Tensioned Multi-View Ordered Kernel Subspace Clustering
Abstract
1. Introduction
- In the high-dimensional kernel feature space, the inner product of the vector is expanded by the sequential kernel function.
- The missing samples are completed with the sequential kernel matrix calculation so as to implicitly map the nonlinear samples to high-dimensional kernel features.
- The tensioned kernel representation not only realizes the linear transformation for the nonlinear data but also mines the high-order correlations among views with tensor transformation.
2. Incomplete Multi-View Subspace Clustering
3. The Proposed TMOKSC Algorithm
3.1. Multi-View Ordered Kernel Subspace Clustering Based on Tensor
- (1)
- Non-negativity:
- (2)
- Symmetry:
3.2. The Optimization Algorithm
3.2.1. Solve
3.2.2. Solve
3.2.3. Solve
Algorithm 1 TMOKSC |
Input: Incomplete multi-view data samples X, the balancing parameters Output: Incomplete Multi-view subspace clustering result Step 1: Preprocess the Incomplete multi-view data samples X by Equation (3), and calculate their multi-view kernels by Equation (6) Step 2: Initialize , multiply and give the maximum number of iterations Step 3: Solve the following with ADMM: While ( and ) 1. Setting others, solve using Equation (14) 2. Setting others, solve using Equation (16) 3. Setting others, solve using Equation (18) 4. Update multiples by the formula 5. Renew variables End while Step 4: Calculate the affinity matrix with weight Step 5: Get cluster result with N-cut |
4. Experiments
4.1. Experiments of Multi-View Face Images Datasets
4.2. Experiments on Multi-View News Datasets
4.3. Experiments on Multi-View Object Image Datasets
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TMOKSC | Tensioned Multi-view Ordered Kernel Subspace Clustering |
TIMKSC | Tensioned Incomplete Multi-View Kernel Space Clustering |
WMSC | Weighted Multi-view spectral clustering based on spectral perturbation |
AASC | Affinity aggregation for spectral clustering |
AWP | Multi-view Clustering via Adaptively Weighted Procrustes |
SSC | Sparse Subspace Clustering |
References
- Wei, L.; Li, K.; Zhou, R.; Liu, J. Purely Contrastive Multiview Subspace Clustering. IEEE Trans. Cybern. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yesong, X.; Shuo, C.; Jun, L.; Yang, J. Metric Learning-Based Subspace Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 10491–10503. [Google Scholar]
- Zhu, Y.; Li, X.; Xiu, X.; Liu, W.; Yin, C. Robust and stochastic sparse subspace clustering. Neurocomputing 2025, 611, 128703. [Google Scholar] [CrossRef]
- Zhao, S.; Cui, Z.; Wu, L.; Xu, Y.; Zuo, Y.; Fei, L. Salient and consensus representation learning based incomplete multiview clustering. Appl. Intell. 2023, 53, 2723–2737. [Google Scholar] [CrossRef]
- Zong, L.; Zhang, X.; Liu, X.; Yu, H. Weighted Multiview spectral clustering based on spectral perturbation. In Proceeding of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 4621–4628. [Google Scholar]
- Huang, H.C.; Chuang, Y.Y.; Chen, C.S. Affinity aggregation for spectral clustering. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012. [Google Scholar] [CrossRef]
- Nie, F.; Tian, L.; Li, X. Multiview Clustering via Adaptively Weighted Procrustes. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1990–1998. [Google Scholar] [CrossRef]
- Mitra, S.; Saha, S.; Hasanuzzaman, M. Multi-view clustering for multi-omics data using unified embedding. Sci. Rep. 2020, 10, 13654. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, J.; Dai, Q. Incomplete multiview subspace clustering algorithm based on self-representation and consistent learning. In Proceedings of the 2023 4th International Conference on Computer Engineering and Application (ICCEA), Hangzhou, China, 7–9 April 2023. [Google Scholar]
- Chen, J.; Yang, S.; Peng, X.; Peng, D.; Wang, Z. Augmented Sparse Representation for Incomplete Multiview Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 4058–4071. [Google Scholar] [CrossRef]
- Jie, W.; Yong, X.; Hong, L. Incomplete Multiview Spectral Clustering with Adaptive Graph Learning. IEEE Trans. Cybern. 2020, 50, 1418–1429. [Google Scholar]
- Xu, C.; Liu, H.; Guan, Z.; Wu, X.; Tan, J.; Ling, B. Adversarial Incomplete Multiview Subspace Clustering Networks. IEEE Trans. Cybern. 2022, 52, 10490–10503. [Google Scholar] [CrossRef]
- Xing, L.; Zheng, X.; Lu, Y.; Chen, B. Incomplete multi-view subspace clustering based on robust matrix completion. Neurocomputing 2025, 621, 129240. [Google Scholar] [CrossRef]
- Guo, X.; Lu, G.-F. Comprehensive Consensus Representation Learn-Ing for Incomplete Multi-View Subspace Clustering. Inf. Sci. 2024, 678, 120935. [Google Scholar] [CrossRef]
- Liang, N.; Yang, Z.; Li, L.; Li, Z.; Xie, S. Incomplete Multiview Clustering with Cross-View Feature Transformation. IEEE Trans. Artif. Intell. 2022, 3, 749–762. [Google Scholar] [CrossRef]
- Li, A.; Wang, Z.; Xi, L.; Zhang, Y.; Jiang, H. Multiple Kernel Low-Redundant Representation Learning Based Incomplete Multiview Subspace Clustering. SSRN 2023. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Wang, S. A Multi-view Kernel Clustering framework for Categorical sequences. Expert Syst. Appl. 2022, 197, 116637. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Wang, S. Towards Robust Nonlinear Subspace Clustering: A Kernel Learning Approach. IEEE Trans. Artif. Intell. 2025. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, T.; Li, H.; Salzmann, M.; Reid, I. Deep Subspace Clustering Networks. arXiv 2017, arXiv:1709.02508. ttps://doi.org/10.48550/arXiv.1709.02508. [Google Scholar]
- Wen, J.; Zhang, Z.; Li, Z.J. A Survey on Incomplete Multiview Clustering. IEEE Trans. Syst. Man Cybern. Systems 2023, 53 Pt 2, 11. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Chen, C.; Jia, X.; Chen, C. Low-Rank Tensor Regularized Views Recovery for Incomplete Multiview Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 9312–9324. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Mao, H.; Peng, X. Low-Rank Tensor Learning for Incomplete Multiview Clustering. IEEE Trans. Knowl. Data Eng. 2022, 35, 11556–11569. [Google Scholar] [CrossRef]
- Lv, Z.; Gao, Q.; Zhang, X.; Li, Q.; Yang, M. View-Consistency Learning for Incomplete Multiview Clustering. IEEE Trans. Image Process. 2022, 31, 4790–4802. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, J.; Qu, Y.; Tao, D.; Zhang, W.; Dai, L.; Ma, L. Robust Kernelized Multiview Self-Representation for Subspace Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 868–881. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Huang, D.; Wang, C.D. Tensorized Incomplete Multi-view Kernel Subspace Clustering. Neural Netw. 2024, 179, 106529. [Google Scholar] [CrossRef] [PubMed]
- Kilmer, M.E.; Martin, C.D. Factorization strategies for third-order tensors–ScienceDirect. Linear Algebra Its Appl. 2011, 435, 641–658. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Zhang, Y.; Zhang, P.; Tu, W.; Wang, S.; Zhou, S.; Liang, W.; Wang, S.; Yang, Y. Self-representation subspace clustering for incomplete multi-view data. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 2726–2734. [Google Scholar]
- Yin, J.; Sun, S. Incomplete multi-view clustering with cosine similarity. Pattern Recognit. J. Pattern Recognit. Soc. 2022, 123, 108371. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Zhou, Y.R.; He, X.Y.; Wang, C.D.; Huang, D. One step kernel multi-view subspace clustering. Knowl.-Based Syst. 2019, 189, 105126. [Google Scholar] [CrossRef]
- Liang, Y.W.; Huang, D.; Wang, C.D.; Yu, P.S. Multi-view graph learning by joint modeling of consistency and inconsistency. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 2848–2862. [Google Scholar] [CrossRef]
Characteristics | Methods | All Kinds of Incomplete Case | Kernel Functions | Existence of Tensor Structures |
---|---|---|---|---|
DSCN | Deep Networks | Partily | convolutional kernels | Yes |
WMSC | Spectral Perturbation | No | No | No |
AASC | Affinity Aggregation | No | No | No |
AWP | Adaptively Weighted Procrustes | No | No | No |
TIMKSC | Tensioned Incomplete Multi-View Kernel Space Clustering | Yes | Multi-kernels | Yes |
YALE Missing Rate | WMSC | AASC | AWP | TIMKSC | TMOKSC |
---|---|---|---|---|---|
0.1 | |||||
0.2 | |||||
0.3 | |||||
0.4 | |||||
0.5 | |||||
0.6 | |||||
0.7 |
YALE Missing Rate | WMSC | AASC | AWP | TIMKSC | TMOKSC |
---|---|---|---|---|---|
0.1 | |||||
0.2 | |||||
0.3 | |||||
0.4 | |||||
0.5 | |||||
0.6 | |||||
0.7 |
ORL Missing Rate | WMSC | AASC | AWP | DSCN | TIMKSC | TMOKSC |
---|---|---|---|---|---|---|
0.1 | 70 | |||||
0.2 | 58.50 | |||||
0.3 | 53.25 | |||||
0.4 | 44.50 | |||||
0.5 | 33.25 |
ORL Missing Rate | WMSC | AASC | AWP | DSC | TIMKSC | TMOKSC |
---|---|---|---|---|---|---|
0.1 | 80.09 | |||||
0.2 | 70.53 | |||||
0.3 | 65.30 | |||||
0.4 | 53.88 | |||||
0.5 | 48.57 |
Reuters Missing Rate | WMSC | AASC | AWP | TIMKSC | TMOKSC |
---|---|---|---|---|---|
0.1 | |||||
0.2 | |||||
0.3 | |||||
0.4 | |||||
0.5 |
Reuters Missing Rate | WMSC | AASC | AWP | TIMKSC | TMOKSC |
---|---|---|---|---|---|
0.1 | |||||
0.2 | |||||
0.3 | |||||
0.4 | |||||
0.5 |
COIL 20 Missing Rate | WMSC | AASC | AWP | DSCN | TIMKSC | TMOKSC |
---|---|---|---|---|---|---|
0.1 | 73.40 | |||||
0.2 | 66.74 | |||||
0.3 | 49.38 | |||||
0.4 | 45 | |||||
0.5 | 32.92 |
COIL 20 Missing Rate | WMSC | AASC | AWP | DSCN | TIMKSC | TMOKSC |
---|---|---|---|---|---|---|
0.1 | 81.99 | |||||
0.2 | 73.72 | |||||
0.3 | 62,77 | |||||
0.4 | 55.39 | |||||
0.5 | 44.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Guo, G. Tensioned Multi-View Ordered Kernel Subspace Clustering. Appl. Sci. 2025, 15, 7251. https://doi.org/10.3390/app15137251
Chen L, Guo G. Tensioned Multi-View Ordered Kernel Subspace Clustering. Applied Sciences. 2025; 15(13):7251. https://doi.org/10.3390/app15137251
Chicago/Turabian StyleChen, Liping, and Gongde Guo. 2025. "Tensioned Multi-View Ordered Kernel Subspace Clustering" Applied Sciences 15, no. 13: 7251. https://doi.org/10.3390/app15137251
APA StyleChen, L., & Guo, G. (2025). Tensioned Multi-View Ordered Kernel Subspace Clustering. Applied Sciences, 15(13), 7251. https://doi.org/10.3390/app15137251