gandrud, B.W.; et al. Evaluating the role of NAT, NAD, and liquid H2SO4/H2O/HNO3 solutions in antarctic polar stratospheric cloud aerosol: Observations and implications. J. Geophys. Res. 1997, 102, 13255–13282. [Google Scholar] [CrossRef]
- Molina, M.; Zhang, R.; Wooldridge, P.; McMahon, J.; Kim, J.; Chang, H.; Beyer, K. Physical chemistry of the H2SO4/HNO3/H2O system: Implications for polar stratospheric clouds. Science 1993, 261, 1418–1423. [Google Scholar] [CrossRef]
- Zhang, R.; Leu, M.T.; Keyser, L.F. Hydrolysis of N2O5 and ClONO2 on the H2SO4/HNO3/H2O ternary solutions under stratospheric conditions. Geophys. Res. Lett. 1995, 22, 1493–1496. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, C.; Wang, H.; Zhang, T.; Wang, R.; Muthiah, B.; Xu, H.; Zhang, Q.; Jiang, M. Significant influence of water molecules on the SO3 + HCl reaction in the gas phase and at the air–water interface. Phys. Chem. Chem. Phys. 2023, 25, 28885–28894. [Google Scholar] [CrossRef]
- Abbatt, J.P. Interactions of HBr, HCl, and HOBr with supercooled sulfuric acid solutions of stratospheric composition. J. Geophys. Res. 1995, 100, 14009–14017. [Google Scholar] [CrossRef]
- Tilgner, A.; Schaefer, T.; Alexander, B.; Barth, M.; Collett, J.L., Jr.; Fahey, K.M.; Nenes, A.; Pye, H.O.; Herrmann, H.; McNeill, V.F. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. Atmos. Chem. Phys. 2021, 21, 13483–13536. [Google Scholar] [CrossRef]
- Bandy, A.R.; Ianni, J.C. Study of the hydrates of H2SO4 using density functional theory. J. Phys. Chem. A 1998, 102, 6533–6539. [Google Scholar] [CrossRef]
- Kurten, T.; Sundberg, M.R.; Vehkamaki, H.; Noppel, M.; Blomqvist, J.; Kulmala, M. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate. J. Phys. Chem. A 2006, 110, 7178–7188. [Google Scholar] [CrossRef]
- Al Natsheh, A.; Nadykto, A.B.; Mikkelsen, K.V.; Yu, F.; Ruuskanen, J. Sulfuric acid and sulfuric acid hydrates in the gas phase: A DFT investigation. J. Phys. Chem. A 2004, 108, 8914–8929. [Google Scholar] [CrossRef]
- Li, P.; Ma, Z.; Wang, W.; Zhai, Y.; Sun, H.; Bi, S.; Bu, Y. Theoretical studies on the coupling interactions in H2SO4···HOO−···(H2O)n (n = 0–2) clusters: Toward understanding the role of water molecules in the uptake of HOO− radical by sulfuric acid aerosols. Phys. Chem. Chem. Phys. 2011, 13, 941–953. [Google Scholar] [CrossRef]
- Partanen, L.; Hänninen, V.; Halonen, L. Ab Initio structural and vibrational investigation of sulfuric acid monohydrate. J. Phys. Chem. A 2012, 116, 2867–2879. [Google Scholar] [CrossRef]
- Beichert, P.; Schrems, O. Complexes of sulfuric acid with hydrogen chloride, water, nitric acid, chlorine nitrate, and hydrogen peroxide: An ab initio investigation. J. Phys. Chem. A 1998, 102, 10540–10544. [Google Scholar] [CrossRef]
- Fiacco, D.L.; Hunt, S.W.; Leopold, K.R. Microwave investigation of sulfuric acid monohydrate. J. Am. Chem. Soc. 2002, 124, 4504–4511. [Google Scholar] [CrossRef]
- Re, S.; Osamura, Y.; Morokuma, K. Coexistence of neutral and ion-pair clusters of hydrated sulfuric acid H2SO4(H2O)n (n = 1-5)−: A molecular orbital study. J. Phys. Chem. A 1999, 103, 3535–3547. [Google Scholar] [CrossRef]
- Miller, Y.; Chaban, G.M.; Gerber, R.B. Ab initio vibrational calculations for H2SO4 and H2SO4·H2O: Spectroscopy and the nature of the anharmonic couplings. J. Phys. Chem. A 2005, 109, 6565–6574. [Google Scholar] [CrossRef]
- Sebastianelli, P.; Cometto, P.M.; Pereyra, R.G. Systematic Characterization of Gas Phase Binary Pre-Nucleation Complexes Containing H2SO4+ X, [X= NH3,(CH3) NH2,(CH3)2NH,(CH3)3N, H2O,(CH3) OH,(CH3)2O, HF, CH3F, PH3,(CH3) PH2,(CH3)2PH,(CH3)3P, H2S,(CH3) SH,(CH3)2S, HCl,(CH3)Cl)]. A Computational Study. J. Phys. Chem. A 2018, 122, 2116–2128. [Google Scholar] [CrossRef]
- Hanson, D.; Eisele, F. Measurement of prenucleation molecular clusters in the NH3, H2SO4, H2O system. J. Geophys. Res. 2002, 107, AAC 10-11–AAC 10-18. [Google Scholar] [CrossRef]
- Longsworth, O.M.; Bready, C.J.; Shields, G.C. The driving effects of common atmospheric molecules for formation of clusters: The case of sulfuric acid, formic acid, hydrochloric acid, ammonia, and dimethylamine. Environ. Sci. Atmos. 2023, 3, 1335–1351. [Google Scholar] [CrossRef]
- Verdes, M.; Paniagua, M. Quantum chemical study of atmospheric aggregates: HCl·HNO3·H2SO4. J. Mol. Model. 2014, 20, 2232. [Google Scholar] [CrossRef]
- Verdes, M.; Paniagua, M. Relative stabilities of HCl• H2SO4• HNO3 aggregates in polar stratospheric clouds. J. Mol. Model. 2015, 21, 78. [Google Scholar] [CrossRef]
- Kleffmann, J.; Becker, K.H.; Bröske, R.; Rothe, D.; Wiesen, P. Solubility of HBr in H2SO4/H2O and HNO3/H2SO4/H2O Solutions. J. Phys. Chem. A 2000, 104, 8489–8495. [Google Scholar] [CrossRef]
- Beyer, K.D.; Seago, S.W.; Chang, H.Y.; Molina, M.J. Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions. Geophys. Res. Lett. 1994, 21, 871–874. [Google Scholar] [CrossRef]
- Zhang, R.; Wooldridge, P.J.; Molina, M.J. Vapor pressure measurements for sulfuric acid/nitric acid/water and sulfuric acid/hydrochloric acid/water systems: Incorporation of stratospheric acids into background sulfate aerosols. J. Phys. Chem. 1993, 97, 8541–8548. [Google Scholar] [CrossRef]
- Balci, F.M.; Uras-Aytemiz, N. Interaction in the ternary complexes of HNO3···HCl···H2O: A theoretical study on energetics, structure, and spectroscopy. J. Phys. Chem. A 2011, 115, 5943–5954. [Google Scholar] [CrossRef]
- Balci, F.M.; Uras-Aytemiz, N.; Gómez, P.C.; Escribano, R. Proton transfer and autoionization in HNO3·HCl·(H2O)n particles. Phys. Chem. Chem. Phys. 2011, 13, 18145–18153. [Google Scholar] [CrossRef]
- Verdes, M.; Paniagua, M. Facet shapes and thermo-stabilities of H2SO4·HNO3 hydrates involved in polar stratospheric clouds. J. Mol. Model. 2015, 21, 238. [Google Scholar] [CrossRef]
- Balcı, F.M.; Uras-Aytemiz, N. A detailed hydrogen bonding analysis on the compositions of H2SO4/HNO3/H2O ternary systems: A computational study. J. Mol. Graph. Model. 2018, 80, 272–281. [Google Scholar] [CrossRef]
- Verdes, M. A systematic ab initio optimization of monohydrates of HCl·HNO3·H2SO4 aggregates. J. Mol. Graph. Model. 2019, 86, 256–263. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, Y.R.; Huang, T.; Wen, H.; Xu, K.M.; Zhao, W.X.; Zhang, W.J.; Huang, W. Study of Cl−(H2O)n(n = 1–4) using basin-hopping method coupled with density functional theory. J. Comput. Chem. 2014, 35, 159–165. [Google Scholar] [CrossRef]
- Gómez, P.C.; Gálvez, O.; Mosteo, R.G.; Puzzarini, C.; Escribano, R. Clusters of atmospheric relevance: H2O/HCl/HNO3. Prediction of IR & MW spectra. Phys. Chem. Chem. Phys. 2010, 12, 4617–4624. [Google Scholar] [CrossRef]
- Gómez, P.C.; Gálvez, O.; Escribano, R. Theoretical study of atmospheric clusters: HNO3-HCl-H2O. Phys. Chem. Chem. Phys. 2009, 11, 9710–9719. [Google Scholar] [CrossRef]
- Xueref, I.; Dominé, F. FTIR spectroscopic studies of the simultaneous condensation of HCl and H2O at 190 K: Atmospheric applications. Atmos. Chem. Phys. 2003, 3, 1779–1789. [Google Scholar] [CrossRef]
- Devlin, J.P.; Uras, N.; Sadlej, J.; Buch, V. Discrete stages in the solvation and ionization of hydrogen chloride adsorbed on ice particles. Nature 2002, 417, 269–271. [Google Scholar] [CrossRef]
- Thibert, E.; Domine, F. Thermodynamics and kinetics of the solid solution of HCl in ice. J. Phys. Chem. B 1997, 101, 3554–3565. [Google Scholar] [CrossRef]
- Carslaw, K.S.; Clegg, S.L.; Brimblecombe, P. A thermodynamic model of the system HCl-HNO3-H2SO4-H2O, including solubilities of HBr, from <200 to 328 K. J. Phys. Chem. 1995, 99, 11557–11574. [Google Scholar] [CrossRef]
- Zhang, J.; Dolg, M. ABCluster: The artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 2015, 17, 24173–24181. [Google Scholar] [CrossRef]
- Zhang, J.; Dolg, M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 2016, 18, 3003–3010. [Google Scholar] [CrossRef]
- Zhang, J.; Glezakou, V.A. Global optimization of chemical cluster structures: Methods, applications, and challenges. Int. J. Quantum Chem. 2021, 121, e26553. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of hartree-fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef]
- Johnson, E.R.; Becke, A.D. A post-hartree-fock model of intermolecular interactions. J. Chem. Phys. 2005, 123, 024101. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron-affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Rev. A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Werner, H.-J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R. MOLPRO Version 2020, a Package of Ab Initio Programs. Available online: https://www.molpro.net/ (accessed on 20 July 2023).
- Werner, H.J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Hesselmann, A.; Kats, D.; Kohn, A.; Korona, T.; Kreplin, D.A.; et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020, 152, 144107. [Google Scholar] [CrossRef]
- Werner, H.-J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242–253. [Google Scholar] [CrossRef]
- Ding, C.-G.; Laasonen, K.; Laaksonen, A. Two sulfuric acids in small water clusters. J. Phys. Chem. A 2003, 107, 8648–8658. [Google Scholar] [CrossRef]
- Partanen, L.; Hanninen, V.; Halonen, L. Effects of global and local anharmonicities on the thermodynamic properties of sulfuric acid monohydrate. J. Chem. Theory Comput. 2016, 12, 5511–5524. [Google Scholar] [CrossRef]
- Morris, J.R.; Behr, P.; Antman, M.D.; Ringeisen, B.R.; Splan, J.; Nathanson, G.M. Molecular beam scattering from supercooled sulfuric acid: Collisions of HCl, HBr, and HNO3 with 70 wt D2SO4. J. Phys. Chem. A 2000, 104, 6738–6751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Song, K.; Li, J. Theoretical Exploration of Isomerization Pathways in H2SO4·HX (X = OH, Cl, Br) Complexes. Appl. Sci. 2025, 15, 7642. https://doi.org/10.3390/app15147642
Zhang Q, Song K, Li J. Theoretical Exploration of Isomerization Pathways in H2SO4·HX (X = OH, Cl, Br) Complexes. Applied Sciences. 2025; 15(14):7642. https://doi.org/10.3390/app15147642
Chicago/Turabian StyleZhang, Qi, Kaisheng Song, and Jun Li. 2025. "Theoretical Exploration of Isomerization Pathways in H2SO4·HX (X = OH, Cl, Br) Complexes" Applied Sciences 15, no. 14: 7642. https://doi.org/10.3390/app15147642
APA StyleZhang, Q., Song, K., & Li, J. (2025). Theoretical Exploration of Isomerization Pathways in H2SO4·HX (X = OH, Cl, Br) Complexes. Applied Sciences, 15(14), 7642. https://doi.org/10.3390/app15147642