Construction of the Stand and Experimental Studies of the Iontophoresis Process
Abstract
1. Introduction
- -
- Electrical conductivity is a measure of a solution’s ability to conduct electrical current. In iontophoresis, this indicates how well the solution will be able to carry the electrical charge needed to transport medicinal substances into the body. High conductivity is important because it ensures an adequate volume of energy to transport the ions, which contributes to the effective introduction of the preparations into the deeper tissue layers. Too low conductivity can lead to a weaker therapeutic effect because not all of the ions can be transported to the required locations.
- -
- Resistivity, also known as the inverse of conductivity, is a parameter that characterizes the resistance of a solution in relation to the current flowing through it. The higher the resistivity, the greater the resistance of the solution during the iontophoresis process. This is important because the resistance affects the distribution of the electric field in the tissues and also the depth of penetration of the active substances into the body. Depending on the type of disease, a precise adjustment of the solution’s resistivity can have a crucial impact on the effectiveness of the therapy. If the resistivity is too high, the medicinal substance may not penetrate deeply enough, and the iontophoresis process will become less effective.
- -
- On the other hand, dielectricity refers to the ability of a material to store electrical energy in the form of electrical charges. In the context of iontophoresis, the dielectricity of a solution affects the interaction of particles with an electrical field, as well as the processes of ion transport within the skin and other tissues. Different active substances are characterized by different dielectric properties, which influence the way they flow during the iontophoresis treatment.
2. Purpose and Scope
3. Research Plan and Program
- -
- Electric current voltage , which was applied to the sample by the positive electrode using a laboratory power supply and monitored with a voltmeter;
- -
- Solution temperature , regulated by a water bath heater; the water temperature was monitored with a built-in thermometer, and the temperature T of the solution was monitored with a thermal imaging camera.
- -
- Current , tested on the basis of the readings from an ampere meter connected serially with the negative electrode of the solution to the laboratory power supply;
- -
- Electrical resistance , calculated based on the relationship between the results of the current Ip of the solutions and the selected voltage U on the power supply.
- -
- For the solution’s voltage ;
- -
- For the solution temperature .
4. Test Stand and Testing Methodology
- -
- Ampere meter YFE YF-3503;
- -
- Thermal imaging camera PEAKTECH 5605;
- -
- Water bath AJL electronic MLL 147/6/A/50;
- -
- Voltmeter METEX M-3850;
- -
- Laboratory power supply unit KORAD KA3005DS;
- -
- Laboratory beaker.
5. Analysis of Test Results
6. Summary
- -
- Within the investigated temperature range of the T solutions, it was shown that this factor does not significantly affect the selection of an appropriate power supply device for iontophoresis.
- -
- Electrolytes subjected to direct current exhibit electrochemical properties. During the test, a deposit formed on the electrodes, which indicates the chemical reactions taking place and electrical conductivity through selected solutions.
- -
- It was observed that the solutions stored an electrical charge. After disconnecting the power supply, the voltmeter showed a decreasing voltage U reading, which indicated that the stored electrical charge was being discharged by the electrolytes.
- -
- The factor influencing the choice of power supply for the device is the voltage U supplied to the solution. Together with the increase of voltage U on the supply of the preparation, the intensity Ip taken by electrolytes also increases, and the resistance R of the electrolyte decreases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosseini, S.M.; Ghandali, E.; Moghimi, H.R.; Khademi-Kalantari, K.; Moghaddam, S.T.; Baghban, A.A.; Mortazavi, S.M. A comparative evaluation of aluminum chloride hexahydrate gel iontophoresis versus tap water iontophoresis in people with primary palmar hyperhidrosis: A randomised clinical trial. Indian J. Dermatol. Venereol. Leprol. 2023, 90, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M. Selected medicines used in iontophoresis. Pharmaceutics 2018, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Liatsopoulou, A.; Varvaresou, A.; Mellou, F.; Protopapa, E. Iontophoresis in dermal delivery: A review of applications in dermato-cosmetic and aesthetic sciences. Int. J. Cosmet. Sci. 2023, 45, 117–132. [Google Scholar] [CrossRef]
- Dakowicz, A.; Dzięcioł-Anikiej, Z.; Hryniewicz, A.; Judycka, M.; Ciołkiewicz, M.; Moskal-Jasińska, D.; Kuryliszyn-Moskal, A. Evaluation of the Effectiveness of Iontophoresis with Perskindol Gel in Patients with Osteoarthritis of the Knee Joints. Int. J. Environ. Res. Public Health 2022, 19, 8489. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Pu, N.; Li, S.-Y.; Wang, Y.-G.; Tao, Y. Application of iontophoresis in ophthalmic practice: An innovative strategy to deliver drugs into the eye. Drug Deliv. 2023, 30, 2165736. [Google Scholar] [CrossRef]
- Wan Hassan, W.M.S.; Tamuri, A.R.; Zainal, R. Current and resistance. In Physics—Problems, Solutions, and Computer Calculations; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Gała, M.; Jagieła, K.; Jąderko, A.; Rak, J. Integrated Multimotor Electrical DC Drive for Metallurgical Rolling Table. Acta Mech. Autom. 2015, 9, 93–98. [Google Scholar] [CrossRef]
- Qasem, N.A.; Generous, M.M.; Qureshi, B.A.; Zubair, S.M. Electrical conductivity. In Thermodynamic and Thermophysical Properties of Saline Water: Models, Correlations and Data for Desalination and Relevant Applications; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Coetzee, D.; Venkataraman, M.; Militky, J.; Petru, M. Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites. Polymers 2020, 12, 742. [Google Scholar] [CrossRef]
- Cosoli, G.; Mobili, A.; Tittarelli, F.; Revel, G.M.; Chiariotti, P. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Appl. Sci. 2020, 10, 9152. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, X.; Pang, D.; Jiang, S.; Zhu, M.; Lu, G.; Tian, Y.; Wang, C.; Chao, D.; Wallace, G. An integrated Mg battery-powered iontophoresis patch for efficient and controllable transdermal drug delivery. Nat. Commun. 2023, 14, 297. [Google Scholar] [CrossRef]
- Hasan, M.; Khatun, A.; Kogure, K. Iontophoresis of Biological Macromolecular Drugs. Pharmaceutics 2022, 14, 525. [Google Scholar] [CrossRef]
- Moura, R.B.P.; Andrade, L.M.; Alonso, L.; Alonso, A.; Marreto, R.N.; Taveira, S.F. Combination of lipid nanoparticles and iontophoresis for enhanced lopinavir skin permeation: Impact of electric current on lipid dynamics. Eur. J. Pharm. Sci. 2022, 168, 106048. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J.; Zheng, Y.; Ye, R.; Liu, B.; Huang, Y.; Zhou, W.; Jiang, L. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomater. 2021, 121, 349–358. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, L.; Song, W.; Liu, J. Influencing factors and drug application of iontophoresis in transdermal drug delivery: An overview of recent progress. Drug Deliv. Transl. Res. 2022, 12, 15–26. [Google Scholar] [CrossRef]
- Dhote, V.; Bhatnagar, P.; Mishra, P.K.; Mahajan, S.C.; Mishra, D.K. Iontophoresis: A potential emergence of a transdermal drug delivery system. Sci. Pharm. 2012, 80, 1. [Google Scholar] [CrossRef] [PubMed]
- Bok, M.; Kwon, Y.I.; Huang, Z.M.; Lim, E. Portable Iontophoresis Device for Efficient Drug Delivery. Bioengineering 2023, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Tari, K.; Khamoushian, S.; Madrakian, T.; Afkhami, A.; Łos, M.J.; Ghoorchian, A.; Samarghandi, M.R.; Ghavami, S. Controlled Transdermal Iontophoresis of Insulin from Water-Soluble Polypyrrole Nanoparticles: An In Vitro Study. Int. J. Mol. Sci. 2021, 22, 12479. [Google Scholar] [CrossRef]
- Ragit, R.; Fulzele, P.; Rathi, N.V.; Thosar, N.R.; Khubchandani, M.; Malviya, N.S.; Das, S. Iontophoresis as an Effective Drug Delivery System in Dentistry: A Review. Cureus 2022, 14, e30658. [Google Scholar] [CrossRef]
- Tůma, P. Advances in the design and application of contactless conductivity detectors for separation, flow-through, microfluidic and sensing techniques: A review. Anal. Chim. Acta 2025, 1337, 343325. [Google Scholar] [CrossRef]
- Peter, C.H.; Pavel, K. Contactless Conductivity Detection for Capillary Electrophoresis—Developments From 2020 to 2024. Electrophoresis 2024. [Google Scholar] [CrossRef]
- Dumańska-Kulpa, J.; Grzybowska, I. Pomiary przewodności elektrycznej właściwej elektrolitów metodą podstawową. Metrol. Biul. Głównego Urzędu Miar 2011, 6, 31–37. [Google Scholar]
- Gromnicki, M.; Wirwicki, M. A new design of iontophoresis device designed on the basis of educational platform teams. Dev. Mech. Eng. 2023, 11, 5–14. [Google Scholar] [CrossRef]
Solution No. | Voltage U [V] | Current of the Solution Ip [mA] | ||||
---|---|---|---|---|---|---|
Temperature T of the Solution [°C] | ||||||
26 | 30 | 35 | 38 | 40 | ||
1 | 1 | 0.153 | 0.215 | 0.300 | 0.315 | 0.283 |
2 | 0.652 | 0.313 | 0.450 | 0.352 | 0.800 | |
3 | 0.341 | 0.025 | 0.180 | 0.139 | 0.185 | |
4 | 0.105 | 0.0108 | 0.271 | 0.550 | 0.015 | |
5 | 0.265 | 0.065 | 0.280 | 0.232 | 0.550 | |
6 | 0.004 | 0.0105 | 0.052 | 0.089 | 0.104 | |
7 | 0.366 | 0.066 | 0.042 | 0.006 | 0.003 | |
1 | 3 | 2.110 | 2.350 | 2.230 | 2.100 | 2.380 |
2 | 8.690 | 25.700 | 14.800 | 13.340 | 16.730 | |
3 | 9.510 | 12.960 | 10.630 | 12.720 | 12.220 | |
4 | 8.080 | 9.440 | 9.450 | 8.380 | 9.430 | |
5 | 57.900 | 63.400 | 64.10 | 27.500 | 58.400 | |
6 | 13.330 | 18.350 | 10.800 | 23.400 | 24.300 | |
7 | 29.400 | 39.200 | 26.300 | 23.100 | 35.500 | |
1 | 5 | 4.440 | 5.130 | 4.740 | 4.450 | 5.090 |
2 | 21.800 | 61.200 | 34.400 | 30.300 | 36.200 | |
3 | 20.900 | 27.200 | 21.400 | 24.800 | 24.600 | |
4 | 17.340 | 21.700 | 21.900 | 15.520 | 21.400 | |
5 | 138.600 | 116.500 | 111.300 | 37.200 | 134.400 | |
6 | 27.700 | 20.900 | 18.500 | 31.100 | 44.300 | |
7 | 67.900 | 92.400 | 52.800 | 32.700 | 47.500 | |
1 | 10 | 10.3700 | 12.310 | 11.270 | 10.370 | 12.100 |
2 | 54.200 | 158.200 | 85.100 | 75.300 | 79.200 | |
3 | 45.900 | 60.800 | 55.700 | 44.100 | 58.800 | |
4 | 44.700 | 48.200 | 50.400 | 27.400 | 51.100 | |
5 | 320.000 | 250.000 | 330.000 | 63.400 | 260.00 | |
6 | 68.200 | 23.400 | 18.500 | 37.100 | 82.600 | |
7 | 166.600 | 200.000 | 131.700 | 69.500 | 92.300 |
Solution No. | Voltage U [V] | Resistance R of the Solution [kΩ] | ||||
---|---|---|---|---|---|---|
Temperature T of the Solution [°C] | ||||||
26 | 30 | 35 | 38 | 40 | ||
1 | 1 | 0.474 | 0.426 | 0.448 | 0.476 | 0.420 |
2 | 1.534 | 3.195 | 2.222 | 2.841 | 1.250 | |
3 | 2.933 | 40.000 | 5.556 | 7.194 | 5.405 | |
4 | 9.524 | 92.593 | 3.690 | 1.818 | 68.966 | |
5 | 3.774 | 15.385 | 3.571 | 4.310 | 1.818 | |
6 | 256.410 | 95.238 | 19.231 | 11.235 | 9.615 | |
7 | 2.732 | 15.244 | 23.810 | 161.290 | 370.370 | |
1 | 3 | 1.422 | 1.277 | 1.345 | 1.429 | 1.261 |
2 | 0.345 | 0.117 | 0.203 | 0.225 | 0.179 | |
3 | 0.315 | 0.231 | 0.282 | 0.236 | 0.245 | |
4 | 0.371 | 0.318 | 0.317 | 0.358 | 0.318 | |
5 | 0.052 | 0.047 | 0.047 | 0.109 | 0.051 | |
6 | 0.225 | 0.163 | 0.278 | 0.128 | 0.123 | |
7 | 0.102 | 0.077 | 0.114 | 0.130 | 0.085 | |
1 | 5 | 1.126 | 0.975 | 1.055 | 1.124 | 0.982 |
2 | 0.229 | 0.082 | 0.145 | 0.165 | 0.138 | |
3 | 0.239 | 0.184 | 0.234 | 0.202 | 0.203 | |
4 | 0.288 | 0.230 | 0.228 | 0.322 | 0.234 | |
5 | 0.036 | 0.043 | 0.045 | 0.134 | 0.037 | |
6 | 0.181 | 0.239 | 0.270 | 0.161 | 0.113 | |
7 | 0.074 | 0.054 | 0.095 | 0.153 | 0.105 | |
1 | 10 | 0.964 | 0.812 | 0.887 | 0.964 | 0.826 |
2 | 0.185 | 0.063 | 0.118 | 0.133 | 0.126 | |
3 | 0.218 | 0.164 | 0.180 | 0.227 | 0.170 | |
4 | 0.224 | 0.207 | 0.198 | 0.365 | 0.196 | |
5 | 0.031 | 0.040 | 0.030 | 0.158 | 0.038 | |
6 | 0.147 | 0.427 | 0.541 | 0.270 | 0.121 | |
7 | 0.060 | 0.050 | 0.076 | 0.144 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gromnicki, M.; Bochat, A. Construction of the Stand and Experimental Studies of the Iontophoresis Process. Appl. Sci. 2025, 15, 7139. https://doi.org/10.3390/app15137139
Gromnicki M, Bochat A. Construction of the Stand and Experimental Studies of the Iontophoresis Process. Applied Sciences. 2025; 15(13):7139. https://doi.org/10.3390/app15137139
Chicago/Turabian StyleGromnicki, Michał, and Andrzej Bochat. 2025. "Construction of the Stand and Experimental Studies of the Iontophoresis Process" Applied Sciences 15, no. 13: 7139. https://doi.org/10.3390/app15137139
APA StyleGromnicki, M., & Bochat, A. (2025). Construction of the Stand and Experimental Studies of the Iontophoresis Process. Applied Sciences, 15(13), 7139. https://doi.org/10.3390/app15137139