Automatic Extraction of Doppler Envelopes for Gait Analysis Using FMCW Radar: A Novel Approach for Spatio-Temporal Parameters Estimation
Abstract
1. Introduction
2. Methods
2.1. FMCW Radar
2.2. FMCW Radar Signal Processing
2.3. Proposed Method
- Foot: Generally, during walking, the foot moves the fastest, so the highest speed is selected.
- Leg: The speed closest to the baseline envelope is selected.
- Spine: Since the spine moves slower than the leg during walking, the smallest speed is selected.
3. Experiments and Result
3.1. Radar and Experimental Processing
3.2. Result
3.2.1. Doppler Envelope
3.2.2. Gait Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Pseudocode of Proposed Doppler Envelope Extraction
Algorithm A1 Pseudocode of Proposed Doppler Envelope Extraction. |
Input: : Denoised Doppler map (velocity vs time), : Number of contour levels (e.g., 7) Output: , , : Estimated velocity envelopes
|
References
- Morris, R.; Lord, S.; Bunce, J.; Burn, D.; Rochester, L. Gait and cognition: Mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci. Biobehav. Rev. 2016, 64, 245–326. [Google Scholar] [CrossRef] [PubMed]
- Hackett, R.A.; Davies-Kershaw, H.; Cadar, D.; Orrell, M.; Steptoe, A. Walking speed, cognitive function and dementia risk in the English longitudinal study of ageing. J. Am. Geriatr. Soc. 2018, 66, 1670–1675. [Google Scholar] [CrossRef] [PubMed]
- Saho, K.; Shioiri, K.; Fujimoto, M.; Kobayashi, Y. Micro-Doppler Radar Gait Measurement to Detect Age- and Fall Risk-Related Differences in Gait: A Simulation Study on Comparison of Deep Learning and Gait Parameter-Based Approaches. IEEE Access 2021, 9, 18518–18526. [Google Scholar] [CrossRef]
- Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function, 2nd ed.; Slack Incorporated: Thorofare, NJ, USA, 2010. [Google Scholar]
- Bohannon, R.W. Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.H.; Rozumalski, A.; Steele, K.M. Gait Analysis: Clinical and Instrumented; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Gholami, F.; Trojan, D.A.; Kövecses, J.; Haddad, W.M.; Gholami, B. A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients. IEEE J. Biomed. Health Inform. 2016, 21, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Guan, L.; Lee, I. Video Analysis of Human Gait and Posture to Determine Neurological Disorders. EURASIP J. Image Video Process. 2008, 2008, 380867. [Google Scholar] [CrossRef]
- Abedi, H.; Boger, J.; Morita, P.P.; Wong, A.; Shaker, G. Hallway Gait Monitoring Using Novel Radar Signal Processing and Unsupervised Learning. IEEE Sens. J. 2022, 22, 15133–15145. [Google Scholar] [CrossRef]
- Seifert, A.K.; Amin, M.G.; Zoubir, A.M. Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures. IEEE Trans. Biomed. Eng. 2019, 66, 2629–2640. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Skubic, M.; Rantz, M.; Cuddihy, P.E. Quantitative Gait Measurement with Pulse-Doppler Radar for Passive In-Home Gait Assessment. IEEE Trans. Biomed. Eng. 2014, 61, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- Quaiyum, F.; Tran, N.; Piou, J.E.; Kilic, O.; Fathy, A.E. Noncontact Human Gait Analysis and Limb Joint Tracking Using Doppler Radar. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 3, 61–70. [Google Scholar] [CrossRef]
- Alshamaa, D.; Soubra, R.; Chkeir, A. A Radar Sensor for Automatic Gait Speed Analysis in Walking Tests. IEEE Sens. J. 2021, 21, 13886–13894. [Google Scholar] [CrossRef]
- Li, H.; Mehul, A.; Le Kernec, J.; Gurbuz, S.Z.; Fioranelli, F. Sequential Human Gait Classification with Distributed Radar Sensor Fusion. IEEE Sens. J. 2020, 21, 7590–7603. [Google Scholar] [CrossRef]
- Wang, D.; Park, J.; Kim, H.J.; Lee, K.; Cho, S.H. Noncontact Extraction of Biomechanical Parameters in Gait Analysis Using a Multi-Input and Multi-Output Radar Sensor. IEEE Access 2021, 9, 138496–138508. [Google Scholar] [CrossRef]
- Seifert, A.K.; Grimmer, M.; Zoubir, A.M. Doppler Radar for the Extraction of Biomechanical Parameters in Gait Analysis. IEEE J. Biomed. Health Inform. 2020, 25, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Saho, K.; Shioiri, K.; Kudo, S.; Fujimoto, M. Estimation of Gait Parameters from Trunk Movement Measured by Doppler Radar. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 461–469. [Google Scholar] [CrossRef]
- Karabacak, C.; Gurbuz, S.Z.; Gurbuz, A.C.; Guldogan, M.B.; Hendeby, G.; Gustafsson, F. Knowledge Exploitation for Human Micro-Doppler Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2125–2129. [Google Scholar] [CrossRef]
- Saho, K.; Uemura, K.; Sugano, K.; Matsumoto, M. Using Micro-Doppler Radar to Measure Gait Features Associated with Cognitive Functions in Elderly Adults. IEEE Access 2019, 7, 24122–24131. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. [Google Scholar]
- Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
Level | 3.1927 | 6.3853 | 9.578 | 12.770 | 15.963 | 19.155 |
MAC | 0.8380 | 0.9671 | 0.9709 | 0.4905 | 0.6309 | 0.6034 |
Parameters | Value |
---|---|
Center frequency | 60 GHz |
Chirp duration | 240 µs |
Sampling frequency | 1.2 MHz |
Scan interval | 50 ms |
Bandwidth | 3 GHz |
Number of channels | 8 |
Subject | Height (cm) | M/F |
---|---|---|
1 | 160 | F |
2 | 170 | F |
3 | 165 | F |
4 | 170 | M |
5 | 180 | M |
Region | Parameter | Conventional (Mean ± Std) | Proposed (Mean ± Std) |
---|---|---|---|
Spine | Speed | 14.94 ± 3.95 | 9.49 ± 10.11 |
StepLength | 2.66 ± 3.31 | 3.65 ± 3.64 | |
StepTime | 7.64 ± 7.16 | 7.67 ± 8.30 | |
StrideLength | 5.24 ± 5.04 | 5.11 ± 5.46 | |
StrideTime | 8.67 ± 8.59 | 10.07 ± 9.34 | |
Leg | Speed | 6.33 ± 5.44 | 1.28 ± 1.96 |
StepLength | 5.46 ± 5.06 | 10.51 ± 8.54 | |
StepTime | 9.39 ± 7.65 | 10.14 ± 5.60 | |
StrideLength | 3.95 ± 3.63 | 8.13 ± 8.77 | |
StrideTime | 7.57 ± 9.58 | 8.10 ± 5.37 | |
Foot | Speed | 8.23 ± 3.76 | 5.10 ± 4.52 |
StepLength | 7.58 ± 3.40 | 3.43 ± 0.86 | |
StepTime | 10.78 ± 7.37 | 7.07 ± 5.58 | |
StrideLength | 6.16 ± 2.86 | 2.29 ± 1.35 | |
StrideTime | 11.25 ± 7.95 | 6.80 ± 7.44 |
Region | Parameter | Mean (Proposed) | Mean (Ground Truth) | p-Value |
---|---|---|---|---|
Spine | Speed | 1.414 | 1.340 | 0.398 |
StepLength | 0.646 | 0.650 | 0.818 | |
StepTime | 0.538 | 0.564 | 0.441 | |
StrideLength | 1.296 | 1.300 | 0.938 | |
StrideTime | 1.068 | 1.110 | 0.613 | |
Leg | Speed | 2.392 | 2.374 | 0.487 |
StepLength | 0.700 | 0.650 | 0.241 | |
StepTime | 0.588 | 0.564 | 0.446 | |
StrideLength | 1.378 | 1.300 | 0.320 | |
StrideTime | 1.150 | 1.118 | 0.563 | |
Foot | Speed | 3.150 | 3.310 | 0.124 |
StepLength | 0.638 | 0.648 | 0.374 | |
StepTime | 0.536 | 0.562 | 0.328 | |
StrideLength | 1.300 | 1.302 | 0.911 | |
StrideTime | 1.080 | 1.126 | 0.448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Shin, H.-C. Automatic Extraction of Doppler Envelopes for Gait Analysis Using FMCW Radar: A Novel Approach for Spatio-Temporal Parameters Estimation. Appl. Sci. 2025, 15, 7446. https://doi.org/10.3390/app15137446
Kim S, Shin H-C. Automatic Extraction of Doppler Envelopes for Gait Analysis Using FMCW Radar: A Novel Approach for Spatio-Temporal Parameters Estimation. Applied Sciences. 2025; 15(13):7446. https://doi.org/10.3390/app15137446
Chicago/Turabian StyleKim, Sumin, and Hyun-Chool Shin. 2025. "Automatic Extraction of Doppler Envelopes for Gait Analysis Using FMCW Radar: A Novel Approach for Spatio-Temporal Parameters Estimation" Applied Sciences 15, no. 13: 7446. https://doi.org/10.3390/app15137446
APA StyleKim, S., & Shin, H.-C. (2025). Automatic Extraction of Doppler Envelopes for Gait Analysis Using FMCW Radar: A Novel Approach for Spatio-Temporal Parameters Estimation. Applied Sciences, 15(13), 7446. https://doi.org/10.3390/app15137446