Standard Calibration and On-Line Estimation of Cell-Specific Growth and Protein Synthesis Rates in Chi.Bio Mini-Bioreactors
Abstract
1. Introduction
2. Materials and Methods
2.1. Chi.Bio Mini-Bioreactor and Cytation 3 Plate Reader
2.2. Experimental Setup
Plasmid
2.3. Calibration Protocols
2.3.1. Optical Density Calibration
2.3.2. Fluorescence Calibration
3. Results
3.1. Automated Optical Density and Fluorescence Calibration Procedure in Chi.Bio
3.2. On-Line Software Sensor for Growth and Protein Synthesis Rates
3.3. Experimental Validation in Batch Cultivation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DBTL | Design Build Test and Learn |
GFP | Green Fluorescent Protein |
MEFL | Molecules of Equivalent Fluorescein |
OD | Optical Density |
References
- Keasling, J.; Garcia Martin, H.; Lee, T.S.; Mukhopadhyay, A.; Singer, S.W.; Sundstrom, E. Microbial production of advanced biofuels. Nat. Rev. Microbiol. 2021, 19, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Chang, J.S.; Herrmann, C.; Xia, A. Bioreactors for Microbial Biomass and Energy Conversion; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Palladino, F.; Marcelino, P.R.F.; Schlogl, A.E.; José, Á.H.M.; Rodrigues, R.d.C.L.B.; Fabrino, D.L.; Santos, I.J.B.; Rosa, C.A. Bioreactors: Applications and Innovations for a Sustainable and Healthy Future—A Critical Review. Appl. Sci. 2024, 14, 9346. [Google Scholar] [CrossRef]
- Mandenius, C.F. Bioreactors: Design, Operation and Novel Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Drobnjakovic, M.; Hart, R.; Kulvatunyou, B.S.; Ivezic, N.; Srinivasan, V. Current challenges and recent advances on the path towards continuous biomanufacturing. Biotechnol. Prog. 2023, 39, e3378. [Google Scholar] [CrossRef] [PubMed]
- De Battista, H.; Jamilis, M.; Garelli, F.; Picó, J. Global stabilisation of continuous bioreactors: Tools for analysis and design of feeding laws. Automatica 2018, 89, 340–348. [Google Scholar] [CrossRef]
- Yamanè, T.; Shimizu, S. Fed-batch techniques in microbial processes. In Bioprocess Parameter Control; Springer: Berlin/Heidelberg, Germany, 1984; pp. 147–194. [Google Scholar]
- Behl, M.; Thakar, S.; Ghai, H.; Sakhuja, D.; Bhatt, A.K. Chapter 21—Fundamentals of fermentation technology. In Basic Biotechniques for Bioprocess and Bioentrepreneurship; Bhatt, A.K., Bhatia, R.K., Bhalla, T.C., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 313–328. [Google Scholar]
- De Battista, H.; Picó, J.; Picó-Marco, E. Nonlinear PI control of fed-batch processes for growth rate regulation. J. Process Control 2012, 22, 789–797. [Google Scholar] [CrossRef]
- Kelly, J.R.; Rubin, A.J.; Davis, J.H.; Ajo-Franklin, C.M.; Cumbers, J.; Czar, M.J.; de Mora, K.; Glieberman, A.L.; Monie, D.D.; Endy, D. Measuring the activity of BioBrick promoters using an in vivo reference standard. J. Biol. Eng. 2009, 3, 4. [Google Scholar] [CrossRef]
- Gnügge, R.; Lale, R.; Siemiatkowska, B. Reproducibility of synthetic gene circuits in closely related bacterial strains. ACS Synth. Biol. 2016, 5, 826–834. [Google Scholar]
- Ceroni, F.; Boo, A.; Furini, S.; Gorochowski, T.E.; Borkowski, O.; Ladak, Y.N.; Awan, A.R.; Gilbert, C.; Stan, G.; Ellis, T. Burden-driven feedback control of gene expression. Nat. Methods 2018, 15, 387–393. [Google Scholar] [CrossRef]
- Oyarzún, D.A.; Lugagne, J.B.; Stan, G.B. Noise propagation in synthetic gene circuits for metabolic control. ACS Synth. Biol. 2015, 4, 116–125. [Google Scholar] [CrossRef]
- Carbonell-Ballestero, M.; Garcia-Ramallo, E.; Montañez, R.; Rodríguez-Caso, C.; Macía, J. Deconvolving gene expression noise into physical dynamics of cell populations. Nat. Commun. 2016, 7, 12424. [Google Scholar]
- Scott, M.; Gunderson, C.W.; Mateescu, E.M.; Zhang, Z.; Hwa, T. Interdependence of cell growth and gene expression. Science 2010, 330, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, D.; Dy, A.J.; Qian, Y. Control theory meets synthetic biology. J. R. Soc. Interface 2016, 13, 20160380. [Google Scholar] [CrossRef] [PubMed]
- Hemmerich, J.; Noack, S.; Wiechert, W.; Oldiges, M. Microbioreactor Systems for Accelerated Bioprocess Development. Biotechnol. J. 2018, 13, 1700141. [Google Scholar] [CrossRef] [PubMed]
- Denton, M.C.; Murphy, N.P.; Norton-Baker, B.; Lua, M.; Steel, H.; Beckham, G.T. Integration of pH control into Chi. Bio reactors and demonstration with small-scale enzymatic poly (ethylene terephthalate) hydrolysis. Biochemistry 2024, 63, 1599–1607. [Google Scholar] [CrossRef]
- Beal, J.; Telmer, C.A.; Vignoni, A.; Boada, Y.; Baldwin, G.S.; Hallett, L.; Lee, T.; Selvarajah, V.; Billerbeck, S.; Brown, B.; et al. Multicolor plate reader fluorescence calibration. Synth. Biol. 2022, 7, ysac010. [Google Scholar] [CrossRef]
- Steel, H.; Habgood, R.; Kelly, C.L.; Papachristodoulou, A. In situ characterisation and manipulation of biological systems with Chi.Bio. PLoS Biol. 2020, 18, 3000794. [Google Scholar] [CrossRef]
- Delvigne, F.; Goffin, P.; Toye, D. Mini-bioreactor platforms: A powerful tool for bioprocess development. Biochem. Eng. J. 2020, 160, 107627. [Google Scholar]
- Szita, N.; Boccazzi, P.; Zang, Y.; Sinskey, A.J. Mini-bioreactor systems for accelerated development of microbial production processes. Curr. Opin. Chem. Eng. 2017, 18, 13–20. [Google Scholar]
- Shin, Y.H.; Gutierrez-Wing, M.T.; Choi, J.W. Recent progress in portable fluorescence sensors. J. Electrochem. Soc. 2021, 168, 017502. [Google Scholar] [CrossRef]
- Telle, H.H.; Ureña, Á.G. Laser Spectroscopy and Laser Imaging: An Introduction; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Müller, K.M.; Arndt, K.M. Standardization in synthetic biology. In Synthetic Gene Networks: Methods and Protocols; Benenson, Y., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 721, pp. 23–43. [Google Scholar]
- Beal, J.; Farny, N.G.; Haddock-Angelli, T.; Selvarajah, V.; Baldwin, G.S.; Buckley-Taylor, R.; Gershater, M.; Kiga, D.; Marken, J.; Sanchania, V.; et al. Robust estimation of bacterial cell count from optical density. Commun. Biol. 2020, 3, 512. [Google Scholar] [CrossRef]
- Beal, J.; Haddock-Angelli, T.; Gershater, M.; de Mora, K.; Lizarazo, M. Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli. PLoS ONE 2016, 11, e0150182. [Google Scholar] [CrossRef]
- Boada, Y.; Vignoni, A.; Alarcon-Ruiz, I.; Andreu-Vilarroig, C.; Monfort-Llorens, R.; Requena, A.; Picó, J. Characterization of gene circuit parts based on multiobjective optimization by using standard calibrated measurements. ChemBioChem 2019, 20, 2653–2665. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, K.; Kananathan, S.; Roberts, M.G.; Meyer, J.P.; Sharif Shohan, M.U.; Xavier, A.; Maire, M.; Zyoud, A.; Men, J.; Ng, S.; et al. Reproducibility in systems biology modelling. Mol. Syst. Biol. 2021, 17, e9982. [Google Scholar] [CrossRef] [PubMed]
- Medley, J.K.; Choi, K.; König, M.; Smith, L.; Gu, S.; Sauro, H.M. Tellurium notebooks—An environment for reproducible dynamical modeling in systems biology. PLoS Comput. Biol. 2018, 14, e1006220. [Google Scholar] [CrossRef] [PubMed]
- Gorin, G.; Vastola, J.J.; Fang, M.; Pachter, L. Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments. Nat. Commun. 2022, 13, 7620. [Google Scholar] [CrossRef]
- Sampaio, N.M.; Blassick, C.M.; Andreani, V.; Lugagne, J.B.; Dunlop, M.J. Dynamic gene expression and growth underlie cell-to-cell heterogeneity in Escherichia coli stress response. Proc. Natl. Acad. Sci. USA 2022, 119, e2115032119. [Google Scholar] [CrossRef]
- James, S.C.; Legge, R.L.; Budman, H. On-line estimation in bioreactors: A review. Rev. Chem. Eng. 2000, 16, 311–340. [Google Scholar] [CrossRef]
- de Assis, A.J.; Filho, R.M. Soft sensors development for on-line bioreactor state estimation. Comput. Chem. Eng. 2000, 24, 1099–1103. [Google Scholar] [CrossRef]
- De Battista, H.; Picó, J.; Garelli, F.; Navarro, J.L. Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms. Bioprocess Biosyst. Eng. 2012, 35, 1615–1625. [Google Scholar] [CrossRef]
- Torres, J.; Reza, V.; Guerrero, J. An Extended Adaptive Generalized Second-Order Algorithm for Simultaneous Estimation of Reaction Rates and an Input Disturbance in Bioprocesses. Int. J. Robust Nonlinear Control 2025. [Google Scholar] [CrossRef]
- Mira, P.; Yeh, P.; Hall, B.G. Estimating microbial population data from optical density. PLoS ONE 2022, 17, 0276040. [Google Scholar] [CrossRef] [PubMed]
- Valencia UPV 2018 IGEM Team. Printeria Part Collection [Online]. 2018. Available online: http://2018.igem.org/Team:Valencia_UPV/Part_Collection (accessed on 21 June 2025).
- IGEM Foundation. Part Registry [Online]. 2006. Available online: https://parts.igem.org (accessed on 15 June 2025).
- Engler, C.; Kandzia, R.; Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 2008, 3, e3647. [Google Scholar] [CrossRef] [PubMed]
- Sarrion-Perdigones, A.; Vazquez-Vilar, M.; Palací, J.; Castelijns, B.; Forment, J.; Ziarsolo, P.; Blanca, J.; Granell, A.; Orzaez, D. GoldenBraid 2.0: A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 2013, 162, 1618–1631. [Google Scholar] [CrossRef] [PubMed]
- iGEM Registry. Part:BBa_K2656105-sfGFP Expression Device (Strong). 2018. Available online: https://parts.igem.org/Part:BBa_K2656105 (accessed on 21 June 2025).
- Díaz-Iza, H.; Arboleda, A.; Boada, Y.; Picó, J.; Vignoni, A. Mini-bioreactor for parts characterization of a biological circuit: Absorbance and Fluorescence measurement calibration, and online growth rate estimation. IFAC-PapersOnLine 2024, 58, 97–102. [Google Scholar] [CrossRef]
- González-Cebrián, A.; Borràs-Ferrís, J.; Boada, Y.; Vignoni, A.; Ferrer, A.; Picó, J. PLATERO: A calibration protocol for plate reader green fluorescence measurements. Front. Bioeng. Biotechnol. 2023, 11, 1104445. [Google Scholar] [CrossRef]
- Morales-Brotons, D.; Vogels, T.; Hendrikx, H. Exponential moving average of weights in deep learning: Dynamics and benefits. arXiv 2024, arXiv:2411.18704. [Google Scholar]
- Busbridge, D.; Ramapuram, J.; Ablin, P.; Likhomanenko, T.; Dhekane, E.G.; Suau Cuadros, X.; Webb, R. How to scale your EMA. Adv. Neural Inf. Process. Syst. 2023, 36, 73122–73174. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Iza, H.J.; Arboleda-García, A.; Boada, Y.; Vignoni, A.; Picó, J. Standard Calibration and On-Line Estimation of Cell-Specific Growth and Protein Synthesis Rates in Chi.Bio Mini-Bioreactors. Appl. Sci. 2025, 15, 7442. https://doi.org/10.3390/app15137442
Díaz-Iza HJ, Arboleda-García A, Boada Y, Vignoni A, Picó J. Standard Calibration and On-Line Estimation of Cell-Specific Growth and Protein Synthesis Rates in Chi.Bio Mini-Bioreactors. Applied Sciences. 2025; 15(13):7442. https://doi.org/10.3390/app15137442
Chicago/Turabian StyleDíaz-Iza, Harold José, Andrés Arboleda-García, Yadira Boada, Alejandro Vignoni, and Jesús Picó. 2025. "Standard Calibration and On-Line Estimation of Cell-Specific Growth and Protein Synthesis Rates in Chi.Bio Mini-Bioreactors" Applied Sciences 15, no. 13: 7442. https://doi.org/10.3390/app15137442
APA StyleDíaz-Iza, H. J., Arboleda-García, A., Boada, Y., Vignoni, A., & Picó, J. (2025). Standard Calibration and On-Line Estimation of Cell-Specific Growth and Protein Synthesis Rates in Chi.Bio Mini-Bioreactors. Applied Sciences, 15(13), 7442. https://doi.org/10.3390/app15137442