A Review of the Impact of Spontaneous Combustion on Slope Stability in Coal Mine Waste Dumps
Abstract
1. Introduction
2. Mechanisms of Spontaneous Combustion in Coal Mine Waste Dumps
- -
- Coal Rank: higher-rank coals (e.g., anthracite) have lower susceptibility to spontaneous combustion than low-rank coals (e.g., lignite). Coal is a porous material characterized by a complex structure with numerous active sites on its surface. These sites can continuously adsorb oxygen molecules from the surrounding air. During this process, coal undergoes low-temperature oxidation, which results in the gradual release of gaseous products and heat. Under certain conditions—such as restricted ventilation, high ambient temperatures, and sufficient coal mass—this heat can accumulate faster than it dissipates. As a result, the temperature of the coal gradually rises, potentially reaching the critical threshold at which spontaneous combustion occurs [47,48,49,50,51,52,53,54].
- -
- Particle Size: fine coal particles with an increased surface area are more prone to oxidation. The particle size and porosity of coal significantly influence its specific surface area. A larger specific surface area enhances the contact between coal and oxygen, thereby increasing both the reaction rate and the efficiency of heat transfer. As the particle size decreases, the likelihood of spontaneous heating increases; studies have shown that a reduction in particle size can raise this tendency by approximately 12–14% [13,52,55,56,57,58,59,60].
- -
- -
- Ambient conditions: high ambient temperatures and oxygen availability accelerate self-heating [19,73,74,75,76,77,78,79]. Additionally, external heat sources, such as wildfires, human activities such as the removal/reconstruction of the mine waste dump or wind flow, delivering air to the self-heating cells, can initiate combustion [22,80,81,82,83,84].
3. Thermal Effects on Geotechnical Properties
4. Monitoring and Mitigation Strategies Combating Spontaneous Combustion
4.1. Monitoring Techniques
4.2. Mitigation Strategies
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NIK—Najwyższa Izba Kontroli (Supreme Audit Office). Securing and Managing Post-Mining Waste Dumps 2019. Available online: https://www.nik.gov.pl/kontrole/P/18/067/ (accessed on 18 June 2025). (In Polish)
- GUS—Główny Urząd Statystyczny (Central Statistical Office). Environmental Protection; Statistical Information and Studies; Statistical Publishing House: Warsaw, Poland, 2012. [Google Scholar]
- Wasilewski, S. Monitoring the thermal and gaseous activity of coal waste dumps. Environ. Earth Sci. 2020, 79, 474. [Google Scholar] [CrossRef]
- Peck, P. Risk Assessment Considerations in the Donetsk Basin; Mine Closure and Spoil Dumps; The Environment & Security Initiative (ENVSEC): Arendal, Norway, 2009. [Google Scholar]
- Querol, X.; Zhuang, X.; Font, O.; Izquierdo, M.; Alastuey, A.; Castro, I.; van Drooge, B.L.; Moreno, T.; Grimalt, J.O.; Elvira, J.; et al. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. Int. J. Coal Geol. 2011, 85, 2–22. [Google Scholar] [CrossRef]
- Pan, R.-K.; Yu, M.-G.; Lu, L.-X. Experimental study on explosive mechanism of spontaneous combustion gangue dump. J. Coal Sci. Eng. 2009, 15, 394–398. [Google Scholar] [CrossRef]
- Zhai, X.; Wu, S.; Wang, K.; Drebenstedt, C.; Zhao, J. Environment influences and extinguish technology of spontaneous combustion of coal gangue heap of Baijigou Coal Mine in China. Energy Procedia 2017, 136, 66–72. [Google Scholar] [CrossRef]
- Song, W.; Zhang, J.; Li, M.; Yan, H.; Zhou, N.; Yao, Y.; Guo, Y. Underground Disposal of Coal Gangue Backfill in China. Appl. Sci. 2022, 12, 12060. [Google Scholar] [CrossRef]
- Dokoupilová, P.; Sracek, O.; Losos, Z. Geochemical behaviour and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Miner. Mag. 2007, 71, 443–460. [Google Scholar] [CrossRef]
- Žáček, V.; Skála, R. Chapter 5—Mineralogy of Burning-Coal Waste Piles in Collieries of the Czech Republic. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 109–159. [Google Scholar] [CrossRef]
- Sýkorová, I.; Kříbek, B.; Havelcová, M.; Machovič, V.; Špaldoňová, A.; Lapčák, L.; Knésl, I.; Blažek, J. Radiation- and self-ignition induced alterations of Permian uraniferous coal from the abandoned Novátor mine waste dump (Czech Republic). Int. J. Coal Geol. 2016, 168, 162–178. [Google Scholar] [CrossRef]
- Kříbek, B.; Sýkorová, I.; Veselovský, F.; Laufek, F.; Malec, J.; Knésl, I.; Majer, V. Trace element geochemistry of self-burning and weathering of a mineralized coal waste dump: The Novátor mine, Czech Republic. Int. J. Coal Geol. 2017, 173, 158–175. [Google Scholar] [CrossRef]
- Day, S.; Bainbridge, N.; Carras, J.; Lilley, W.; Roberts, C.; Saghafi, A.; Williams, D. Spontaneous Combustion in Open-Cut Coal Mines: Australian Experience and Research. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 3, pp. 2–36. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int. J. Coal Geol. 2008, 73, 52–62. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, Y.; Zhao, X.; Yang, N.; Wang, Z.; Guo, Z.; Tong, J.; Zhang, Y.; Liu, Z. Temperature Distribution Regularity and Dynamic Evolution of Spontaneous Combustion Coal Gangue Dump: Case Study of Yinying Coal Mine in Shanxi, China. Sustainability 2023, 15, 6362. [Google Scholar] [CrossRef]
- Zhang, Y.; Nakano, J.; Liu, L.; Wang, X.; Zhang, Z. Trace element partitioning behavior of coal gangue-fired CFB plant: Experimental and equilibrium calculation. Environ. Sci. Pollut. Res. 2015, 22, 15469–15478. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Li, Z.; Yang, Y.; Liu, Z.; Yan, D. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. Res. 2017, 24, 23453–23470. [Google Scholar] [CrossRef] [PubMed]
- Onifade, M.; Genc, B. A review of spontaneous combustion studies—South African context. Int. J. Min. Reclam. Environ. 2018, 33, 527–547. [Google Scholar] [CrossRef]
- Onifade, M.; Genc, B. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 2020, 30, 303–311. [Google Scholar] [CrossRef]
- Ciesielczuk, J. Coal Mining and Combustion in the Coal Waste Dumps of Poland. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 3, pp. 464–473. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Fabiańska, M.J.; Misz-Kennan, M.; Ciesielczuk, J.; Kowalski, A. Investigation of organic material self-heating in oxygen-depleted condition within a coal-waste dump in Upper Silesia Coal Basin, Poland. Environ. Sci. Pollut. Res. 2020, 27, 8285–8307. [Google Scholar] [CrossRef]
- Smoliński, A.; Dombek, V.; Pertile, E.; Drobek, L.; Gogola, K.; Żechowska, S.W.; Magdziarczyk, M. An analysis of self-ignition of mine waste dumps in terms of environmental protection in industrial areas in Poland. Sci. Rep. 2021, 11, 8851. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Abramowicz, A.; Fabiańska, M.; Misz-Kennan, M.; Ciesielczuk, J. Classification of fires in coal waste dumps based on Landsat, Aster thermal bands and thermal camera in Polish and Ukrainian mining regions. Int. J. Coal Sci. Technol. 2021, 8, 441–456. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R. Environmental Management and Landscape Transformation on Self-Heating Coal-Waste Dumps in the Upper Silesian Coal Basin. Land 2021, 10, 23. [Google Scholar] [CrossRef]
- Chand, K.; Koner, R. Mine Waste Dump Stability Monitoring Using the Combination of Drone Technology and 3D Numerical Modelling. In Proceedings of the International Conference on Environmental Geotechnology, Recycled Waste Materials and Sustainable Engineering, Jalandhar, India, 11–14 June 2025; Agnihotri, A.K., Reddy, K.R., Bansal, A., Eds.; Sustainable Infrastructures; Lecture Notes in Civil Engineering. Springer: Singapore, 2025; Volume 355. [Google Scholar] [CrossRef]
- Liu, C.; Shi, B.; Shao, Y.; Tang, C. Experimental and numerical investigation of the effect of the urban heat island on slope stability. Bull. Eng. Geol. Environ. 2013, 72, 303–310. [Google Scholar] [CrossRef]
- Liu, G.; Tong, F.; Tian, B.; Tian, W. Influence of atmospheric temperature on shallow slope stability. Environ. Earth Sci. 2019, 78, 632. [Google Scholar] [CrossRef]
- Rodríguez, S.; Puig-Polo, C.; Lloret, A.; Vaunat, J.; Hürlimann, M. Effect of climate change on slope stability: A numerical analysis using predictions of the Catalan Pyrenees. In International Society for Soil Mechanics and Geotechnical Engineering Online Library, Proceedings of the 13th International Symposium on Landslides (XIII ISL), Cartagena, Colombia, 22–26 February 2021; International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE): London, UK, 2021; pp. 1–8. [Google Scholar]
- Thota, S.K.; Vahedifard, F. Stability analysis of unsaturated slopes under elevated temperatures. Eng. Geol. 2021, 293, 106317. [Google Scholar] [CrossRef]
- Bai, G. Study on Thermodynamic Characteristics and Heat Transfer Method of Uncontrolled Fire in Coal Mine Gangue Mountain Spontaneous Combustion Based on System Dynamics. Comput. Intell. Neurosci. 2022, 2022, 5953322. [Google Scholar] [CrossRef] [PubMed]
- Bračko, T.; Žlender, B.; Jelušič, P. Implementation of Climate Change Effects on Slope Stability Analysis. Appl. Sci. 2022, 12, 8171. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.; Li, D.; Wang, N. Response of thermal conductivity of loess after high temperature in northern Shaanxi burnt rock area, China. Environ. Sci. Pollut. Res. 2023, 30, 33475–33484. [Google Scholar] [CrossRef]
- Bakun-Mazor, D. Rock slope stability under temperature fluctuations. In Avantgarde Reliability Implications in Civil Engineering; Hassan, M., Ed.; Intech Open: London, UK, 2023. [Google Scholar] [CrossRef]
- Yang, S.-R.; Chang, R.-E.; Yang, Y.-S.; Yeh, H.-F. Environmental Temperature Effect on Hydraulic Behavior and Stability of Shallow Slopes. Environments 2023, 10, 134. [Google Scholar] [CrossRef]
- Loche, M.; Scaringi, G. Temperature and shear-rate effects in two pure clays: Possible implications for clay landslides. Results Eng. 2023, 20, 101647. [Google Scholar] [CrossRef]
- Psarropoulos, P.N.; Makrakis, N.; Tsompanakis, Y. Climate Change Impact on the Stability of Soil Slopes from a Hydrological and Geotechnical Perspective. GeoHazards 2024, 5, 1190–1206. [Google Scholar] [CrossRef]
- Loche, M.; Scaringi, G. Assessing the influence of temperature on slope stability in a temperate climate: A nationwide spatial probability analysis in Italy. Environ. Model. Softw. 2025, 183, 106217. [Google Scholar] [CrossRef]
- Abbate, A.; Longoni, L.; Ivanov, V.I.; Papini, M. Wildfire Impacts on Slope Stability Triggering in Mountain Areas. Geosciences 2019, 9, 417. [Google Scholar] [CrossRef]
- Araújo Santos, L.M.; Correia, A.J.P.M.; Coelho, P.A.L.F. Post-wildfire slope stability effects and mitigation: A case study from hilly terrains with unmanaged forest. SN Appl. Sci. 2020, 2, 1883. [Google Scholar] [CrossRef]
- Li, Y.; Wakai, A.; Costa, S. Bushfire effects on soil properties and post-fire slope stability: The case of the 2015 Wye River-Jamieson Track bushfire. Nat. Hazards Earth Syst. Sci. Discuss. 2024, preprint. [Google Scholar] [CrossRef]
- Sipilä, J.; Auerkari, P.; Heikkilä, A.-M.; Tuominen, R.; Vela, I.; Itkonen, J.; Rinne, M.; Aaltonen, K. Risk and mitigation of self-heating and spontaneous combustion in underground coal storage. J. Loss Prev. Process. Ind. 2012, 25, 617–622. [Google Scholar] [CrossRef]
- Xiao, Y.; Ren, S.-J.; Deng, J.; Shu, C.-M. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel 2018, 227, 325–333. [Google Scholar] [CrossRef]
- Różański, Z. Fire hazard in coal waste dumps—Selected aspects of the environmental impact. IOP Conf. Ser. Earth Environ. Sci. 2018, 174, 012013. [Google Scholar] [CrossRef]
- Onifade, M.; Genc, B.; Gbadamosi, A.R.; Morgan, A.; Ngoepe, T. Influence of antioxidants on spontaneous combustion and coal properties. Process. Saf. Environ. Prot. 2021, 148, 1019–1032. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Yang, Z.; Yu, J.; Liu, Y.; Wang, H.; Barakat, N.A.M. Division of coal spontaneous combustion stages and selection of indicator gases. PLoS ONE 2022, 17, e0267479. [Google Scholar] [CrossRef]
- Kuna-Gwoździewicz, P. Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps. J. Sustain. Min. 2013, 12, 7–12. [Google Scholar] [CrossRef]
- Jo, W.; Choi, H.; Kim, S.; Yoo, J.; Chun, D.; Rhim, Y.; Lim, J.; Lee, S. A comparison of spontaneous combustion susceptibility of coal according to its rank. Korean J. Chem. Eng. 2013, 30, 1034–1038. [Google Scholar] [CrossRef]
- Mohalik, N.K.; Lester, E.; Lowndes, I.S. Review of experimental methods to determine spontaneous combustion susceptibility of coal—Indian context. Int. J. Min. Reclam. Environ. 2017, 31, 301–332. [Google Scholar] [CrossRef]
- Saffari, A.; Sereshki, F.; Ataei, M.; Ghanbari, K. Presenting an engineering classification system for coal spontaneous combustion potential. Int. J. Coal Sci. Technol. 2017, 4, 110–128. [Google Scholar] [CrossRef]
- Basu, S.; Pramanik, S.; Dey, S.; Panigrahi, G.; Jana, D.K. Fire monitoring in coal mines using wireless underground sensor network and interval type-2 fuzzy logic controller. Int. J. Coal Sci. Technol. 2019, 6, 274–285. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Choudhury, D. Spontaneous Combustion in Relation to Drying of Low Rank Coal. Int. J. Coal Prep. Util. 2020, 42, 1435–1448. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Kozielska, B.; Abramowicz, A.; Fabiańska, M.; Ciesielczuk, J.; Cabała, J.; Krzykawski, T. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). J. Hazard. Mater. 2021, 412, 125244. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, X.; Zhang, Y.; Zhang, Y.; Ma, Q. Numerical simulation study on coal spontaneous combustion: Effect of porosity distribution. Combust. Sci. Technol. 2023, 195, 472–493. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Krzykawski, T.; Jabłońska, M.; Fabiańska, M.; Skrzyńska, K.; Abramowicz, A.; Książek, M.; Ciesielczuk, J. Organic minerals in a self-heating coal-waste dump in Upper Silesia, Poland: Structure, formation pathways and environmental issues. Int. J. Coal Geol. 2024, 281, 104403. [Google Scholar] [CrossRef]
- Gogola, K.; Rogala, T.; Magdziarczyk, M.; Smoliński, A. The Mechanisms of Endogenous Fires Occurring in Extractive Waste Dumping Facilities. Sustainability 2020, 12, 2856. [Google Scholar] [CrossRef]
- Jia, X.; Wu, J.; Lian, C.; Wang, J.; Rao, J.; Feng, R.; Chen, Y. Investigating the effect of coal particle size on spontaneous combustion and oxidation characteristics of coal. Environ. Sci. Pollut. Res. 2022, 29, 16113–16122. [Google Scholar] [CrossRef]
- Yan, H.; Nie, B.; Kong, F.; Liu, Y.; Liu, P.; Wang, Y.; Chen, Z.; Yin, F.; Gong, J.; Lin, S.; et al. Experimental investigation of coal particle size on the kinetic properties of coal oxidation and spontaneous combustion limit parameters. Energy 2023, 270, 126890. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Amini, S.H. Systematic investigation on the effect of particle size on low-rank coal spontaneous combustion under various extrinsic conditions. Fuel 2023, 334, 126844. [Google Scholar] [CrossRef]
- Mishra, D.; Mohalik, N.K.; Ray, S.K.; Pandey, J.K. Effect of depth and particle size on spontaneous combustion of coal in deep underground mines of Jharia coalfield. J. Sustain. Min. 2025, 24, 117–129. [Google Scholar] [CrossRef]
- Wei, S.; Wei, Y.; Li, Z. Influence of Different Particle Sizes on Spontaneous Combustion Characteristics of Coal. Solid Fuel Chem. 2025, 59, 48–52. [Google Scholar] [CrossRef]
- Kadioğlu, Y.; Varamaz, M. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignitesa. Fuel 2003, 82, 1685–1693. [Google Scholar] [CrossRef]
- Beamish, B.B.; Hamilton, G.R. Effect of moisture content on the R70 self-heating rate of Callide coal. Int. J. Coal Geol. 2005, 64, 133–138. [Google Scholar] [CrossRef]
- Choi, H.; Thiruppathiraja, C.; Kim, S.; Rhim, Y.; Lim, J.; Lee, S. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process. Technol. 2011, 92, 2005–2010. [Google Scholar] [CrossRef]
- Cliff, D.; Brady, D.; Watkinson, M. Developments in the management of spontaneous combustion in Australian underground coal mines. In Proceedings of the Underground Coal Mines, 14 th Coal Operators’ Conference, Wollongong, NSW, Australia, 12–14 February 2014; Australian Institute of Mining and Metallurgy and Mine Managers’ Association of Australia: Carlton South, VIC, Australia, 2014; pp. 330–338. [Google Scholar]
- Arisoy, A.; Beamish, B. Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation. Fuel 2015, 139, 107–114. [Google Scholar] [CrossRef]
- Song, S.; Qin, B.; Xin, H.; Qin, X.; Chen, K. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 2018, 234, 732–737. [Google Scholar] [CrossRef]
- Saffari, A.; Sereshki, F.; Ataei, M. The simultaneous effect of moisture and pyrite on coal spontaneous combustion using CPT and R70 test methods. Rud.-Geološko-Naft. Zb. 2019, 34, 1–12. [Google Scholar] [CrossRef]
- Qu, Z.; Sun, F.; Gao, J.; Pei, T.; Qie, Z.; Wang, L.; Pi, X.; Zhao, G.; Wu, S. A new insight into the role of coal adsorbed water in low-temperature oxidation: Enhanced·OH radical generation. Combust. Flame 2019, 208, 27–36. [Google Scholar] [CrossRef]
- Wang, C.; Lv, C.; Bai, Z.; Deng, J.; Kang, F.; Xiao, Y.; Shu, C.-M. Synergistic acceleration effect of coal spontaneous combustion caused by moisture and associated pyrite. Fuel 2021, 304, 121458. [Google Scholar] [CrossRef]
- Xi, Z.; Xi, K.; Lu, L.; Li, X. Investigation of the influence of moisture during coal self-heating. Fuel 2022, 324, 124581. [Google Scholar] [CrossRef]
- Xi, Z.; Li, X.; Xi, K. Study on the reactivity of oxygen-containing functional groups in coal with and without adsorbed water in low-temperature oxidation. Fuel 2021, 304, 121454. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, F.; Yao, D.; Deng, J.; Shu, P.; Duan, Z. Study on the Thermal Effects and Characteristics of Free Radical Evolution in Coal Oxidation at Different Moisture Content. Fire 2024, 7, 299. [Google Scholar] [CrossRef]
- Deng, J.; Ma, X.; Zhang, Y.; Li, Y.; Zhu, W. Effects of pyrite on the spontaneous combustion of coal. Int. J. Coal Sci. Technol. 2015, 2, 306–311. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhang, H.; Sasaki, K. Effects of temperature gradient and particle size on self-ignition temperature of low-rank coal excavated from inner Mongolia, China. R. Soc. Open Sci. 2019, 6, 190374. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Y.; Chen, X.; Zhang, Y. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions. Fuel 2021, 295, 120591. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Bai, Z.; Deng, J.; Liu, L.; Xiao, Y. Study on the dynamic evolution law of spontaneous coal combustion in high-temperature regions. Fuel 2022, 314, 123036. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, H.; Huang, G.; Lu, B.; Yu, C.; Zou, J. Experimental study on the effect of room temperature pre-oxidized time on spontaneous combustion characteristics of coal. Sci. Rep. 2023, 13, 22035. [Google Scholar] [CrossRef]
- Lei, C.; Shi, X.; Jiang, L.; Deng, C.; Nian, J.; Gao, Y. Study on the Effect of External Air Supply and Temperature Control on Coal Spontaneous Combustion Characteristics. Sustainability 2023, 15, 8286. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Yang, Y.; Miao, G.; Li, P.; Wang, G. Investigation of the effect of different distilled water, rainwater and seawater mass ratios on coal spontaneous combustion characteristics. Sci. Total Environ. 2023, 900, 165878. [Google Scholar] [CrossRef]
- Moghtaderi, B.; Dlugogorski, B.Z.; Kennedy, E.M. Effects of Wind Flow on Self-Heating Characteristics of Coal Stockpiles. Process. Saf. Environ. Prot. 2000, 78, 445–453. [Google Scholar] [CrossRef]
- Misz-Kennan, M.; Tabor, A. The Thermal History of Select Coal-Waste Dumps in the Upper Silesian Coal Basin, Poland. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 3, pp. 432–462. [Google Scholar] [CrossRef]
- Jendruś, R. Chemical and physical aspects of fires on coal waste dumps. Zesz. Nauk. Wyższej Szkoły Tech. W Katowicach 2016, 8, 131–149. [Google Scholar]
- Batugin, A.S.; Kobylkin, A.S.; Musina, V.R. Effect of geodynamic setting on spontaneous combustion of coal waste dumps. Eurasian Min. 2019, 2, 64–69. [Google Scholar] [CrossRef]
- Wojtacha-Rychter, K.; Smoliński, A. Coal oxidation with air stream of varying oxygen content and flow rate-Fire gas emission profile. Fire Saf. J. 2020, 116, 103182. [Google Scholar] [CrossRef]
- Landers, M.; Usher, B. Management of spontaneous combustion for metalliferous mines. In Proceedings of the 10th International Conference on Acid Rock Drainage andIMWA 2015 (Chapter 2), Santiago, Chile, 28 April–1 May 2015. [Google Scholar]
- Jiang, X.; Yang, S.; Zhou, B.; Cai, J. Study on spontaneous combustion characteristics of waste coal gangue hill. Combust. Sci. Technol. 2021, 195, 713–727. [Google Scholar] [CrossRef]
- Li, A.; Chen, C.; Chen, J.; Lei, P.; Zhang, Y. Experimental investigation of temperature distribution and spontaneous combustion tendency of coal gangue stockpiles in storage. Environ. Sci. Pollut. Res. 2021, 28, 34489–34500. [Google Scholar] [CrossRef]
- Brotóns, V.; Tomás, R.; Ivorra, S.; Alarcón, J.C. Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng. Geol. 2013, 167, 117–127. [Google Scholar] [CrossRef]
- Zhang, L. Engineering Properties of Rocks, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Ashrafi, J.; Faramarzi, L.; Darbor, M.; Sharifzadeh, M.; Ferdosi, B. The effects of temperature on mechanical properties of rocks. Int. J. Min. Geo-Eng. 2020, 54, 147–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Z.; McLennan, J.; Gu, B.; Ta, X. Influence of temperature on physical and mechanical properties of a sedimentary rock: Coal measure mudstone. Therm. Sci. 2021, 25, 159–169. [Google Scholar] [CrossRef]
- Saksala, T. Numerical Modeling of Temperature Effect on Tensile Strength of Granitic Rock. Appl. Sci. 2021, 11, 4407. [Google Scholar] [CrossRef]
- Martínez-Ibáñez, V.; Garrido, M.E.; Signes, C.H.; Basco, A.; Miranda, T.; Tomás, R. Thermal Effects on the Drilling Performance of a Limestone: Relationships with Physical and Mechanical Properties. Appl. Sci. 2021, 11, 3286. [Google Scholar] [CrossRef]
- Ito, W.H.; Scussiato, T.; Vagnon, F.; Ferrero, A.M.; Migliazza, M.R.; Ramis, J.; de Queiroz, P.I.B. On the Thermal Stresses Due to Weathering in Natural Stones. Appl. Sci. 2021, 11, 1188. [Google Scholar] [CrossRef]
- Sarro, R.; Pérez-Rey, I.; Tomás, R.; Alejano, L.R.; Hernández-Gutiérrez, L.E.; Mateos, R.M. Effects of Wildfire on Rockfall Occurrence: A Review through Actual Cases in Spain. Appl. Sci. 2021, 11, 2545. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Zheng, Q.; Huang, Y.; Jiang, F.; Wang, M.-K.; Lin, J.; Huang, Y. Evaluating the effects of temperature on soil hydraulic and mechanical properties in the collapsing gully areas of south China. CATENA 2022, 218, 106549. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, Y.; Wang, L.; Wang, L.; Zhang, S. Temperature dependence of mechanical properties and damage evolution of hot dry rocks under rapid cooling. J. Rock Mech. Geotech. Eng. 2024, 16, 645–660. [Google Scholar] [CrossRef]
- Luo, J.; Hu, C.; Zhang, Z.; Lei, B.; Luo, J.; Zhang, A.; Hao, G.; Wang, W. Effect of Temperature Gradient on Compressive Strength and Strain Characteristics of Coarse-Grained Frozen Soil. Geofluids 2024, 2024, 4059478. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Wu, P.; Guo, X.; Li, M.; Zhu, F. Physical and Mechanical Properties and Damage Mechanism of Sandstone at High Temperatures. Appl. Sci. 2024, 14, 444. [Google Scholar] [CrossRef]
- Jin, J.; Liu, J.; Chen, W.; Li, G.; Cheng, W.; Zhang, X.; Luo, Y. The impact of high temperature on mechanical properties and behaviors of sandstone. Front. Earth Sci. 2024, 12, 1322495. [Google Scholar] [CrossRef]
- Mukhlisin, M.; Khiyon, K.N. The Effects of Cracking on Slope Stability. J. Geol. Soc. India 2018, 91, 704–710. [Google Scholar] [CrossRef]
- Chen, X.; Jing, X.; Li, X.; Chen, J.; Ma, Q.; Liu, X. Slope Crack Propagation Law and Numerical Simulation of Expansive Soil under Wetting–Drying Cycles. Sustainability 2023, 15, 5655. [Google Scholar] [CrossRef]
- Xie, C.; Shen, Q.; Wu, Z.; Zhao, Y.; Mei, G. Stability Analysis for the Expansive Soil Slope Considering the Influence of Cracks Based on the Upper Bound Method. IOP Conf. Ser. Earth Environ. Sci. 2018, 189, 022014. [Google Scholar] [CrossRef]
- Amalia, D.; Mochtar, I.B.; Mochtar, N.E. Application of a New Concept of Cracked Soils in Slope Stability Analysis with Heavy Rain and the Pattern of Cracks as the Governing Factors. In Proceedings of the AWAM International Conference on Civil Engineering, Penang, Malaysia, 21–22 August 2019; Lecture Notes in Civil Engineering. Springer: Cham, Switzerland, 2019; Volume 53, pp. 601–619. [Google Scholar] [CrossRef]
- Acharya, B.; Sarkar, K.; Singh, A.K.; Chawla, S. Preliminary slope stability analysis and discontinuities driven susceptibility zonation along a crucial highway corridor in higher Himalaya, India. J. Mt. Sci. 2020, 17, 801–823. [Google Scholar] [CrossRef]
- Azarafza, M.; Akgün, H.; Ghazifard, A.; Asghari-Kaljahi, E.; Rahnamarad, J.; Derakhshani, R. Discontinuous rock slope stability analysis by limit equilibrium approaches—A review. Int. J. Digit. Earth 2021, 14, 1918–1941. [Google Scholar] [CrossRef]
- He, Y.; Yu, J.; Yuan, R.; Wang, W.; Nikitas, N. Stability and failure mechanisms in three-dimensional cracked slope: Static and dynamic analysis. Comput. Geotech. 2022, 144, 104626. [Google Scholar] [CrossRef]
- Hosseini, M.; Beiranvand, P.; Mohammadiasl, M.; Hasanvand, A. Influence of surface cracks on the stability of cracked soil slope. Int. J. Comput. Civ. Struct. Eng. 2022, 18, 82–90. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, X.; Wang, L. Research on Fracture Mechanism and Stability of Slope with Tensile Cracks. Appl. Sci. 2022, 12, 12687. [Google Scholar] [CrossRef]
- Ray, A.; Rai, R.; Singh, T.N. The Effect of Discontinuity Orientation and Thickness of the Weathered Layer on the Stability of Lesser Himalayan Rock Slope. J. Geol. Soc. India 2022, 98, 260–270. [Google Scholar] [CrossRef]
- Sun, L.; Grasselli, G.; Liu, Q.; Tang, X.; Abdelaziz, A. The role of discontinuities in rock slope stability: Insights from a combined finite-discrete element simulation. Comput. Geotech. 2022, 147, 104788. [Google Scholar] [CrossRef]
- Al-E’Bayat, M.; Guner, D.; Sherizadeh, T.; Asadizadeh, M. Numerical Investigation for the Effect of Joint Persistence on Rock Slope Stability Using a Lattice Spring-Based Synthetic Rock Mass Model. Sustainability 2024, 16, 894. [Google Scholar] [CrossRef]
- Li, M.; Xiu, Z.; Han, J.; Meng, F.; Wang, F.; Ji, H. Characterization and Stability Analysis of Rock Mass Discontinuities in Layered Slopes: A Case Study from Fushun West Open-Pit Mine. Appl. Sci. 2024, 14, 11330. [Google Scholar] [CrossRef]
- Junaid, M.; Abdullah, R.A.; Ullah, A.; Sa’ari, R.; Mahmood, S.; Rehman, H.; Rehman, S.; Sari, M. Discontinuity characterization for slope stability assessment using combined aerial photogrammetry, and geophysics approach. Nat. Hazards 2025, 121, 3581–3600. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Chen, Z.; Gao, L.; Qi, Y.; Hu, H. Exploring Spontaneous Combustion Characteristics and Structural Disparities of Coal Induced by Igneous Rock Erosion. Fire 2024, 7, 159. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Han, G.; Dong, Z.; Zhao, L.; Zhang, Q. Experimental Study on Spontaneous Combustion Characteristics of Large Coal Particles after Soaking. ACS Omega 2022, 7, 13102–13111. [Google Scholar] [CrossRef]
- Dudzińska, A. The Effect of Pore Volume of Hard Coals on Their Susceptibility to Spontaneous Combustion. J. Chem. 2014, 2014, 393819. [Google Scholar] [CrossRef]
- Teng, T.; Wang, J.G.; Gao, F.; Ju, Y.; Jiang, C. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization. J. Nat. Gas Sci. Eng. 2016, 32, 319–333. [Google Scholar] [CrossRef]
- Lin, Y.; Qin, Y.; Ma, D.; Zhao, J. Experimental research on dynamic variation of permeability and porosity of low-rank inert-rich coal under stresses. ACS Omega 2020, 5, 28124–28135. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Yang, W.; Xin, H.; Hu, S.; Song, Y. Pore structure and its impact on susceptibility to coal spontaneous combustion based on multiscale and multifractal analysis. Sci. Rep. 2020, 10, 7125. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, M.-H.; Shi, S.-L.; Zhang, T. Influence of Thermal Cracking Permeability Enhancement in Spontaneously Combustible Coalbed Methane Reservoirs on the Characteristics of Coal Spontaneous Combustion. Combust. Sci. Technol. 2021, 195, 169–183. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, C.; Wang, G.; Huang, Q.; Shi, Q. Research on the evolution of pore and fracture structures during spontaneous combustion of coal based on CT 3D reconstruction. Energy 2022, 260, 125033. [Google Scholar] [CrossRef]
- Du, B.; Liang, Y.; Tian, F.; Guo, B. Analytical Prediction of Coal Spontaneous Combustion Tendency: Pore Structure and Air Permeability. Sustainability 2023, 15, 4332. [Google Scholar] [CrossRef]
- Li, J.; Xu, H.; Wu, G. Study on the Effect of Pore Evolution on the Coal Spontaneous Combustion Characteristics in Goaf. Fire 2024, 7, 164. [Google Scholar] [CrossRef]
- Pandey, J.; Kumar, D.; Mishra, R.; Mohalik, N.; Khalkho, A.; Singh, V. Application of thermography technique for assessment and monitoring of coal mine fire: A special reference to Jharia coal field, Jharkhand, India. Int. J. Adv. Remote Sens. GIS 2013, 2, 138–147. [Google Scholar]
- Guo, J.; Wen, H.; Zheng, X.; Liu, Y.; Cheng, X. A method for evaluating the spontaneous combustion of coal by monitoring various gases. Process. Saf. Environ. Prot. 2019, 126, 223–231. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, D.; Cao, K.; Si, W.; Li, Y.; Liu, J. Treatment of smouldering coal refuse piles: An application in China. Environ. Technol. 2019, 41, 3105–3118. [Google Scholar] [CrossRef]
- Lewińska-Preis, L.; Szram, E.; Fabiańska, M.J.; Nádudvari, Á.; Misz-Kennan, M.; Abramowicz, A.; Kruszewski, Ł.; Kita, A. Selected ions and major and trace elements as contaminants in coal-waste dump water from the Lower and Upper Silesian Coal Basins (Poland). Int. J. Coal Sci. Technol. 2021, 8, 790–814. [Google Scholar] [CrossRef]
- Wasilewski, S.; Skotniczny, P. Mining waste dumps—Modern monitoring of thermal and gas activities. Min. Resour. Manag. Gospod. Surowcami Miner. 2015, 31, 155–182. [Google Scholar] [CrossRef]
- Jendruś, R. Environmental Protection in Industrial Areas and Applying Thermal Analysis to Coal Dumps. Pol. J. Environ. Stud. 2017, 26, 137–146. [Google Scholar] [CrossRef]
- Abramowicz, A.; Chybiorz, R. Fire detection based on a series of thermal images and point measurements: The case study of coal-waste dumps. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-1/W2, 9–12. [Google Scholar] [CrossRef]
- Garvie, A.; Donaldson, K.; Williams, B.; Chapman, J. A demonstration of the cessation of spontaneous combustion in a coal overburden spoil pile. In Proceedings of the 13th International Conference on Mine Closure, Perth, Australia, 3–5 September 2019; Fourie, A.B., Tibbett, M., Eds.; Australian Centre for Geomechanics: Perth, Australia, 2019; pp. 897–910. [Google Scholar] [CrossRef]
- Wang, H.; Fang, X.; Du, F.; Tan, B.; Zhang, L.; Li, Y.; Xu, C. Three-dimensional distribution and oxidation degree analysis of coal gangue dump fire area: A case study. Sci. Total Environ. 2021, 772, 145606. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Abramowicz, A.; Ciesielczuk, J.; Cabała, J.; Misz-Kennan, M.; Fabiańska, M. Self-Heating Coal Waste Fire Monitoring and Related Environmental Problems: Case Studies from Poland and Ukraine. J. Environ. Geogr. 2021, 14, 26–38. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, X.; Luo, D.; Zhang, Y.; Qin, J. Detection of Spontaneous Combustion Areas of Coal Gangue Dumps and Comprehensive Governance Technologies: A Case Study. ACS Omega 2023, 8, 47690–47700. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R. Coal fire mapping from satellite thermal IR data—A case example in Jharia Coalfield, Jharkhand, India. ISPRS J. Photogramm. Remote Sens. 2006, 60, 113–128. [Google Scholar] [CrossRef]
- Hu, Z.; Xia, Q. An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface temperature detection. Appl. Therm. Eng. 2017, 122, 27–38. [Google Scholar] [CrossRef]
- Gao, Y.; Hao, M.; Wang, Y.; Dang, L.; Guo, Y. Multi-Scale Coal Fire Detection Based on an Improved Active Contour Model from Landsat-8 Satellite and UAV Images. ISPRS Int. J. Geo-Inf. 2021, 10, 449. [Google Scholar] [CrossRef]
- Yu, B.; She, J.; Liu, G.; Ma, D.; Zhang, R.; Zhou, Z.; Zhang, B. Coal fire identification and state assessment by integrating multitemporal thermal infrared and InSAR remote sensing data: A case study of Midong District, Urumqi, China. ISPRS J. Photogramm. Remote Sens. 2022, 190, 144–164. [Google Scholar] [CrossRef]
- Carpentier, O.; Defer, D.; Antczak, E.; Duthoit, B. Infraredthermography applied to spontaneous combustionmonitoring of coal tips. In Proceedings of the 7th International Conference of Quantitative Infrared Thermography, Brussels, Belgium, 5–8 July 2004. [Google Scholar] [CrossRef]
- Nádudvari, Á. Thermal mapping of self-heating zones on coal waste dumps in Upper Silesia (Poland)—A case study. Int. J. Coal Geol. 2014, 128, 47–54. [Google Scholar] [CrossRef]
- Li, F.; Cui, X.; Sun, G.; Qian, A.; Wang, Q.; Liu, W. Approach of detecting coal fires by unmanned aerial vehicle thermal infrared remote sensing technology. Saf. Coal Mines 2017, 48, 97–100. [Google Scholar]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Hu, S.; Shao, H.; Liao, Q.; Fan, Y. Experimental study of the effects of stacking modes on the spontaneous combustion of coal gangue. Process. Saf. Environ. Prot. 2019, 123, 39–47. [Google Scholar] [CrossRef]
- He, X.; Yang, X.; Luo, Z.; Guan, T. Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu City, China. Sci. Rep. 2020, 10, 13895. [Google Scholar] [CrossRef]
- Teodoro, A.C.M.; Fernandes, J.; Santos, P.; Duarte, L.; Gonçalves, J.A.; Flores, D. Monitoring of soil movement in a self-burning coal waste pile with UAV imagery. Earth Resour. Environ. Remote Sens./GIS Appl. XI. SPIE 2020, 11534, 130–136. [Google Scholar] [CrossRef]
- Shao, Z.; Li, Y.; Deng, R.; Wang, D.; Zhong, X. Three-dimensional-imaging thermal surfaces of coal fires based on UAV thermal infrared data. Int. J. Remote Sens. 2021, 42, 672–692. [Google Scholar] [CrossRef]
- Yuan, G.; Wang, Y.; Zhao, F.; Wang, T.; Zhang, L.; Hao, M.; Yan, S.; Dang, L.; Peng, B. Accuracy assessment and scale effect investigation of UAV thermography for underground coal fire surface temperature monitoring. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102426. [Google Scholar] [CrossRef]
- Xiao, W.; Ren, H.; Zhao, Y.; Wang, Q.; Hu, Z. Monitoring and early warning the spontaneous combustion of coal waste dumps supported by unmanned aerial vehicle remote sensing. Coal Sci. Technol. 2023, 51, 412–421. [Google Scholar] [CrossRef]
- Anghelescu, L.; Diaconu, B.M. Advances in Detection and Monitoring of Coal Spontaneous Combustion: Techniques, Challenges, and Future Directions. Fire 2024, 7, 354. [Google Scholar] [CrossRef]
- Shao, Z.; Yang, T.; Deng, R.; Shao, H. Monitoring Burning Coal Gangue Dump Based on the 3-D Thermal Infrared Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8979–8995. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, G.; Li, L.; Li, J. An Optimized Detection Approach to Subsurface Coalfield Spontaneous Combustion Areas Using Airborne Magnetic Data. Remote Sens. 2025, 17, 1185. [Google Scholar] [CrossRef]
- Lesjak, J.; Calderini, D.F. Increased night temperature negatively affects grain yield, biomass and grain number in Chilean quinoa. Front. Plant Sci. 2017, 8, 352. [Google Scholar] [CrossRef]
- George, R.; Gullström, M.; Mangora, M.M.; Mtolera, M.S.P.; Björk, M. High midday temperature stress has stronger effects on biomass than on photosynthesis: A mesocosm experiment on four tropical seagrass species. Ecol. Evol. 2018, 8, 4508–4517. [Google Scholar] [CrossRef]
- Bao, N.; Li, W.; Gu, X.; Liu, Y. Biomass estimation for semiarid vegetation and mine rehabilitation using worldview-3 and sentinel-1 SAR imagery. Remote Sens. 2019, 11, 2855. [Google Scholar] [CrossRef]
- Lin, K.-H.; Jhou, Y.-J.; Wu, C.-W.; Chang, Y.-S. Growth, physiological, and antioxidant characteristics in green and red Perilla frutescens varieties as affected by temperature- and water-stressed conditions. Sci. Hortic. 2020, 274, 109682. [Google Scholar] [CrossRef]
- Abramowicz, A.K.; Rahmonov, O.; Fabiańska, M.J.; Nádudvari, Á.; Chybiorz, R.; Michalak, M. Changes in soil chemical composition caused by self-heating of a coal-waste dump. Land Degrad. Dev. 2021, 32, 4340–4349. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Zhang, J.; Chen, C.; Ding, B.; Yang, X. Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approach. J. Environ. Manag. 2022, 317, 115502. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Yang, X.; Ding, B.; Chen, C. Monitoring potential spontaneous combustion in a coal waste dump after reclamation through UAV RGB imagery based on alfalfa aboveground biomass (AGB). Land Degrad. Dev. 2022, 33, 2728–2742. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Xiao, W.; Lin, Z.; Ren, H. Assessing Potential Spontaneous Combustion of Coal Gangue Dumps after Reclamation by Simulating Alfalfa Heat Stress Based on the Spectral Features of Chlorophyll Fluorescence Parameters. Remote Sens. 2022, 14, 5974. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Zhang, L. Unmanned Aerial Vehicle (UAV)-Based Vegetation Restoration Monitoring in Coal Waste Dumps after Reclamation. Remote Sens. 2024, 16, 881. [Google Scholar] [CrossRef]
- Eroglu, N.; Moolman, C. Develop methods to prevent and control spontaneous combustion associated with mining and subsidence. Div. Min. Technol. CSIR Coaltech Proj. 2003, 3, 386. [Google Scholar]
- Smith, M.A.; Glasser, D. Spontaneous combustion of carbonaceous stockpiles. Part 2. Factors affecting the rate of the low-temperature oxidation reaction. Fuel 2005, 84, 1161–1170. [Google Scholar] [CrossRef]
- Pone, J.D.N.; Hein, K.A.; Stracher, G.B.; Annegarn, H.J.; Finkleman, R.B.; Blake, D.R.; McCormack, J.K.; Schroeder, P. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. Int. J. Coal Geol. 2007, 72, 124–140. [Google Scholar] [CrossRef]
- Phillips, H.; Uludag, S.; Chabedi, K. Prevention and Control of Spontaneous Combustion. In Best Practice Guidelines for Surface Coal Mines in South Africa; Coaltech Research Association: Johannesburg, South Africa, 2011; Volume 129. [Google Scholar]
- Misz-Kennan, M.; Gardocki, M.; Tabor, A. Chapter 13—Fire Prevention in Coal Waste Dumps: Exemplified by the Rymer Cones, Upper Silesian Coal Basin, Poland. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 349–385. [Google Scholar] [CrossRef]
- Gałaś, A.; Abramowicz, A.; Kot-Niewiadomska, A.; Misz-Kennan, M.; Gałaś, S. Sozology instead of ecology, other direction for ecosystem services and environmental protection-on the example of the Silesian–Kraków region, Southern Poland. GeoJournal 2024, 89, 180. [Google Scholar] [CrossRef]
- Carras, J.N.; Day, S.J.; Saghafi, A.; Williams, D.J. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int. J. Coal Geol. 2009, 78, 161–168. [Google Scholar] [CrossRef]
- Day, S.J.; Carras, J.N.; Fry, R.; Williams, D.J. Greenhouse gas emissions from Australian open-cut coal mines: Contribution from spontaneous combustion and low-temperature oxidation. Environ. Monit. Assess. 2010, 166, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Ide, S.T. Anatomy of Subsurface Coal Fires: A Case Study of a Coal Fire on the Southern Ute Indian Reservation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2011; p. 190. [Google Scholar]
- Kim, A.G. United States Bureau of Mines: Study and control of fires in abandoned mines and waste banks. In Coal and Peat Fires: A Global Perspective, Coal-Geology and Combustion; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2011; Volume 1, pp. 267–305. [Google Scholar] [CrossRef]
- Kuenzer, C.; Zhang, J.; Sun, Y.; Jia, Y.; Dech, S. Coal fires revisited: The Wuda Coal Field in the aftermath of extensive coal fire research and accelerating extinguishing activities. Int. J. Coal Geol. 2012, 102, 75–86. [Google Scholar] [CrossRef]
- Singh, R.V.K. Spontaneous heating and fire in coal mines. Procedia Eng. 2013, 62, 78–90. [Google Scholar] [CrossRef]
- Sloss, L.L. Assessing and Managing Spontaneous Combustion of Coal; IEA Clean Coal Centre: London, UK, 2015. [Google Scholar]
- Calizaya, F.; Nelson, M.G.; Bateman, C.; Jha, A. Pressure Balancing Techniques to Control Spontaneous Combustion. In Proceedings of the 2016 SME Annual Conference and Expo: The Future for Mining in a Data-Driven World, Phoenix, AZ, USA, 21–24 February 2016; Society for Mining, Metallurgy and Exploration Inc.: Englewood, CO, USA, 2016; pp. 261–264. [Google Scholar]
- Ozdogan, M.; Turan, G.; Karakus, D.; Onur, A.; Konak, G.; Yalcin, E. Prevention of spontaneous combustion in coal drifts using a lining material: A case study of the Tuncbilek Omerler underground mine, Turkey. J. South. Afr. Inst. Min. Met. 2018, 188, 149–156. [Google Scholar] [CrossRef]
- Versilov, S.O.; Vil’bitskaya, N.A.; Kurdashov, V.M. Increase of Efficiency of Extinguishing of Rock Dumps on the Surface of Coal Mines. IOP Conf. Ser. Earth Environ. Sci. 2019, 272, 022236. [Google Scholar] [CrossRef]
- Hallman, D.S. A review of coal mine fire extinguishment methods. Emerg. Manag. Sci. Technol. 2024, 4, e005. [Google Scholar] [CrossRef]
- Zhou, F.; Ren, W.; Wang, D.; Song, T.; Li, X.; Zhang, Y. Application of three-phase foam to fight an extraordinarily serious coal mine fire. Int. J. Coal Geol. 2006, 67, 95–100. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, D.; Wang, Y.; Zhong, X.; Tang, X.; Hu, X. Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China. Nat. Hazards 2015, 75, 1833–1852. [Google Scholar] [CrossRef]
- Vinogradov, A.V.; Kuprin, D.S.; Abduragimov, I.M.; Kuprin, G.N.; Serebriyakov, E.; Vinogradov, V.V. Silica foams for fire prevention and firefighting. ACS Appl. Mater. Interfaces 2016, 8, 294–301. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Gniazdowska, J. Application of nanotechnology in extinguishing agents. Materials 2022, 15, 8876. [Google Scholar] [CrossRef] [PubMed]
- Hallman, D.S. Foamed Backfilling for Combatting Mine Fires. Environ. Geotech. 2022, 9, 310–317. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, B.; Shi, Q.; Hao, M.; Shao, X.; Jiang, Z.; Ma, Z. Study on the adsorption of cement particles on surfactant and its effect on the characteristics of inorganic curing foam for prevention of coal spontaneous combustion in a goaf. Fuel 2023, 333, 126407. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, H.; Chen, C.; Guo, J.; Jin, Y.; Zheng, X.; Cheng, X.; Li, D. Research Status and Development Trend of Coal Spontaneous Combustion Fire and Prevention Technology in China: A Review. ACS Omega 2024, 9, 21727–21750. [Google Scholar] [CrossRef]
- Coccia, C.J.R.; Gupta, R.; Morris, J.; McCartney, J.S. Municipal solid waste landfills as geothermal heat sources. Renew. Sustain. Energy Rev. 2013, 19, 463–474. [Google Scholar] [CrossRef]
- Emmi, G.; Zarrella, A.; Zuanetti, A.; De Carli, M. Use of Municipal Solid Waste Landfill as Heat Source of Heat Pump. Energy Procedia 2016, 101, 352–359. [Google Scholar] [CrossRef]
- Hao, Z.; Sun, M.; Ducoste, J.J.; Benson, C.H.; Luettich, S.; Castaldi, M.J.; Barlaz, M.A. Heat Generation and Accumulation in Municipal Solid Waste Landfills. Environ. Sci. Technol. 2017, 51, 12434–12442. [Google Scholar] [CrossRef]
- Utami, A.; Aji, N.; Fadyah, A.; Ghifari, A.; Anam, M.B.; Ramadhani, S.; Rasyid, F.H.; Maulana, R.R. Geothermal energy solid waste management: Source, type of waste, and the management. In Proceedings of the 2nd International Conference on Earth Science, Mineral, and Energy, Yogyakarta, Indonesia, 3 October 2019; Volume 2245, p. 060001. [Google Scholar]
- DOE; EERE. Waste-to-Energy from Municipal Solid Wastes. 2019. Available online: https://www.energy.gov/eere/bioenergy/articles/waste-energy-municipal-solid-wastes-report (accessed on 18 June 2025).
- Manjunatha, G.S.; Chavan, D.; Lakshmikanthan, P.; Swamy, R.; Kumar, S. Estimation of heat generation and consequent temperature rise from nutrients like carbohydrates, proteins and fats in municipal solid waste landfills in India. Sci. Total Environ. 2020, 707, 135610. [Google Scholar] [CrossRef]
- Mukherjee, C.; Denney, J.; Mbonimpa, E.G.; Slagley, J.; Bhowmik, R. A review on municipal solid waste-to-energy trends in the USA. Renew. Sustain. Energy Rev. 2020, 119, 109512. [Google Scholar] [CrossRef]
- Hanson, J.L.; Onnen, M.T.; Yeşiller, N.; Kopp, K.B. Heat energy potential of municipal solid waste landfills: Review of heat generation and assessment of vertical extraction systems. Renew. Sustain. Energy Rev. 2022, 167, 112835. [Google Scholar] [CrossRef]
- Tansel, B. Thermal properties of municipal solid waste components and their relative significance for heat retention, conduction, and thermal diffusion in landfills. J. Environ. Manag. 2023, 325, 116651. [Google Scholar] [CrossRef] [PubMed]
- Dadario, N.; Filho, L.R.A.G.; Cremasco, C.P.; dos Santos, F.A.; Rizk, M.C.; Neto, M.M. Waste-to-Energy Recovery from Municipal Solid Waste: Global Scenario and Prospects of Mass Burning Technology in Brazil. Sustainability 2023, 15, 5397. [Google Scholar] [CrossRef]
- Kasiński, S.; Dębowski, M. Municipal Solid Waste as a Renewable Energy Source: Advances in Thermochemical Conversion Technologies and Environmental Impacts. Energies 2024, 17, 4704. [Google Scholar] [CrossRef]
- Jayawardane, V.; Anggraini, V.; Tran, M.-V.; Mirzababaei, M.; Syamsir, A. Heat mitigation in basal compacted clay liners in municipal solid waste landfills. Environ. Sci. Pollut. Res. 2024, 31, 63262–63286. [Google Scholar] [CrossRef]
FoS | Slope Angle, ° | |||
---|---|---|---|---|
23 | 26.6 | 31 | ||
Crack orientation and length | Without cracks/fractures | 1.45 | 1.19 | 1.0 |
6 m long, the dip angle close to the slope surface | 1.18 | 1.04 | 0.98 | |
12 m long, the dip angle close to the slope surface | 1.03 | 0.86 | 0.83 | |
6 m, dip angle of 90° (vertical) | 1.33 | 1.09 | 1.0 | |
12 m, dip angle of 90° (vertical) | 1.27 | 1.05 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.M.V. A Review of the Impact of Spontaneous Combustion on Slope Stability in Coal Mine Waste Dumps. Appl. Sci. 2025, 15, 7138. https://doi.org/10.3390/app15137138
Nguyen PMV. A Review of the Impact of Spontaneous Combustion on Slope Stability in Coal Mine Waste Dumps. Applied Sciences. 2025; 15(13):7138. https://doi.org/10.3390/app15137138
Chicago/Turabian StyleNguyen, Phu Minh Vuong. 2025. "A Review of the Impact of Spontaneous Combustion on Slope Stability in Coal Mine Waste Dumps" Applied Sciences 15, no. 13: 7138. https://doi.org/10.3390/app15137138
APA StyleNguyen, P. M. V. (2025). A Review of the Impact of Spontaneous Combustion on Slope Stability in Coal Mine Waste Dumps. Applied Sciences, 15(13), 7138. https://doi.org/10.3390/app15137138