A Monte Carlo Simulation of Measurement Uncertainty in Radiation Thermometry Due to the Influence of Spectral Parameters
Abstract
Featured Application
Abstract
1. Introduction
1.1. Research Topic
1.2. Existing Works
1.3. Study Design
2. Formation of the Model of Radiation Thermometry
2.1. The Direct Model of Radiation Thermometry
2.2. Scalar Model of Radiation Thermometry
2.3. The Hybrid Model of Radiation Thermometry
2.4. Final Constructed Model of Radiation Thermometry
3. Uncertainty Simulation
3.1. Analytical Uncertainty Simulation Using the Model of Radiation Thermometry
3.2. The Monte Carlo Simulation Model of Radiation Thermometry for Uncertainty Simulation
4. Simulation Model Input Parameters
4.1. Emissivity and Reflectivity
4.2. Atmospheric Conditions
4.3. Spectral Sensitivity
- Heitronics TRT II with two detectors in two temperature ranges [20]:
- 8–14 µm sensor, measuring in a –50–300 °C range.
- 3.87 µm sensor, measuring in a 150–1000 °C range.
- Heitronics KT 19.01 II [20]:
- 2–2.7 µm sensor, measuring in the 350–2000 °C range.
- FLIR VOx-based microbolometer camera [21]:
- 8–14 µm sensor, measuring in a –40–2000 °C range.
4.4. General Simulation Parameters
5. Validation of the Simulation Model
5.1. The Uncertainty of the Numeric Model of Radiation Thermometry
5.2. Validation of the Humidity Sensitivity of the Model of Radiation Thermometry
5.3. Validation of the Emissivity Sensitivity of the Model of Radiation Thermometry
5.4. Model Comparison to Other Results from Other Literature
6. Results of Uncertainty Simulations for Multiple Cases of Use of Radiation Thermometry
6.1. Case 1: Measurement Uncertainty of a Reference Radiation Thermometer with No Atmospheric Compensation in High Temperature Calibration Using a Laboratory Black Body Calibrator
6.2. Case 2: Measuring with a Low Temperature Reference Radiation Thermometer in Calibration of a Flat Plate Calibrator
6.3. Case 3: Measurement of Real Objects as Grey Bodies with Emissivity Uncertainty
6.4. Case 4: Precise and Traceable Measurement of Real Objects with Evaluated Spectral Emissivity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, J.; Battuello, M.; Sadli, M.; Ballico, M.; Park, N.; Saunders, P.; Zundong, Y.; Johnson, B.C.; Li, W.; Sakuma, F.; et al. Uncertainty Budgets for Realisation of Scales by Radiation Thermometry. In CCT-WG5 on Radiation Thermometry|22nd||BIPM; BIPM: Paris, France, 2003. [Google Scholar]
- Saunders, P. Uncertainty Propagation through Integrated Quantities for Radiation Thermometry. Metrologia 2018, 55, 863. [Google Scholar] [CrossRef]
- Zarkov, B.; Simic, S. Application for Optical Thermometers Calibration Based on Virtual Instruments. Opt. Quantum Electron. 2018, 50, 316. [Google Scholar] [CrossRef]
- Paes, V.F.; Mueller, B.A.; Costa, P.B.; Ferreira, R.A.; Porto, M.P. Calibration Uncertainty of MEMS Thermopile Imagers for Quantitative Temperature Measurement. Infrared Phys. Technol. 2022, 120, 103978. [Google Scholar] [CrossRef]
- Sakuma, F.; Hattori, S. Study for Establishing a Practical Temperature Standard by Using Silicon Narrow-Band Radiation Thermometer. Trans. Soc. Instrum. Control Eng. 1982, 18, 482–488. [Google Scholar] [CrossRef]
- Yadav, P.V.K.; Yadav, I.; Ajitha, B.; Rajasekar, A.; Gupta, S.; Ashok Kumar Reddy, Y. Advancements of Uncooled Infrared Microbolometer Materials: A Review. Sens. Actuators Phys. 2022, 342, 113611. [Google Scholar] [CrossRef]
- Eminoglu, S.; Tezcan, D.S.; Tanrikulu, M.Y.; Akin, T. Low-Cost Uncooled Infrared Detectors in CMOS Process. Sens. Actuators Phys. 2003, 109, 102–113. [Google Scholar] [CrossRef]
- Chen, C.; Yi, X.; Zhao, X.; Xiong, B. Characterizations of VO2-Based Uncooled Microbolometer Linear Array. Sens. Actuators Phys. 2001, 90, 212–214. [Google Scholar] [CrossRef]
- Martinez, I.; Otamendi, U.; Olaizola, I.G.; Solsona, R.; Maiza, M.; Viles, E.; Fernandez, A.; Arzua, I. A Novel Method for Error Analysis in Radiation Thermometry with Application to Industrial Furnaces. Measurement 2022, 190, 110646. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.; Long, J.; Mao, L.; Yang, Z.; Li, C. An Analytical Radiometric Thermometry Model for Quantitative Prediction and Correction of the Gas Emission and Absorption Effects. Measurement 2023, 206, 112224. [Google Scholar] [CrossRef]
- Mlačnik, V.; Pušnik, I. A Traceable Spectral Radiation Model of Radiation Thermometry. Appl. Sci. 2023, 13, 4973. [Google Scholar] [CrossRef]
- JCGM101-2008. Available online: https://www.bipm.org/en/doi/10.59161/jcgm101-2008 (accessed on 21 August 2024).
- Kaplan, S.; Hanssen, L.; Datla, R. Testing the Radiometric Accuracy of Fourier Transform Infrared Transmittance Measurements. Appl. Opt. 1998, 36, 8896–8908. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.D. The Radiating Power of Human Skin in the Infra-Red. Am. J. Physiol.-Leg. Content 1939, 127, 454–462. [Google Scholar] [CrossRef]
- Steketee, J. Spectral Emissivity of Skin and Pericardium. Phys. Med. Biol. 1973, 18, 686. [Google Scholar] [CrossRef] [PubMed]
- Togawa, T. Non-Contact Skin Emissivity: Measurement from Reflectance Using Step Change in Ambient Radiation Temperature. Clin. Phys. Physiol. Meas. 1989, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Wyndham, C.H.; Hodgson, T. Emissivity and Transmittance of Excised Human Skin in Its Thermal Emission Wave Band. J. Appl. Physiol. 1967, 23, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Mlačnik, V.; Pušnik, I. Influence of Atmosphere on Calibration of Radiation Thermometers. Sensors 2021, 21, 5509. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization (WMO). Guide to Meteorological Instruments and Methods of Observation, 2024th ed.; WMO: Geneva, Switzerland, 2014; ISBN 978-92-63-10008-5. [Google Scholar]
- Heitronics Infrarot Messtechnik GmbH. Infrared Radiation Pyrometer KT19 II Operation Instructions; Heitronics Infrarot Messtechnik GmbH: Wiesbaden, Germany, 2002. [Google Scholar]
- Teledyne FLIR LLC. What Is the Typical Spectral Response for Certain Camera/Lens Combination? Available online: https://www.flir.com/support-center/Instruments/what-is-the-typical-spectral-response-for-certain-cameralens-combination/ (accessed on 26 February 2023).
- Bureau International des Poids et Mesures. Part 2.5—Fixed Points for Radiation Thermometry. In BIPM CCT CCT Guides to Thermometry; BIPM: Paris, France, 2018. [Google Scholar]
- Hardy, B. ITS-90 Formulations for Vapor Pressure, Frostpoint Temperature, Dewpoint Temperature, and Enhancement Factors in the Range −100 to +100 C. In Proceedings of the Third International Symposium on Humidity & Moisture, London, UK, 6 April 1998; pp. 212–222. [Google Scholar]
- Saunders, P. Calibration and Use of Low-Temperature Direct-Reading Radiation Thermometers. Meas. Sci. Technol. 2008, 20, 025104. [Google Scholar] [CrossRef]
- Saunders, P. Technical Guide 22 Excel Spreadsheet. Available online: https://www.measurement.govt.nz/resources (accessed on 17 June 2025).
Author [Source] | Year | Spectral Range | Skin Emissivity |
---|---|---|---|
Hardy [14], in [15] | 1934 | >2 µm | 0.989 ± 0.01 |
Büttner [16] | 1937 | 0.3–50 µm | 0.954 ± 0.004 |
Eckoldt [17] | 1960 | 0.8–12 µm | 0.939 ± 0.003 |
Buchmüller [16] | 1961 | 3–15 µm | within 0.99 and 1 |
Gärtner [16] | 1964 | unknown | 0.976 ± 0.015 |
Mitchell et al. [17] | 1967 | <20 µm | within 0.995 and 1 |
Patil in Williams [16] | 1969 | 4–6 µm | 0.990 ± 0.045 |
Patil in Williams [16] | 1969 | 6–18 µm | 0.972 ± 0.041 |
Patil in Williams [16] | 1969 | 4–18 µm | 0.975 ± 0.043 |
Steketee [15] | 1973 | 3–14 µm | 0.98 ± 0.01 |
Togawa [16] | 1989 | 8–14 µm | 0.969 ± 0.004 |
Parameter | Best Achievable Uncertainty of Measurement | Assessed Practical Uncertainty | Laboratory Calibration Uncertainty Without Atmospheric Compensation |
---|---|---|---|
Air temperature | 0.2 K | 1–2 K | 4 K (uniform) |
Relative humidity | 1% RH | 5–10% RH | 20% RH (uniform) |
Atmospheric pressure | 0.15 hPa | 10–20 hPa | 20 hPa (uniform) |
Transfer path distance | 0.05 m | 0.05–1 m | 0.1 m |
Parameter | Value |
---|---|
Emissivity | (0.10–0.95) |
Reflected temperature | 23 °C |
Air temperature | 23 °C |
Relative humidity | 40% RH |
Atmospheric pressure | 1013.25 hPa |
Transfer path distance | 1 m |
Coefficients | Values |
---|---|
−22.93 | |
0.2238 | |
0.03724 | |
−0.0007649 | |
−1.334 × 10−5 |
Measured Temperature | Input Deviation | Simulated Deviation | Experimental Deviation | Experimental Sensitivity Mismatch |
---|---|---|---|---|
1000 °C | 14 hPa | 5.84 °C | 7.57 °C | −22.9% |
1200 °C | 14 hPa | 7.16 °C | 9.72 °C | −26.3% |
1300 °C | 14 hPa | 7.88 °C | 10.79 °C | −26.9% |
1500 °C | 14 hPa | 9.43 °C | 12.93 °C | −27.1% |
Measured Temperature | Emissivity Deviation | Simulated Deviation | Experimental Deviation | Simulation Result Mismatch |
---|---|---|---|---|
250 °C, 8–14 μm | 0.02/ | 1.90 °C | 1.78 °C | +6.7% |
250 °C, 3.87 μm | 0.02/ | 0.89 °C | 0.87 °C | +2.4% |
Measured Temp. | Parameter | Input Deviation | Simulated Deviation | Reported Deviation | Simulation Mismatch |
---|---|---|---|---|---|
−50 °C | Emissivity | 0.95 → 0.99 | 14 °C | 13.3 °C | 5.3% |
500 °C | Emissivity | 0.95 → 0.99 | 4.8 °C | 5.1 °C | −5.9% |
−50 °C | Reflection | 20 ± 5 °C | 0.133 °C | 0.12 °C | 10.8% |
500 °C | Reflection | 20 ± 5 °C | 0.012 °C | 0.012 °C | 0% |
−50 °C | Reflection | 20 ± 5 °C | 0.69 °C | 0.63 °C | 9.5% |
500 °C | Reflection | 20 ± 5 °C | 0.06 °C | 0.06 °C | 0% |
Parameter | Value with Standard Uncertainty | Probability Distribution | Standard Uncertainty Contributions at 1000 °C |
---|---|---|---|
Relative humidity | (40 ± 10)% RH | Uniform | 1.50 °C |
Air temperature | (23 ± 2) °C | Uniform | 0.68 °C |
Transfer path distance | (0.733 ± 0.05) m | Normal | 0.42 °C |
Emissivity | 0.998 ± 0.00116 (0.002/) | Uniform | 0.29 °C |
Atmospheric pressure | (1013.25 ± 10) hPa | Uniform | 0.063 °C |
Reflected temperature | (23 ± 2) °C | Uniform | 2.8 × 10−8 °C |
Parameter | Input Deviation | Monte Carlo Result | Analytical Result (Input Deviation ±σ) | Mismatch Between Analytical and Monte Carlo Result | ||
---|---|---|---|---|---|---|
Standard Deviation | Highest | Mean | Highest | Mean | ||
(°C) | (°C) | (°C) | (%) | (%) | ||
Relative humidity | 10% RH | 1.50 | 1.58 | 1.48 | 5.3% | −1.3% |
Air temperature | 2 °C | 0.68 | 0.69 | 0.67 | 1.5% | −1.5% |
Transfer path distance | 0.05 m | 0.42 | 0.43 | 0.42 | 2.4% | 0.0% |
Emissivity | 0.00116 (0.002/) | 0.29 | 0.29 | 0.29 | 0.0% | 0.0% |
Atmospheric pressure | 10 hPa | 0.063 | 0.063 | 0.062 | 0.0% | −1.6% |
Reflected temperature | 2 °C | 2.8 × 10−8 | 3.7 × 10−8 | 2.5 × 10−8 | 32.1% | −10.7% |
Measurement uncertainty (analytical sum) | 1.73 | 1.80 | 1.71 | |||
Measurement uncertainty (Monte Carlo total) | 1.72 |
Parameter | Value with Standard Uncertainty | Probability Distribution | Standard Uncertainty Contributions at 500 °C |
---|---|---|---|
Emissivity | 0.95 ± 0.0116 (± 0.02/) | Uniform | 1.94 °C |
Reflected temperature | (23 ± 2) °C | Uniform | 0.00030 °C |
Transfer path distance | (0.38 ± 0.02) m | Normal | 0.00023 °C |
Relative humidity | (40 ± 10)% RH | Uniform | 0.00023 °C |
Atmospheric pressure | (1013.25 ± 10) hPa | Uniform | 7.9 × 10−5 °C |
Air temperature | (23 ± 2) °C | Uniform | 7.8 × 10−5 °C |
Measured Temperature | Emissivity Deviation | Simulated Deviation | TG22 Deviation | Simulation Mismatch |
---|---|---|---|---|
250 °C, 8–14 μm | 0.0116 (0.02/) | 1.90 °C | 1.92 °C | −0.84% |
250 °C, 3.87 μm | 0.0116 (0.02/) | 0.89 °C | 0.89 °C | 0.073% |
Parameter | Value and Standard Uncertainty | Probability Distribution | Standard Uncertainty Contributions for Skin at 35 °C |
---|---|---|---|
Emissivity | (0.10–0.95) ± 0.0058 (± 0.01/) (0.10–0.95) ± 0.058 | Uniform | 0.068 °C |
Reflected temperature | (23 ± 1 °C) | Normal | 0.019 °C |
Air temperature | (23 ± 1) °C | Normal | 0.0014 °C |
Relative humidity | (40 ± 5)% RH | Normal | 0.00094 °C |
Transfer path distance | (1 ± 0.05) m | Normal | 0.00096 °C |
Atmospheric pressure | (1013.25 ± 10) hPa | Normal | 0.00030 °C |
Parameter | Value and Standard Uncertainty | Standard Uncertainty Contributions for CrN Coated Metals at 35 °C | |
---|---|---|---|
Stainless Steel | Brass | ||
Reflected temperature | (23 ± 1) °C | 2.4 °C | 35 °C |
Air temperature | (23 ± 1) °C | 5.7 mK | 51 mK |
Emissivity | ± 0.005 | 0.57 mK | 5.5 mK |
Relative humidity | (40 ± 5)% RH | 0.99 mK | 0.96 mK |
Transfer path distance | (1 ± 0.05) m | 0.85 mK | 2.1 mK |
Atmospheric pressure | (1013.25 ± 10) hPa | 0.26 mK | 0.73 mK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlačnik, V.; Pušnik, I.; Hudoklin, D. A Monte Carlo Simulation of Measurement Uncertainty in Radiation Thermometry Due to the Influence of Spectral Parameters. Appl. Sci. 2025, 15, 7618. https://doi.org/10.3390/app15137618
Mlačnik V, Pušnik I, Hudoklin D. A Monte Carlo Simulation of Measurement Uncertainty in Radiation Thermometry Due to the Influence of Spectral Parameters. Applied Sciences. 2025; 15(13):7618. https://doi.org/10.3390/app15137618
Chicago/Turabian StyleMlačnik, Vid, Igor Pušnik, and Domen Hudoklin. 2025. "A Monte Carlo Simulation of Measurement Uncertainty in Radiation Thermometry Due to the Influence of Spectral Parameters" Applied Sciences 15, no. 13: 7618. https://doi.org/10.3390/app15137618
APA StyleMlačnik, V., Pušnik, I., & Hudoklin, D. (2025). A Monte Carlo Simulation of Measurement Uncertainty in Radiation Thermometry Due to the Influence of Spectral Parameters. Applied Sciences, 15(13), 7618. https://doi.org/10.3390/app15137618