Mechanistic Insights into Fish Spoilage and Integrated Preservation Technologies
Abstract
1. Introduction
2. Mechanisms of Spoilage
2.1. Enzymatic Autolytic Spoilage
2.1.1. Pre-Rigor Phase (T = 0 to Onset of Rigor)
2.1.2. Rigor Mortis Phase
2.1.3. Post-Rigor Autolysis
2.2. Lipid Oxidation
2.3. Microbial Spoilage
2.3.1. Initial Colonization
2.3.2. Microbial Metabolism and Metabolite Production
2.3.3. Spoilage Manifestations and Sensory Implications
3. Preservation Technologies and Optimization
3.1. Physical Preservation
3.1.1. Low-Temperature Preservation
Refrigeration
Super-Chilling
Freezing
3.1.2. High-Pressure Treatment (HPP)
3.1.3. Pulsed Electric Field (PEF)
3.2. Chemical and Biological Preservation
3.2.1. Nanoemulsions
3.2.2. Ozonation
3.2.3. Essential Oils
3.2.4. Antimicrobial Polymer and Biopolymer Coatings
3.3. Modified Atmosphere Packaging (MAP)
3.4. Future Preservation Techniques and Development Trend
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, A.; Young, J.; Lean, M.E.J.; Lara, J. Consumption of fish and vascular risk factors: A systematic review and meta-analysis of intervention studies. Atherosclerosis 2017, 266, 87–94. [Google Scholar] [CrossRef]
- Petsini, F.; Fragopoulou, E.; Antonopoulou, S. Fish consumption and cardiovascular disease related biomarkers: A review of clinical trials. Crit. Rev. Food Sci. Nutr. 2019, 59, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wu, L.; Regenstein, J.M.; Jiang, Q.; Yang, F.; Xu, Y.; Xia, W. Recent advances in quality retention of non-frozen fish and fishery products: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1747–1759. [Google Scholar] [CrossRef]
- Abbas, K.A.; Saleh, A.M.; Mohamed, A.; Lasekan, O.L.O. The relationship between water activity and fish spoilage during cold storage: A review. J. Food Agric. Environ. 2009, 7, 86–90. [Google Scholar] [CrossRef]
- Rathod, N.B.; Nirmal, N.P.; Pagarkar, A.; Özogul, F.; Rocha, J.M. Antimicrobial Impacts of Microbial Metabolites on the Preservation of Fish and Fishery Products: A Review with Current Knowledge. Microorganisms 2022, 10, 773. [Google Scholar] [CrossRef]
- Wang, Y.; Ju, J.; Diao, Y.; Zhao, F.; Yang, Q. The application of starch-based edible film in food preservation: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2024, 65, 2731–2764. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Dave, D.; Budge, S.; Brooks, M.S. Fish Spoilage Mechanisms and Preservation Techniques: Review. Am. J. Appl. Sci. 2010, 7, 859–877. [Google Scholar] [CrossRef]
- Duarte, A.M.; Silva, F.; Pinto, F.R.; Barroso, S.; Gil, M.M. Quality Assessment of Chilled and Frozen Fish-Mini Review. Foods 2020, 9, 1739. [Google Scholar] [CrossRef]
- Kontominas, M.G.; Badeka, A.V.; Kosma, I.S.; Nathanailides, C.I. Innovative seafood preservation technologies: Recent developments. Animals 2021, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Tavares, J.; Martins, A.; Fidalgo, L.G.; Lima, V.; Amaral, R.A.; Pinto, C.A.; Silva, A.M.; Saraiva, J.A. Fresh fish degradation and advances in preservation using physical emerging technologies. Foods 2021, 10, 780. [Google Scholar] [CrossRef]
- Aoki, T.; Ueno, R. Involvement of cathepsins B and L in the post-mortem autolysis of mackerel muscle. Food Res. Int. 1997, 30, 585–591. [Google Scholar] [CrossRef]
- Yamashita, M.; Konagaya, S. Participation of Cathepsin L into Extensive Softening of the Muscle of Chum Salmon Caught during Spawning Migration. Nippon. Suisan Gakkaishi 1990, 56, 1271–1277. [Google Scholar] [CrossRef][Green Version]
- Yongsawatdigul, J.; Park, J.W.; Virulhakul, P.; Viratchakul, S. Proteolytic degradation of tropical tilapia surimi. J. Food Sci. 2000, 65, 129–133. [Google Scholar] [CrossRef]
- Hultmann, L.; Rørå, A.M.B.; Steinsland, I.; Skåra, T.; Rustad, T. Proteolytic activity and properties of proteins in smoked salmon (Salmo salar)-effects of smoking temperature. Food Chem. 2004, 85, 377–387. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Tybussek, T.; Loos, H.M.; Wagenstaller, M.; Buettner, A. Odorants in fish feeds: A potential source of malodors in aquaculture. Front. Chem. 2018, 6, 241. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Factories 2020, 19, 1–42. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. 2020, 133, 109157. [Google Scholar] [CrossRef]
- Mohan, C.; Ravishankar, C.; Srinivasagopal, T. Packaging interventions in low temperature preservation of fish-a review. MOJ Food Process Technol. 2016, 2, 13–25. [Google Scholar] [CrossRef]
- Ritz, M.; Jugiau, F.; Federighi, M.; Chapleau, N.; Lamballerie, M.d. Effects of high pressure, subzero temperature, and pH on survival of Listeria monocytogenes in buffer and smoked salmon. J. Food Prot. 2008, 71, 1612–1618. [Google Scholar] [CrossRef] [PubMed]
- Shokri, S.; Parastouei, K.; Taghdir, M.; Abbaszadeh, S. Application an edible active coating based on chitosan-Ferulago angulata essential oil nanoemulsion to shelf life extension of Rainbow trout fillets stored at 4 °C. Int. J. Biol. Macromol. 2020, 153, 846–854. [Google Scholar] [CrossRef]
- Homayonpour, P.; Jalali, H.; Shariatifar, N.; Amanlou, M. Effects of nano-chitosan coatings incorporating with free/nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. Int. J. Food Microbiol. 2021, 341, 109047. [Google Scholar] [CrossRef]
- Durmuş, M.; Ozogul, Y.; Köşker, A.R.; Ucar, Y.; Boğa, E.K.; Ceylan, Z.; Ozogul, F. The function of nanoemulsion on preservation of rainbow trout fillet. J. Food Sci. Technol. 2020, 57, 895–904. [Google Scholar] [CrossRef]
- Getu, A.; Misganaw, K. Post-harvesting and Major Related Problems of Fish Production. Fish. Aquac. J. 2015, 6, 4. [Google Scholar] [CrossRef]
- Hassoun, A.; Çoban, Ö.E. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Frankel, E.N. Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 1984, 23, 197–221. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, H.; Lyu, X.; Chen, H.; Wei, F. Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Sci. 2023, 8, 35–44. [Google Scholar] [CrossRef]
- Hussain, M.A.; Sumon, T.A.; Mazumder, S.K.; Ali, M.M.; Jang, W.J.; Abualreesh, M.H.; Sharifuzzaman, S.M.; Brown, C.L.; Lee, H.T.; Lee, E.W.; et al. Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review. Food Control 2021, 129, 108244. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 2010, 39, 4067–4079. [Google Scholar] [CrossRef]
- Undeland, I. Chapter 11—Oxidative Stability of Seafood. In Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; AOCS Press: Champaign, IL, USA, 2016; pp. 391–460. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Xu, J.-L.; Riccioli, C.; Sun, D.-W. An Overview on Nondestructive Spectroscopic Techniques for Lipid and Lipid Oxidation Analysis in Fish and Fish Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 466–477. [Google Scholar] [CrossRef]
- Ali, M.; Imran, M.; Nadeem, M.; Khan, M.K.; Sohaib, M.; Suleria, H.A.R.; Bashir, R. Oxidative stability and Sensoric acceptability of functional fish meat product supplemented with plant(-)based polyphenolic optimal extracts. Lipids Heal. Dis. 2019, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Undeland, I.; Hall, G.; Wendin, K.; Gangby, I.; Rutgersson, A. Preventing lipid oxidation during recovery of functional proteins from herring (Clupea harengus) fillets by an acid solubilization process. J. Agric. Food Chem. 2005, 53, 5625–5634. [Google Scholar] [CrossRef] [PubMed]
- Huis in’t Veld, J.H. Microbial and biochemical spoilage of foods: An overview. Food Microbiol. 1996, 33, 1–18. [Google Scholar] [CrossRef]
- Audley, M.A.; Shetty, K.J.; Kinsella, J.E. ISOLATION AND PROPERTIES OF PHOSPHOLIPASE A FROM POLLOCK MUSCLE. J. Food Sci. 1978, 43, 1771–1775. [Google Scholar] [CrossRef]
- Yurkowski, M.; Brockerhoff, H. Lysolecithinase of Cod Muscle. J. Fish. Res. Board. Can. 2011, 22, 643–652. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Pazos, M.; Medina, I.; Hultin, H.O. Effect of pH on hemoglobin-catalyzed lipid oxidation in cod muscle membranes in vitro and in situ. J. Agric. Food Chem. 2005, 53, 3605–3612. [Google Scholar] [CrossRef]
- Ghnimi, S.; Budilarto, E.; Kamal-Eldin, A. The New Paradigm for Lipid Oxidation and Insights to Microencapsulation of Omega-3 Fatty Acids. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1206–1218. [Google Scholar] [CrossRef]
- Mei, J.; Ma, X.; Xie, J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Benjakul, S. Natural Preservatives for Extending the Shelf-Life of Seafood: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1595–1612. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Huss, H.H. Fresh and Processed Fish and Shellfish; National Institute of Aquatic Resources: Gaithersburg, MD, USA, 2000; pp. 472–506. Available online: https://orbit.dtu.dk/en/publications/fresh-and-processed-fish-and-shellfish (accessed on 30 March 2025).
- Dalgaard, P.; Madsen, H.; Samieian, N.; Emborg, J. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone)-effect of modified atmosphere packaging and previous frozen storage. J. Appl. Microbiol. 2006, 101, 80–95. [Google Scholar] [CrossRef]
- Emborg, J.; Laursen, B.G.; Dalgaard, P. Significant histamine formation in tuna (Thunnus albacares) at 2 C-effect of vacuum-and modified atmosphere-packaging on psychrotolerant bacteria. Int. J. Food Microbiol. 2005, 101, 263–279. [Google Scholar] [CrossRef]
- Gram, L.; Dalgaard, P. Fish spoilage bacteria–problems and solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266. [Google Scholar] [CrossRef]
- Ólafsdóttir, G.; Lauzon, H.; Martinsdottir, E.; Kristbergsson, K. Influence of storage temperature on microbial spoilage characteristics of haddock fillets (Melanogrammus aeglefinus) evaluated by multivariate quality prediction. Int. J. Food Microbiol. 2006, 111, 112–125. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Li, D.; Luo, Y. Characterization of the microbiota in lightly salted bighead carp (Aristichthys nobilis) fillets stored at 4 °C. Food Microbiol. 2017, 62, 106–111. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, C.A.M.; Oliveira, A.C. Modified atmosphere systems and shelf life extension of fish and fishery products. Foods 2016, 5, 48. [Google Scholar] [CrossRef]
- Gandotra, R. Change in proximate composition and Microbial count by low ttemperaturepreservation in fish muscle of labeo bohita(HamBuch). IOSR J. Pharm. Biol. Sci. 2012, 2, 13–17. [Google Scholar] [CrossRef]
- Kaale, L.D.; Eikevik, T.M.; Rustad, T.; Kolsaker, K. Superchilling of food: A review. J. Food Eng. 2011, 107, 141–146. [Google Scholar] [CrossRef]
- Miller, A.; Ackerman, S.; Palumbo, S. Effects of frozen storage on functionality of meat for processing. J. Food Sci. 2006, 45, 1466–1471. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef]
- Alizadeh, E.; Chapleau, N.; de Lamballerie, M.; Le-Bail, A. Effect of different freezing processes on the microstructure of Atlantic salmon (Salmo salar) fillets. Innov. Food Sci. Emerg. Technol. 2007, 8, 493–499. [Google Scholar] [CrossRef]
- Rahelić, S.; Gawwad, A.H.; Puač, S. Structure of beef Longissimus dorsi muscle frozen at various temperatures: Part 2—Ultrastructure of muscles frozen at −10, −22, −33, −78 and −115 °C. Meat Sci. 1985, 14, 73–81. [Google Scholar] [CrossRef]
- Li, B.; Sun, D.-W. Novel methods for rapid freezing and thawing of foods—A review. J. Food Eng. 2002, 54, 175–182. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Manahiloh, K.N.; Muhunthan, B.; Sablani, S.S. Understanding the Influence of State/Phase Transitions on Ice Recrystallization in Atlantic Salmon (Salmo salar) During Frozen Storage. Food Biophys. 2012, 7, 57–71. [Google Scholar] [CrossRef]
- Chevalier, D.; Sentissi, M.; Havet, M.; Bail, A.L. Comparison Of Air-blast And Pressure Shift Freezing On Norway Lobster Quality. J. Food Sci. 2000, 65, 329–333. [Google Scholar] [CrossRef]
- Hall, G. Fish Processing: Sustainability and New Opportunities; SPi Publisher: Pondicherry, India, 2010. [Google Scholar] [CrossRef]
- Cheftel, J.; LÉVy, J.; Dumay, E. Pressure-assisted freezing and thawing: Principles and potential applications. Food Rev. Int. 2000, 16, 453–483. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Hernández, P.; Navarro, J.L.; Toldrá, F. Effect of frozen storage on lipids and lipolytic activities in the longissimus dorsi muscle of the pig. Z. Für Leb. Und -Forsch. A 1999, 208, 110–115. [Google Scholar] [CrossRef]
- Farkas, D.F.; Kapp, J.A. Recent advances in high pressure food processing equipment and equipment requirements to meet new process needs. In Proceedings of the ASME 2002 Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 5–9 August 2002; pp. 1–4. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Raghavarao, K.S.; Balasubramaniam, V.M.; Niranjan, K.; Knorr, D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr. 2007, 47, 69–112. [Google Scholar] [CrossRef] [PubMed]
- Matějková, K.; Křížek, M.; Vácha, F.; Dadáková, E. Effect of high-pressure treatment on biogenic amines formation in vacuum-packed trout flesh (Oncorhynchus mykiss). Food Chem. 2013, 137, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, D.; Le Bail, A.; Ghoul, M. Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Res. Int. 2001, 34, 425–429. [Google Scholar] [CrossRef]
- Angsupanich, K.; Ledward, D.A. High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem. 1998, 63, 39–50. [Google Scholar] [CrossRef]
- Sequeira-Munoz, A.; Chevalier, D.; LeBail, A.; Ramaswamy, H.S.; Simpson, B.K. Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innov. Food Sci. Emerg. Technol. 2006, 7, 13–18. [Google Scholar] [CrossRef]
- Yagiz, Y.; Kristinsson, H.G.; Balaban, M.O.; Marshall, M.R. Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). J. Food Sci. 2007, 72, C509–C515. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Pothakamury, U.R.; Gongora-Nieto, M.M.; Swanson, B.G. Preservation of Foods with Pulsed Electric Fields; Academic Press: New York, NY, USA, 1999; p. 197. [Google Scholar] [CrossRef]
- Angersbach, A.; Heinz, V.; Knorr, D. Effects of pulsed electric fields on cell membranes in real food systems. Innov. Food Sci. Emerg. Technol. 2000, 1, 135–149. [Google Scholar] [CrossRef]
- Zderic, A.; Zondervan, E.; Meuldijk, J. Breakage of cellular tissue by pulsed electric field: Extraction of polyphenols from fresh tea leaves. Chem. Eng. 2013, 32, 1795–1800. [Google Scholar] [CrossRef]
- Farahnaky, A.; Azizi, R.; Gavahian, M. Accelerated texture softening of some root vegetables by Ohmic heating. J. Food Eng. 2012, 113, 275–280. [Google Scholar] [CrossRef]
- Gudmundsson, M.; Hafsteinsson, H. Effect of electric field pulses on microstructure of muscle foods and roes. Trends Food Sci. Technol. 2001, 12, 122–128. [Google Scholar] [CrossRef]
- Toepfl, S.; Heinz, V.; Knorr, D. Pulsed Electric Fields Technology for the Food Industry; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- He, G.; Yin, Y.; Yan, X.; Yu, Q. Optimisation extraction of chondroitin sulfate from fish bone by high intensity pulsed electric fields. Food Chem. 2014, 164, 205–210. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Q.; Zhou, D. Optimization Extraction of Protein from Mussel by High-Intensity Pulsed Electric Fields. J. Food Process. Preserv. 2017, 41, e12962. [Google Scholar] [CrossRef]
- Zhou, Y.; Sui, S.; Huang, H.; He, G.; Wang, S.; Yin, Y.; Ma, Z. Process optimization for extraction of fishbone calcium assisted by high intensity pulsed electric fields. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2012, 28, 265–270. [Google Scholar]
- Li, M.; Lin, J.; Chen, J.; Fang, T. Pulsed Electric Field-Assisted Enzymatic Extraction of Protein from Abalone (Haliotis Discus Hannai Ino) Viscera. J. Food Process Eng. 2016, 39, 702–710. [Google Scholar] [CrossRef]
- Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; Sant’Ana, A.d.S. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci. Technol. 2017, 66, 20–35. [Google Scholar] [CrossRef]
- Horita, C.N.; Baptista, R.C.; Caturla, M.Y.R.; Lorenzo, J.M.; Barba, F.J.; Sant’Ana, A.S. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci. Technol. 2018, 72, 45–61. [Google Scholar] [CrossRef]
- Niu, D.; Zeng, X.-A.; Ren, E.-F.; Xu, F.-Y.; Li, J.; Wang, M.-S.; Wang, R. Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Palgan, I.; Noci, F.; Muñoz, A.; Whyte, P.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. The effect of pulsed electric fields (PEF) in combination with high intensity light pulses (HILP) on Escherichia coli inactivation and quality attributes in apple juice. Innov. Food Sci. Emerg. Technol. 2011, 12, 118–123. [Google Scholar] [CrossRef]
- Onyeaka, H. Non-thermal technologies in food processing: Implications for food quality and rheology. Appl. Sci. 2025, 15, 3049. [Google Scholar] [CrossRef]
- Shiekh, K.A.; Benjakul, S. Effect of pulsed electric field treatments on melanosis and quality changes of Pacific white shrimp during refrigerated storage. J. Food Process. Preserv. 2020, 44, e14292. [Google Scholar] [CrossRef]
- Durmus, M. The effects of nanoemulsions based on citrus essential oils (orange, mandarin, grapefruit, and lemon) on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets at 4 ± 2 °C. J. Food Saf. 2020, 40, 12718. [Google Scholar] [CrossRef]
- de Mendonça Silva, A.M.; Gonçalves, A.A. Effect of aqueous ozone on microbial and physicochemical quality of Nile tilapia processing. J. Food Process. Preserv. 2017, 41, 13298. [Google Scholar] [CrossRef]
- Jamali, S.N.; Assadpour, E.; Feng, J.; Jafari, S.M. Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms. Adv. Colloid. Interface Sci. 2021, 295, 102504. [Google Scholar] [CrossRef]
- Ameur, A.; Bensid, A.; Ozogul, F.; Ucar, Y.; Durmus, M.; Kulawik, P.; Boudjenah-Haroun, S. Application of oil-in-water nanoemulsions based on grape and cinnamon essential oils for shelf-life extension of chilled flathead mullet fillets. J. Sci. Food Agric. 2021, 102, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, Y.; Boğa, E.K.; Akyol, I.; Durmus, M.; Ucar, Y.; Regenstein, J.M.; Köşker, A.R. Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Biosci. 2020, 36, 100635. [Google Scholar] [CrossRef]
- Khanzadi, S.; Keykhosravy, K.; Hashemi, M.; Azizzadeh, M. Alginate coarse/nanoemulsions containing Zataria multiflora Boiss essential oil as edible coatings and the impact on microbial quality of trout fillet. Aquac. Res. 2020, 51, 873–881. [Google Scholar] [CrossRef]
- Joe, M.M.; Chauhan, P.S.; Bradeeba, K.; Shagol, C.; Sivakumaar, P.K.; Sa, T. Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at 20 °C. Food Control 2012, 23, 564–570. [Google Scholar] [CrossRef]
- Chuesiang, P.; Sanguandeekul, R.; Siripatrawan, U. Phase inversion temperature-fabricated cinnamon oil nanoemulsion as a natural preservative for prolonging shelf-life of chilled Asian seabass (Lates calcarifer) fillets. LWT 2020, 125, 109122. [Google Scholar] [CrossRef]
- Ceylan, Z.; Meral, R.; Kose, S.; Sengor, G.; Akinay, Y.; Durmus, M.; Ucar, Y. Characterized nano-size curcumin and rosemary oil for the limitation microbial spoilage of rainbow trout fillets. LWT 2020, 134, 109965. [Google Scholar] [CrossRef]
- Másson, M.; Sigfússon, S.; Loftsson, T. Fish skin as a model membrane to study transmembrane drug delivery with cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 177–182. [Google Scholar] [CrossRef]
- Zhao, R.; Guan, W.; Zheng, P.; Tian, F.; Zhang, Z.; Sun, Z.; Cai, L. Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control 2022, 132, 108545. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol. 2017, 95, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Mugao, L.G.; Gichimu, B.M.; Muturi, P.W.; Mukono, S.T. Characterization of the volatile components of essential oils of selected plants in Kenya. Biochem. Res. Int. 2020, 2020, 8861798. [Google Scholar] [CrossRef]
- Sivertsvik, M. The optimized modified atmosphere for packaging of pre-rigor filleted farmed cod (Gadus morhua) is 63ml/100ml oxygen and 37ml/100ml carbon dioxide. LWT—Food Sci. Technol. 2007, 40, 430–438. [Google Scholar] [CrossRef]
- Wang, T.; Sveinsdóttir, K.; Magnússon, H.; Martinsdóttir, E. Combined application of modified atmosphere packaging and superchilled storage to extend the shelf life of fresh cod (Gadus morhua) loins. J. Food Sci. 2008, 73, 11–19. [Google Scholar] [CrossRef]
- Mei, J.; Liu, F.; Fang, S.; Lan, W.; Xie, J. High-CO2 modified atmosphere packaging with superchilling (−1.3 °C) inhibit biochemical and flavor changes in turbot (scophthalmus maximus) during storage. Molecules 2020, 25, 2826. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Li, H.; Wang, Y. Nanocomplexes film composed of gallic acid loaded ovalbumin/chitosan nanoparticles and pectin with excellent antibacterial activity: Preparation, characterization and application in coating preservation of salmon fillets. Int. J. Biol. Macromol. 2024, 259, 128934. [Google Scholar] [CrossRef]
- Pal, J.; Ravi, O.P.K.; Kumari, S.; Singh, A.K. Preservation of Seafoods by Hurdle Technology. In Meat and Nutrition; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Li, L.; Su, Q.; Zhao, Q.; Ren, L.; Xu, K.; Wu, Q.; Zhuang, Y.; Lü, X.; Wang, L. Preparation and evaluation of gelatin-based films with colorimetric/fluorescent response, enhanced hydrophobicity and stability for smart fish packaging. Food Hydrocoll. 2025, 161, 110878. [Google Scholar] [CrossRef]
Bacteria | Major Spoilage Metabolites | Typical Spoilage Characteristics |
---|---|---|
Pseudomonas spp. | Amines, aldehydes, ketones | Sweet, fruity odors, slimy texture |
Shewanella putrefaciens | TMA, H2S, sulfides | Strong ammonia-like, rotten-egg odors |
Photobacterium phosphoreum | TMA | Fishy, ammonia odors |
Aeromonas spp. | Amines, organic acids | Sour, off-odors, slime formation |
Method | Parameter | Storage Duration | Microbial Reduction | Sensory Impact |
---|---|---|---|---|
Refrigeration | 0–4 °C | 3–9 days | ~1 log CFU/g | Maintains fresh texture; short-term |
Super-Chilling | −0.5 to −2.8 °C | 10–14 days | ~2 log CFU/g | Excellent texture; minimal drip loss |
Freezing | ≤−18 °C | 6–12 months | ~5 log CFU/g | Potential drip loss; texture changes |
High-Pressure Processing | 300 MPa, 3 min | 21–28 days | >3 log CFU/g | Good texture; slight firmness change |
Pulsed Electric Fields | 1–3 kV/cm | 7–14 days | ~2 log CFU/g | Negligible sensory alterations |
Species | MAP Conditions | Additional Technique(s) | Shelf-Life Extension | References |
---|---|---|---|---|
Atlantic cod (G. morhua) | 63% O2/37% CO2 | — | 4–14 days | [101] |
Cod loins | 60% CO2/40% N2 | Super-chilling at –1.3 °C | 16 days | [102] |
Turbot (S. maximus) | 80% CO2/20% N2 | Super-chilling | 18 days | [103] |
Nile tilapia (O. niloticus) | 50% CO2/50% N2 | — | 10 days | [88] |
Salmon (S. salar) | 60% CO2/40% N2 | HPP (300 MPa) + Ultra-cooling (–2.8 °C) | 7–14 days | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zheng, Z. Mechanistic Insights into Fish Spoilage and Integrated Preservation Technologies. Appl. Sci. 2025, 15, 7639. https://doi.org/10.3390/app15147639
Wang X, Zheng Z. Mechanistic Insights into Fish Spoilage and Integrated Preservation Technologies. Applied Sciences. 2025; 15(14):7639. https://doi.org/10.3390/app15147639
Chicago/Turabian StyleWang, Xuanbo, and Zhaozhu Zheng. 2025. "Mechanistic Insights into Fish Spoilage and Integrated Preservation Technologies" Applied Sciences 15, no. 14: 7639. https://doi.org/10.3390/app15147639
APA StyleWang, X., & Zheng, Z. (2025). Mechanistic Insights into Fish Spoilage and Integrated Preservation Technologies. Applied Sciences, 15(14), 7639. https://doi.org/10.3390/app15147639