Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading
Abstract
1. Introduction
2. Materials and Methods
2.1. Testing Materials
2.2. Experimental Methods
2.2.1. Sample Preparation
2.2.2. Triaxial Tests
2.2.3. Microscopic Tests
3. Results
3.1. Shear Behavior
3.2. Shear Strength qmax
3.3. Cohesion c and Friction Angle φ
3.4. Young’s Modulus E0
3.5. Poisson’s Ratio v and Dilation Angle ψ
4. Discussion
4.1. Microscopic Mechanism of the Mechanical Behavior
4.2. Comparison with the Previous Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
c | cohesion |
d | pore diameter |
dmax | maximum diameter of clay |
D | diameter of sample |
Dc | compaction degree |
E0 | Young’s modulus |
H | height of sample |
Ip | plasticity index |
M | slope of the critical state line |
KC | slope at the contraction phase of volumetric strain-axial strain curve |
KD | slope at the dilation phase of volumetric strain-axial strain curve |
qmax | maximum deviator stress |
q | deviator stress |
S | intercept of the critical state line |
v | Poisson’s ratio |
w | remolding water content |
wd | dry side of optimum water content |
wL | liquid limit |
wopt | optimum water content |
ww | wet side of optimum water content |
σ3 | confining pressure |
ψ | dilation angle |
ρdmax | maximum dry density |
φ | friction angle |
ε1 | axial stress |
εv | volumetric strain |
References
- Sun, M.M.; Huang, Z.G.; Liu, Z.Y.; Liu, G.G.; Hu, C.B.; Liu, J.Y. Experimental and Microscopic Analysis for Impact of Compaction Coefficient on Plastic Strain Characteristic of Soft Clay in Seasonally Frozen Soil Regions. Fractal Fract. 2025, 9, 214. [Google Scholar] [CrossRef]
- Odemis, M.N.; Firat, M.E. Enhancing clay soil stability in seasonal freezing areas through waste cherry marble powder and geotextile reinforcement. Constr. Build. Mater. 2024, 436, 137001. [Google Scholar] [CrossRef]
- Luan, X.H.; Han, L.L. Variation Mechanism and Prediction of Soil-Water Characteristic Curve Parameters of Low Liquid-Limit Silty Clay under Freeze-Thaw Cycles. Appl. Sci. 2022, 12, 10713. [Google Scholar] [CrossRef]
- Shastri, A.; Sánchez, M.; Gai, X.; Lee, M.; Dewer, T. Mechanical behavior of frozen soils: Experimental investigation and numerical modeling. Comput. Geotech. 2021, 138, 104361. [Google Scholar] [CrossRef]
- JTG D30-2015; Specifications for Design of Highway Subgrade. Ministry of Communications, People’s Republic of China: Beijing, China, 2015.
- Delage, P.; Audiguier, M.; Cui, Y.J. Microstructure of a compacted silt. Can. Geotech. J. 1996, 33, 150–158. [Google Scholar] [CrossRef]
- Thom, R.; Sivakumar, R.; Sivakumar, V. Pore size distribution of unsaturated compacted kaolin: The initial states and final states following saturation. Géotechnique 2007, 57, 469–474. [Google Scholar] [CrossRef]
- Tang, C.S.; Pei, X.J.; Wang, D.Y. Tensile strength of compacted clayey soil. J. Geotech. Geoenviron. Eng. 2015, 141, 04014122. [Google Scholar] [CrossRef]
- Chang, X.; Ma, W.; Wang, D. Study on the strength of frozen clay at high confining pressure. Front. Earth Sci. China 2008, 2, 240–242. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, R.; Hu, M.J. Triaxial strength and deformation properties of frozen silty clay under low confining pressure. Rock Soil Mech. 2005, 10, 102–106. [Google Scholar]
- Lai, Y.; Li, S.; Qi, J. Strength distributions of warm frozen clay and its stochastic damage constitutive model. Cold Reg. Sci. Technol. 2008, 53, 200–215. [Google Scholar] [CrossRef]
- Li, S.; Lai, Y.; Zhang, S. An improved statistical damage constitutive model for warm frozen clay based on Mohr–Coulomb criterion. Cold Reg. Sci. Technol. 2009, 57, 154–159. [Google Scholar] [CrossRef]
- Ma, X.J.; Zhang, J.M.; Chang, X.X. Experimental study on creep of warm and ice-rich frozen soil. Chin. J. Geotech. Eng. 2007, 29, 848–852. [Google Scholar]
- Zhang, Y.; Yang, P.; Jiang, W. Effect of water content and strain rate on the strength characteristics of frozen silty clay. J. Zhengzhou Univ. (Eng. Ed.) 2020, 41, 79–84. [Google Scholar]
- Sayles, F.H.; Carbee, D.L. Strength of frozen silt as a function of ice content and dry unit weight. Eng. Geol. 1981, 18, 55–66. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Liu, J.K.; Li, X.; Fang, H.J. Experimental study on the volume and strength change of an unsaturated silty clay upon freezing. Cold Reg. Sci. Technol. 2019, 157, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.; Kuang, H.; Jin, Z.Y. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content. Hydrogeol. Eng. Geol. 2020, 47, 116–124. [Google Scholar]
- ASTM D422–63; Standard Test Method for Particle-Size Analysis of Soils. ASTM: West Conshohocken, PA, USA, 2007.
- ASTM D431; Soil Moisture Content Liquid Limit Plastic Limit Test Set. ASTM: West Conshohocken, PA, USA, 2025.
- ASTM D2487-11; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM: West Conshohocken, PA, USA, 2011.
- ASTM D854-23; Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM: West Conshohocken, PA, USA, 2023.
- ASTM D698-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM D2850-15; Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM: West Conshohocken, PA, USA, 2019.
- Liu, J.K.; Xiao, J.H. Experimental study on the stability of railroad silt subgrade with increasing train speed. J. Geotech. Geoenvironm. Eng. 2010, 136, 833–841. [Google Scholar] [CrossRef]
- Zhang, S.J.; Lai, Y.J.; Sun, Z.Z.; Gao, Z.H. Volumetric strain and strength behavior of frozen soils under confinement. Cold Reg. Sci. Technol. 2007, 47, 263–270. [Google Scholar] [CrossRef]
- Ma, W.; Wu, Z.; Zhang, L.; Chang, X. Analyses of process on the strength decrease in frozen soils under high confining pressures. Cold Reg. Sci. Technol. 1999, 29, 1–7. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Yin, Z. Effect of temperature and strain rate on mechanical characteristics and constitutive model of frozen Helin loess. Cold Reg. Sci. Technol. 2017, 136, 44–51. [Google Scholar] [CrossRef]
- Yang, Y.; Lai, Y.; Chang, X. Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil. Cold Reg. Sci. Technol. 2010, 64, 39–45. [Google Scholar] [CrossRef]
- Gillott, J.E. Fabric of Leda clay investigated by optical, electron-optical and X-ray diffraction methods. Eng. Geol. 1970, 4, 133–153. [Google Scholar] [CrossRef]
- Gillott, J.E. Importance of Specimen Preparation in Microscopy: Soil Preparation for Laboratory Testing; ASTM Special Technical Publication: West Conshohocken, PA, USA, 1976; Volume 599, pp. 289–307. [Google Scholar]
- Shi, B.; Inyang, H.; Chen, J.; Wang, B. Preparation of soil specimens for SEM analysis using freeze-cut-drying. Bull. Eng. Geol. Environ. 1999, 58, 1–7. [Google Scholar] [CrossRef]
- Delage, P.; Marcial, D.; Cui, Y.J.; Ruiz, X. Ageing effects in a compacted bentonite: A microstructure approach. Géotechnique 2006, 56, 291–304. [Google Scholar] [CrossRef]
- Wang, H.L.; Cui, Y.J.; Lamas-Lopez, F.; Calon, N.; Saussine, G.; Dupla, J.C.; Canou, J.; Aimedieu, P.; Chen, R.P. Investigation on the mechanical behavior of track-bed materials at various contents of coarse grains. Constr. Build. Mater. 2018, 164, 228–237. [Google Scholar] [CrossRef]
- Su, Y.; Cui, Y.J.; Dupla, J.C.; Canou, J. Investigation of the effect of water content on the mechanical behavior of track-bed materials under various coarse grain contents. Constr. Build. Mater. 2020, 263, 120206. [Google Scholar] [CrossRef]
- Lamas-Lopez, F. Field and Laboratory Investigation on the Dynamic Behaviour of Conventional Railway Track-Bed Materials in the Context of Traffic Upgrade. Ph.D. Thesis, Ecole Des Ponts Pari Tech, Champs-sur-Marne, France, 2016. [Google Scholar]
- Su, Y.; Cui, Y.J.; Dupla, J.C.; Canou, J. Developing a Sample Preparation Approach to Study the Mechanical Behavior of Unsaturated Fine/Coarse Soil Mixture. Geotech. Test. J. 2021, 44, 912–928. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, X.; Liao, M.; Chang, D. Strength criterion for frozen silty clay considering the effect of initial water content. Cold Reg. Sci. Technol. 2022, 196, 103521. [Google Scholar] [CrossRef]
Soil Type | Index Property | Value |
---|---|---|
Clay soils | Specific gravity, Gs | 2.6 |
Clay content (<2 μm) | 85% | |
Liquid limit, wL | 63% | |
Plastic limit, wP | 26% | |
USUC a classification | CH | |
Optimum water content, wopt | 27.5% | |
Maximum dry density, ρdmax | 1.50 |
Slope k (w ≤ 27.5%) | Slope k (w > 27.5%) | |
---|---|---|
qmax at σ3 = 200 kPa | 0.54 | 1.07 |
qmax at σ3 = 700 kPa | 0.46 | 0.89 |
qmax at σ3 = 1200 kPa | 0.38 | 0.80 |
c | 0.42 | 1.38 |
φ | 0.65 | 0.98 |
E0 | 0.33 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, S.; Liu, J.; Ma, W.; Wang, J.; Bai, H.; Wang, S. Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading. Appl. Sci. 2025, 15, 7590. https://doi.org/10.3390/app15137590
Qi S, Liu J, Ma W, Wang J, Bai H, Wang S. Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading. Applied Sciences. 2025; 15(13):7590. https://doi.org/10.3390/app15137590
Chicago/Turabian StyleQi, Shuai, Jinhui Liu, Wei Ma, Jing Wang, Houwang Bai, and Shaojian Wang. 2025. "Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading" Applied Sciences 15, no. 13: 7590. https://doi.org/10.3390/app15137590
APA StyleQi, S., Liu, J., Ma, W., Wang, J., Bai, H., & Wang, S. (2025). Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading. Applied Sciences, 15(13), 7590. https://doi.org/10.3390/app15137590