An Overview of Theoretical, Numerical and Experimental Studies on Clean Energy and Combustion
1. Introduction
2. Alternative Fuels in Aviation and Engines
3. Combustion Dynamics and Modeling
4. Thermoacoustic and Turbulent Combustion
5. Catalyst and Emission Control
6. Conclusions
Funding
Conflicts of Interest
References
- Villette, S.; Alexiou, A.; Aretakis, N.; Mathioudakis, K. Expanding Known Performance Capabilities of Geared Turbofan Engine When Powered by LNG and Methanol. Aerospace 2025, 12, 96. [Google Scholar] [CrossRef]
- Janovec, M.; Babčan, V.; Kandera, B.; Šajbanová, K.; Škultéty, F.; Halvoň, Ľ. Performance and Weight Parameters Calculation for Hydrogen- and Battery-Powered Aircraft Concepts. Aerospace 2023, 10, 482. [Google Scholar] [CrossRef]
- Aljabri, H.; Silva, M.; Houidi, M.B.; Liu, X.; Allehaibi, M.; Almatrafi, F.; AlRamadan, A.S.; Mohan, B.; Cenker, E.; Im, H.G. Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach. Energies 2022, 15, 8951. [Google Scholar] [CrossRef]
- Garzón, N.A.N.; Oliveira, A.A.M.; Bazzo, E. Heat Release Rates of Straight Soybean and Diesel Oil Blends in a Compression Ignition Engine. Appl. Sci. 2024, 14, 9215. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Q.; Jin, X.; Deng, L. The Influence of Co-Firing Coal with Biomass Syngas on the Thermodynamic Parameters of a Boiler. Appl. Sci. 2023, 13, 11477. [Google Scholar] [CrossRef]
- Xu, X.; Han, Q.; Zhang, Y. Numerical Investigation of the Effect of Equivalent Ratio on Detonation Characteristics and Performance of CH4/O2 Rotating Detonation Rocket Engine. Aerospace 2025, 12, 68. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Luo, K.; Fan, J. The Effects of Cracking Ratio on Ammonia/Air Non-Premixed Flames under High-Pressure Conditions Using Large Eddy Simulations. Energies 2023, 16, 6985. [Google Scholar] [CrossRef]
- Gong, Z.; Tang, H. Numerical Study of High-g Combustion Characteristics in a Channel with Backward-Facing Steps. Aerospace 2024, 11, 767. [Google Scholar] [CrossRef]
- Martinez-Sanchis, D.; Sternin, A.; Haidn, O.; Tajmar, M. Combustion Regimes in Turbulent Non-Premixed Flames for Space Propulsion. Aerospace 2023, 10, 671. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, Y.; Yin, P.; Mao, W.; Zhang, P. Numerical Investigation on the Flame Characteristics of Lean Premixed Methane Flame Piloted with Rich Premixed Flame. Energies 2024, 17, 3430. [Google Scholar] [CrossRef]
- Kutkut, A.; Ayoobi, M.; Baumgardner, M.E.; Akkerman, V. Investigating the Ignition and Stability Limits of Premixed Methane/Air Combustion in Micro-Channels. Energies 2023, 16, 6752. [Google Scholar] [CrossRef]
- Dias, D.M.; Resende, P.R.; Afonso, A.M. A Review on Micro-Combustion Flame Dynamics and Micro-Propulsion Systems. Energies 2024, 17, 1327. [Google Scholar] [CrossRef]
- Huang, K.; Valiev, D.M.; Zhong, H.; Han, W. Numerical Study of the Influence of the Thermal Gas Expansion on the Boundary Layer Flame Flashback in Channels with Different Wall Thermal Conditions. Energies 2023, 16, 1844. [Google Scholar] [CrossRef]
- Gitushi, K.M.; Echekki, T. Comparisons of Different Representative Species Selection Schemes for Reduced-Order Modeling and Chemistry Acceleration of Complex Hydrocarbon Fuels. Energies 2024, 17, 2604. [Google Scholar] [CrossRef]
- Alqahtani, S.; Gitushi, K.M.; Echekki, T. A Data-Based Hybrid Chemistry Acceleration Framework for the Low-Temperature Oxidation of Complex Fuels. Energies 2024, 17, 734. [Google Scholar] [CrossRef]
- Tao, C.; Sun, R.; Wang, Y.; Zhang, L.; Ye, J.; Liang, S. The Effects of Parameter Settings on Triggering Time and Climb Rate during Lean-Premixed Combustion Thermoacoustic Oscillations. Appl. Sci. 2024, 14, 806. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Xing, L.; Cheng, X.; Zhang, X.; Li, H.; Liu, M. Effect of Zr Modification on NH3-SCR Reaction Performance of Cu-Ce/SAPO-34 Catalysts. Appl. Sci. 2023, 13, 4763. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resende, P.R.; Ayoobi, M.; Afonso, A.M. An Overview of Theoretical, Numerical and Experimental Studies on Clean Energy and Combustion. Appl. Sci. 2025, 15, 7177. https://doi.org/10.3390/app15137177
Resende PR, Ayoobi M, Afonso AM. An Overview of Theoretical, Numerical and Experimental Studies on Clean Energy and Combustion. Applied Sciences. 2025; 15(13):7177. https://doi.org/10.3390/app15137177
Chicago/Turabian StyleResende, Pedro R., Mohsen Ayoobi, and Alexandre M. Afonso. 2025. "An Overview of Theoretical, Numerical and Experimental Studies on Clean Energy and Combustion" Applied Sciences 15, no. 13: 7177. https://doi.org/10.3390/app15137177
APA StyleResende, P. R., Ayoobi, M., & Afonso, A. M. (2025). An Overview of Theoretical, Numerical and Experimental Studies on Clean Energy and Combustion. Applied Sciences, 15(13), 7177. https://doi.org/10.3390/app15137177