The Quest for the Best Explanation: Comparing Models and XAI Methods in Air Quality Modeling Tasks
Abstract
1. Introduction
- How do SHAP and LIME enhance interpretability in AQ models?
- Can feature reduction based on XAI maintain accuracy while improving simplicity and enhancing understanding?
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Machine Learning Methods
2.2.2. Explainability Methods
- f: the original model;
- g: the interpretable surrogate model (i.e., linear regressor);
- πx(z): a proximity measure between the instance x and perturbed sample z ( where Z is the set of samples generated around instance x);
- : a local fidelity loss function that ensures the surrogate model g closely approximates model f in the neighborhood of instance x;
- : a complexity penalty for the model g, promoting interpretability (e.g., sparsity in a linear model).
2.3. Preprocessing
2.4. Feature Engineering and SHAP-Based Feature Reduction
3. Results
3.1. Feature-Related Performance
3.2. Station-Level Results with Feature Engineering and SHAP
3.3. XGBoost Model Feature Importance vs. XAI Methods
4. Discussion
4.1. Feature Reduction and Model Performance
4.2. Interpretability
4.3. Application Considerations
4.4. Limitations
4.5. Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In World Health Organisation Guidelines; World Health Organisation: Geneva, Switzerland, 2021. [Google Scholar]
- Wu, J.; Chen, X.; Li, R.; Wang, A.; Huang, S.; Li, Q.; Qi, H.; Liu, M.; Cheng, H.; Wang, Z. A novel framework for high resolution air quality index prediction with interpretable artificial intelligence and uncertainties estimation. J. Environ. Manag. 2024, 357, 120785. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. Int. 2016, 22, 22408–22417. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.K.; Choi, Y.; Singh, D.; Kayastha, S.G.; Dimri, R.; Park, J. Temporal CNN-based 72-h ozone forecasting in South Korea: Explainability and uncertainty quantification. Atmos. Environ. 2025, 343, 120987. [Google Scholar] [CrossRef]
- He, Z.; Guo, Q. Comparative Analysis of Multiple Deep Learning Models for Forecasting Monthly Ambient PM2.5 Concentrations: A Case Study in Dezhou City, China. Atmosphere 2024, 15, 1432. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Sun, J.; He, Q.; Kong, L.; Liu, X. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm. J. Environ. Health Sci. Eng. 2021, 1, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Doshi-Velez, F.; Kim, B. Towards a Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608. [Google Scholar]
- Molnar, C. Interpretable Machine Learning; Lulu.com: Morrisville, NC, USA, 2020. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Tasioulis, T.; Karatzas, K. Reviewing Explainable Artificial Intelligence towards Better Air Quality Modelling. In Advances and New Trends in Environmental Informatics 2023; Wohlgemuth, V., Kranzlmüller, D., Höb, M., Eds.; Progress in IS; Springer: Cham, Switzerland, 2024; pp. 3–20. ISBN 978-3-031-46901-5. [Google Scholar]
- Zhang, S.; Wu, S.; Liu, Y.; He, K. Cautionary Tales on Air-Quality Improvement in Beijing. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170457. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Shapley, L.S. A Value for n-Person Games. In Contributions to the Theory of Games; Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; Volume II, pp. 307–317. [Google Scholar]
- Poslavskaya, E.; Korolev, A. Encoding Categorical Data: Is There Yet Anything ‘Hotter’ Than One-Hot Encoding? arXiv 2023, arXiv:2312.16930. [Google Scholar]
- Lundberg, S.M.; Erion, G.G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Huang, K.; Wu, Y.; Wang, Y.; Liu, M.; Zhang, M.; Li, Z. Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset. Sci. Rep. 2022, 12, 7166. [Google Scholar] [CrossRef] [PubMed]
- Strumbelj, E.; Kononenko, I. Explaining Prediction Models and Individual Predictions with Feature Contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability of Machine Learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89. [Google Scholar]
- Arya, V.; Bellamy, R.K.E.; Chen, P.Y.; Dhurandhar, A.; Hind, M.; Hoffman, S.C.; Houde, S.; Liao, Q.V.; Luss, R.; Mojsilović, A.; et al. One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques. arXiv 2019, arXiv:1909.03012. [Google Scholar]
- Gunning, D.; Aha, D. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Mag. 2019, 40, 44–58. [Google Scholar]
- Binns, R. Fairness in Machine Learning: Lessons from Political Philosophy. In Proceedings of the Conference on Fairness, Accountability and Transparency (FAT), PMLR, New York, NY, USA, 23–24 February 2018; pp. 149–159. [Google Scholar]
- Verma, S.; Dickerson, J.P.; Hines, K. Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review. ACM Comput. Surv. 2024, 56, 312. [Google Scholar] [CrossRef]
- Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; Lakkaraju, H. Fooling LIME and SHAP: Adversarial Attacks on Post Hoc Explanation Methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, 7–8 February 2020; pp. 180–186. [Google Scholar]
- Alvarez-Melis, D.; Jaakkola, T.S. On the Robustness of Interpretability Methods. arXiv 2018, arXiv:1806.08049. [Google Scholar]
- Campanile, L.; Cocchia, E.; Nappi, M.; Ricciardi, S.; Sessa, S. Ensemble Models for Predicting CO Concentrations: Application and Explainability in Environmental Monitoring in Campania, Italy. Proc. Eur. Counc. Model. Simul. 2024, 38, 558–564. [Google Scholar]
- Jimenez-Navarro, M.J.; Camara, A.; Martinez-Alvarez, F.; Troncoso, A. Explainable Deep Learning on Multi-Target Time Series Forecasting: An Air Pollution Use Case. Results Eng. 2024, 24, 103290. [Google Scholar] [CrossRef]
- Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv. (CSUR) 2021, 54, 115. [Google Scholar] [CrossRef]
- Liu, X.; Peng, B.; Wu, M.; Wang, M. Occupation Prediction with Multimodal Learning from Tweet Messages and Google Street View Images. Agil. GIScience Ser. 2024, 5, 36. [Google Scholar] [CrossRef]
Split Type | Initial Mean R2 | Mean R2 After | Mean Change (%) | Avg Features Before | Avg Features After | Feature Reduction (%) |
---|---|---|---|---|---|---|
Train < 2017/Test ≥ 2017 | 0.935 | 0.934 | −0.08% | 27 | 22.7 | 15.93% |
Random 80/20 Stratified Split | 0.946 | 0.942 | −0.35% | 27 | 22.7 | 15.93% |
Lagged Features on 80/20 Split | 0.963 | 0.963 | +0.06% | 84 | 64.3 | 23.45% |
Station | All Features R2 | SHAP Reduced R2 | Features Removed (Initial 84) | RMSE (%) Change |
---|---|---|---|---|
Aotizhongxin | 0.957 | 0.956 | 22 | +0.6% |
Changping | 0.956 | 0.955 | 19 | +0.75% |
Dingling | 0.973 | 0.974 | 23 | −1.83% |
Dongsi | 0.964 | 0.966 | 20 | −2.36% |
Guanyuan | 0.965 | 0.968 | 20 | −4.66% |
Gucheng | 0.951 | 0.953 | 21 | −2.2% |
Huairou | 0.959 | 0.960 | 20 | −1.83% |
Nongzhanguan | 0.966 | 0.967 | 22 | −0.84% |
Shunyi | 0.965 | 0.965 | 22 | +0.95% |
Tiantan | 0.965 | 0.965 | 20 | +0.52% |
Wanliu | 0.966 | 0.965 | 20 | −1.56% |
Wanshouxigong | 0.958 | 0.957 | 20 | +1.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasioulis, T.; Bagkis, E.; Kassandros, T.; Karatzas, K. The Quest for the Best Explanation: Comparing Models and XAI Methods in Air Quality Modeling Tasks. Appl. Sci. 2025, 15, 7390. https://doi.org/10.3390/app15137390
Tasioulis T, Bagkis E, Kassandros T, Karatzas K. The Quest for the Best Explanation: Comparing Models and XAI Methods in Air Quality Modeling Tasks. Applied Sciences. 2025; 15(13):7390. https://doi.org/10.3390/app15137390
Chicago/Turabian StyleTasioulis, Thomas, Evangelos Bagkis, Theodosios Kassandros, and Kostas Karatzas. 2025. "The Quest for the Best Explanation: Comparing Models and XAI Methods in Air Quality Modeling Tasks" Applied Sciences 15, no. 13: 7390. https://doi.org/10.3390/app15137390
APA StyleTasioulis, T., Bagkis, E., Kassandros, T., & Karatzas, K. (2025). The Quest for the Best Explanation: Comparing Models and XAI Methods in Air Quality Modeling Tasks. Applied Sciences, 15(13), 7390. https://doi.org/10.3390/app15137390