Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel
Abstract
1. Introduction
1.1. The Context of Maritime Safety
1.2. The Importance of Analysis of Hydrological and Meteorological Conditions
- The hydrodynamics and structure of waters—flows of sea currents, variability of the temperature, and the salinity profile, affected by, inter alia, the inflow of fresh water from large rivers, such as the Vistula and the Odra;
- The atmospheric conditions—mean and extreme wind speeds, precipitation, and variability of the barometric pressure, which affect waves and water level [15];
- Ice—although the Baltic Sea does not freeze entirely, ice may form locally in winter, especially in the Gdańsk Bay, which may restrict the availability of ports and navigational routes [16];
- The impact of hydrological and meteorological conditions on the LNG infrastructure—an analysis of how vessels, quays, and cargo handling systems withstand variable and/or severe weather, such as storms or surges and falls in water level [17].
1.3. Prospective Use of LNG in the Baltic Sea
1.4. Purpose and Scope of the Review
2. Materials and Methods
2.1. Meteorological Factors
- Cloudiness—the Baltic Sea is characterized by variable cloudiness, with mainly stratus and nimbostratus clouds in winter, which are conducive to rain and fog; summer periods also see cumulus clouds, which may bring thunderstorms [55];
- Terrain—diverse in the Baltic Sea and characterized by various geo-morphological features, such as beaches, spits, dunes, cliffs, bays, coves, and estuaries [56].
- Advection fog—caused by the movement of warm air over a cooler water surface, leading to vapor condensation; the most common type of fog in sea areas, especially in spring and autumn;
- Radiation fog—forms mainly at night and in the early morning when, as a result of the radiation of warmth from the surface of the sea, the atmospheric boundary layer gets cooler;
- Frontal fog—forms with the passing of warm, atmospheric fronts, which lead to strong humidity condensation.
2.2. Oceanographic Factors
3. Results
3.1. Weather Anomalies
- Scenario B1 assumes moderate economic growth and simultaneous implementation of low-emission technologies;
- Scenario A1B assumes fast economic growth and sustainable utilization of energy sources;
- Scenario A2 assumes growth based on the dominance of regions, a low level of global cooperation, and high emissions.
- For scenario B1—1.8 °C (within a range of 1.1–2.9 °C);
- For scenario A1B—2.8 °C (within a range of 1.7–4.4 °C);
- For scenario A2—3.4 °C (within a range of 2.0–5.4 °C) [132].
3.2. Use of LNG in Maritime Transport vs. The Natural Environment
- An analysis of worldwide trends in the use of LNG—recent years saw growth in the number of LNG-powered ships (especially in Europe), where anti-emission regulations are becoming more and more stringent;
- A division into regions—increased interest in and demand for environmentally friendly fuels suggest that growth in the share of LNG-powered vessels in Europe (including the Baltic Sea) will depend on the introduced regulations, e.g., requirements for the SECA areas or CO2 limits;
- A forecast for the Baltic Sea—on the basis of the assumptions referred to above, a conservative forecast has been made based on assumed growth in the number of LNG-powered vessels in the region under analysis by 10–15% annually, starting from 2020.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feistel, R.; Weinreben, S.; Wolf, H.; Seitz, S.; Spitzer, P.; Adel, B.; Wright, D.G. Density and absolute salinity of the Baltic Sea 2006–2009. Ocean Sci. 2010, 6, 3–24. [Google Scholar] [CrossRef]
- Jakobsson, M.; Stranne, C.; O’Regan, M.; Greenwood, S.L.; Gustafsson, B.G.; Humborg, C.; Weidner, E. Bathymetric properties of the Baltic Sea. Ocean Sci. 2019, 15, 905–924. [Google Scholar] [CrossRef]
- Szymczycha, B.; Zaborska, A.; Bełdowski, J.; Kuliński, K.; Beszczyńska-Möller, A.; Kędra, M.; Pempkowiak, J. The Baltic Sea. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 2, pp. 85–111. [Google Scholar]
- Schmidt-Felzmann, A.; Engelbrekt, K. Challenges in the Baltic Sea region: Geopolitics, insecurity and identity. Glob. Aff. 2018, 4, 445–466. [Google Scholar] [CrossRef]
- Ekengren, M. A return to geopolitics? The future of the security community in the Baltic Sea Region. Glob. Aff. 2018, 4, 503–519. [Google Scholar] [CrossRef]
- Bilczak, M. The Economic Role of Baltic Sea Region Seaports in Changing Geopolitical Conditions. Acta Sci. Pol. Adm. Locorum 2024, 23, 361–375. [Google Scholar] [CrossRef]
- Starosta, A. Safety of cargo handling and transport liquefied natural gas by sea. Dangerous properties of LNG and actual situation of LNG Fleet. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2007, 1, 427–431. [Google Scholar]
- Jeong, B.; Park, S.; Ha, S.; Lee, J.U. Safety evaluation on LNG bunkering: To enhance practical establishment of safety zone. Ocean Eng. 2020, 216, 107804. [Google Scholar] [CrossRef]
- Gritsenko, D. Explaining choices in energy infrastructure development as a network of adjacent action situations (NAAS): The case of LNG in the Baltic Sea region. Energy Policy 2018, 112, 74–83. [Google Scholar] [CrossRef]
- Grigoryev, L.; Medzhidova, D. Energy Transition in the Baltic Sea Region: A Controversial Role of LNG? In The Future of Energy Consumption, Security and Natural Gas; Springer: Berlin/Heidelberg, Germany, 2021; pp. 61–91. [Google Scholar]
- Rozmarynowska-Mrozek, M. The Development of the LNG-Fuelled Fleet and the LNG-Bunkering Infrastructure within the Baltic and North Sea Region. Ekon. Probl. Usług 2015, 119, 23–40. [Google Scholar] [CrossRef]
- Zarzecki, D. Development of the LNG Terminal in Świnoujście, Poland. In The Future of Energy Consumption, Security and Natural Gas; Springer: Berlin/Heidelberg, Germany, 2021; pp. 191–220. [Google Scholar]
- Matczak, M. Możliwości rozwojowe oraz rola terminala LNG w Świnoujściu na rynku gazowym Bałtyku oraz Europy północnej i wschodniej. Logistyka 2012, 5, 642–651. [Google Scholar]
- Hakanson, L. Charakterystyka fizycznogeograficzna zlewiska Morza Bałtyckiego. In Środowisko Morza Bałtyckiego; Jankowski, A., Jankowski, G., Eds.; Wyd. Uniw. w Uppsali: Uppsala, Sweden, 1991; Volume 1, pp. 1–37. [Google Scholar]
- Bierstedt, S.E. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A Dyn. Meteorol. Oceanogr. 2015, 67, 29073. [Google Scholar] [CrossRef]
- Granskog, M.; Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Vainio, J. Sea ice in the Baltic Sea—A review. Estuar. Coast. Shelf Sci. 2006, 70, 145–160. [Google Scholar] [CrossRef]
- Brown, S.; Hanson, S.; Nicholls, R.J. Implications of sea-level rise and extreme events around Europe: A review of coastal energy infrastructure. Clim. Change 2014, 122, 81–95. [Google Scholar] [CrossRef]
- Andžāns, M. The Baltic Road to Energy Independence from Russia Is Nearing Completion. 2022. Available online: https://www.fpri.org/article/2022/05/the-baltic-road-to-energy-independence-from-russia-is-nearing-completion/ (accessed on 1 April 2025).
- Tuswan, T.; Sari, D.P.; Muttaqie, T.; Prabowo, A.R.; Soetardjo, M.; Murwantono, T.T.P.; Yuniati, Y. Representative application of LNG-fuelled ships: A critical overview on potential GHG emission reductions and economic benefits. Brodogr. Int. J. Nav. Archit. Ocean Eng. Res. Dev. 2023, 74, 63–83. [Google Scholar] [CrossRef]
- Martínez-López, A.; Romero, A.; Orosa, J.A. Assessment of cold ironing and LNG as mitigation tools of short sea shipping emissions in port: A Spanish case study. Appl. Sci. 2021, 11, 2050. [Google Scholar] [CrossRef]
- Jankowski, S. Possibilities for the Use of LNG as a Fuel on the Baltic Sea. In Marine Navigation and Safety of Sea Transportation: Maritime Transport and Shipping; CRC Press: Boca Raton, FL, USA, 2013; pp. 87–90. [Google Scholar]
- Pfoser, S.; Schauer, O.; Costa, Y. Acceptance of LNG as an alternative fuel: Determinants and policy implications. Energy Policy 2018, 120, 259–267. [Google Scholar] [CrossRef]
- Karp, G. Changes in water transport standard requirements and their effect on ecology. J. Pol. CIMAC 2014, 9, 7–12. [Google Scholar]
- Richards, G.A.; McMillian, M.M.; Gemmen, R.S.; Rogers, W.A.; Cully, S.R. Issues for low-emission, fuel-flexible power systems. Prog. Energy Combust. Sci. 2001, 27, 141–169. [Google Scholar] [CrossRef]
- Woroch, T.; Klonowski, K. LNG Jako Alternatywne Źródło Energii. Nowoczesne Budownictwo Inżynieryjne; 2006; pp. 30–32. Available online: https://nbi.com.pl/content/uploads/assets/NBI-pdf/2006/6_9_2006/pdf/9_lpg.pdf (accessed on 1 April 2025).
- Shang, M.; Ma, Z.; Su, Y.; Khan, S.R.; Tahir, L.M.; Sasmoko; Answer, M.K.; Zaman, K. Understanding the importance of sustainable ecological innovation in reducing carbon emissions: Investigating the green energy demand, financial development, natural resource management, industrialisation and urbanisation channels. Econ. Res. 2023, 36, 2137823. [Google Scholar] [CrossRef]
- Yao, S.; Li, C.; Wei, Y. Design and optimization of a zero carbon emission system integrated with the utilization of marine engine waste heat and LNG cold energy for LNG-powered ships. Appl. Therm. Eng. 2023, 231, 120976. [Google Scholar] [CrossRef]
- Kumar, S.; Kwon, H.; Choi, K.; Lim, W.; Cho, J.K.; Tak, K.; Moon, I. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, X.; Zuo, T.; Wang, W.; Song, X. A systematic literature review on port LNG bunkering station. Transp. Res. Part D Transp. Environ. 2021, 91, 102704. [Google Scholar] [CrossRef]
- Czermański, E. Baltic shipping development trends in maritime spatial planning aspect. Stud. I Mater. Inst. Transp. I Handlu Morskiego 2017, 14, 48–64. [Google Scholar]
- Łabuz, T.A. Influence of meteorological conditions in autumn/winter 2021–2022 on the development of storm surges and the dune erosion on the Polish Baltic coast as a result of climate changes. Stud. Quat. 2023, 40, 93–114. [Google Scholar] [CrossRef]
- Meilutytė-Lukauskienė, D.; Nazarenko, S.; Kobets, Y.; Akstinas, V.; Sharifi, A.; Haghighi, A.T.; Hashemi, H.; Kokorīte, I.; Ozolina, B. Hydro-meteorological droughts across the Baltic Region: The role of the accumulation periods. Sci. Total Environ. 2024, 913, 169669. [Google Scholar] [CrossRef] [PubMed]
- Feistel, R.; Nausch, G.; Wasmund, N. State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Quinn, T.J. Temperature, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- IMGW-PIB, Normy Klimatyczne 1991–2020. Available online: https://klimat.imgw.pl/pl/climate-normals/USL (accessed on 23 July 2024).
- Climate Data, Polska, Pomeranian Voivodeship, Gdańsk. Available online: https://en.climate-data.org/europe/poland/west-pomeranian-voivodeship-458/ (accessed on 10 April 2025).
- Kniebusch, M.; Meier, H.E.M.; Neumann, T.; Börgel, F. Temperature Variability of the Baltic Sea Since 1850 and Attribution to Atmospheric Forcing Variables. JGR Oceans 2019, 124, 4168–4187. [Google Scholar] [CrossRef]
- Surkova, G.V.; Arkhipkin, V.S.; Kislov, A.V. Atmospheric circulation and storm events in the Baltic Sea. Open Geosci. 2015, 1, 332–341. [Google Scholar] [CrossRef]
- Mirou, S.M.; Elawady, A.T.; Ashour, A.G.; Zeiada, W.; Abuzwidah, M. Visibility Prediction through Machine Learning: Exploring the Role of Meteorological Factors. In Proceedings of the ASAT, Dubai, United Arab Emirates, 20–23 February 2023. [Google Scholar]
- Merriam, J.B. Atmospheric pressure and gravity. Geophys. J. Int. 1992, 109, 488–500. [Google Scholar] [CrossRef]
- Furmanczyk, K. Zagrożenia i Systemy Ostrzegania. Zintegrowane Zarządzanie Obszarami Przybrzeżnymi w Polsce—Stan Obecny i Perspektywy; Część 4; Uniwersytet Szczeciński Instytut Nauk o Morzu: Szczecin, Poland, 2012; pp. 153–163. [Google Scholar]
- Dotsenko, S.F.; Miklashevskaya, N.A. Transformation of the ocean level under a moving area of disturbances of atmospheric pressure. Phys. Oceanogr. 2007, 17, 65–74. [Google Scholar] [CrossRef]
- IMGW-PIB, Rocznik Meteorologiczny 2018, 2019, 2020, 2021, 2022, 2023, Warszawa, Polska. Available online: https://bip.imgw.pl/ (accessed on 20 April 2025).
- Guijo-Rubio, D.; Gutiérrez, P.A.; Casanova-Mateo, C.; Sanz-Justo, J.; Salcedo-Sanz, S.; Hervás-Martínez, C. Prediction of low-visibility events due to fog using ordinal classification. Atmos. Res. 2018, 2014, 64–73. [Google Scholar] [CrossRef]
- Świątek, M. The connection between configurations of lows over Europe and precipitation along Poland’s Baltic coast. Przegląd Geogr. 2013, 85, 87–102. [Google Scholar] [CrossRef]
- Zipser, E.J.; Liu, C. Extreme Convection vs. Extreme Rainfall: A Global View. Curr. Clim. Change Rev. 2022, 7, 121–130. [Google Scholar] [CrossRef]
- Kożuchowski, K.M. Obfitość opadów w Polsce w przebiegu rocznym. In Przegląd Geofizyczny; Wydawcy: Polskie Towarzystwo Geofizyczne; Komitet Geofizyki PAN: Warsaw, Poland, 2015; pp. 27–38. [Google Scholar]
- Karpinski, P.H.; Wey, J.S. Precipitation processes. In Handbook of Industrial Crystallization, 2nd ed.; Butterworth-Heinemann: Boston, MA, USA, 2002; pp. 141–160. [Google Scholar]
- Malinowska, M.; Miętus, M. Opady o dużym natężeniu w Gdyni i ich uwarunkowania atmosferyczne (1981–2000). In Woda w badaniach geograficznych Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego; Ciupa, T., Suligowski, R., Eds.; Instytut Geografii: Kraków, Poland, 2010; pp. 49–58. [Google Scholar]
- Berger, A.; Loutre, M.F.; Christian Tricot, C. Insolation and Earth’s orbital periods. J. Geophys. Res. Atmos. 1993, 98, 10341–10362. [Google Scholar] [CrossRef]
- Marsz, A.A. Usłonecznienie. Stowarzyszenie Klimatologów Polskich. Available online: https://klimatolodzy.pl/index.php/pl/baza-wiedzy/elementy-meteorologiczne/uslonecznienie (accessed on 25 July 2024).
- Śmierzchalska, P.; Chmielowiec, M. Mapa Usłonecznienia w Polsce; Akademia Pomorska w Słupsku: Słupsk, Poland, 2015. [Google Scholar]
- Huld, T.A.; Šúri, M.; Dunlop, E.D.; Micale, F. Estimating average daytime and daily temperature profiles within Europe. Environ. Model. Softw. 2006, 21, 1650–1661. [Google Scholar] [CrossRef]
- Holme, R.; Viron, O. Characterization and implications of intradecadal variations in length of day. Nature 2013, 499, 202–204. [Google Scholar] [CrossRef]
- Paszkuta, M.; Zapadka, Z.; Krężel, A. Diurnal variation of cloud cover over the Baltic Sea. Oceanologia 2022, 64, 299–311. [Google Scholar] [CrossRef]
- Uścinowicz, S.; Zachowicz, J.; Graniczny, M.; Dobracki, R. Geological structure of the southern Baltic coast and related hazards. Pol. Geol. Inst. Spec. Pap. 2004, 15, 61–68. [Google Scholar]
- Gonser, S.G.; Klemm, O.; Griessbaum, F.; Chang, S.; Chu, H.; Hsia, Y. The Relation Between Humidity and Liquid Water Content in Fog: An Experimental Approach. Pure Appl. Geophys. 2011, 196, 821–833. [Google Scholar] [CrossRef]
- Entwistle, F. Fog. Aeronaut. J. 1928, 32, 342–384. [Google Scholar] [CrossRef]
- Ducongé, L.; Lac, C.; Vié, B.; Bergot, T.; Price, J.D. Fog in heterogeneous environments: The relative importance of local and non-local processes on radiative-advective fog formation. Q. J. R. Meteorol. Soc. 2020, 146, 2522–2546. [Google Scholar] [CrossRef]
- Liu, D.Y.; Yan, W.L.; Yang, J.; Pu, M.J.; Niu, S.J.; Li, Z.H. A Study of the Physical Processes of an Advection Fog Boundary Layer. Bound.-Layer Meteorol. 2015, 158, 125–138. [Google Scholar] [CrossRef]
- Carpenter, A.B. A Study of Pre-Warm Frontal Fog at Portland, Oregon. Bull. Am. Meteorol. Soc. 1941, 22, 47–51. [Google Scholar] [CrossRef]
- Dąbrowska, E.; Torbicki, M. Forecast of Hydro–Meteorological Changes in Southern Baltic Sea. Water 2024, 16, 1151. [Google Scholar] [CrossRef]
- Sun, J.; Lenschow, D.H.; Mahrt, L.; Nappo, C. The Relationships among Wind, Horizontal Pressure Gradient, and Turbulent Momentum Transport during CASES-99. J. Atmos. Sci. 2013, 70, 3397–3414. [Google Scholar] [CrossRef]
- Spiridonov, V.; Ćurić, M. Atmospheric Pressure and Wind. Fundam. Meteorol. 2020, 3, 87–114. [Google Scholar]
- Rohli, R.V.; Li, C. Effect of Friction. In Meteorology for Coastal Scientists; Springer: Berlin/Heidelberg, Germany, 2021; pp. 151–155. [Google Scholar]
- IMGW PIB, Biuletyn Południowego Bałtyku Monthly Reports from January 2013 to December 2023. Available online: https://klimat.imgw.pl/pl/biuletyn-baltyk/ (accessed on 23 July 2024).
- Weatherspark Całoroczny Klimat i Średnie Warunki Pogodowe w Gdańsk. Available online: https://pl.weatherspark.com/y/84138/%C5%9Arednie-warunki-pogodowe-w:-Gda%C5%84sk-Polska-w-ci%C4%85gu-roku (accessed on 12 April 2025).
- Wypych, A. Para Wodna w Troposferze Nad Europą, 1st ed.; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2018. [Google Scholar]
- Ahmad, A.; Biswas, A.; Warland, J.; Anjum, I. Atmospheric Humidity. In Climate Change and Agrometeorology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 53–82. [Google Scholar]
- Lee, S.S. Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system. Atmos. Chem. Phys. 2011, 11, 2179–2196. [Google Scholar] [CrossRef]
- Pierrehumbert, R.T.; Brogniez, H.; Rémy Roca, R. On the Relative Humidity of the Atmosphere. In The Global Circulation of the Atmosphere; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Stull, R. Wet-Bulb Temperature from Relative Humidity and Air Temperature. J. Appl. Meteorol. Climatol. 2011, 50, 2267–2269. [Google Scholar] [CrossRef]
- Rynska, J. Temperatura i wilgotność względna zawsze razem. Nowocz. Magazyn. Pismo O Syst. Skladowania I Magazynowania 2015, 17, 43–46. [Google Scholar]
- Pérez-Díaz, J.L.; Álvarez-Valenzuela, M.A.; García-Prada, J.C. The effect of the partial pressure of water vapor on the surface tension of the liquid water–air interface. J. Colloid Interface Sci. 2012, 381, 180–182. [Google Scholar] [CrossRef]
- Marsz, A.A.; Styszyńska, A. Wilgotność Powietrza. Stowarzyszenie Klimatologów Polskich. Available online: https://klimatolodzy.pl/index.php/pl/baza-wiedzy/elementy-meteorologiczne/wilgotnosc-powietrza (accessed on 25 July 2024).
- Mondal, B.; Mukherjee, T.; Finch, N.W.; Saha, A.; Gao, M.Z.; Palmer, T.A.; DebRoy, T. Vapor Pressure versus Temperature Relations of Common Elements. Materials 2023, 16, 50. [Google Scholar] [CrossRef]
- Bumke, K.; Karger, U.; Hasse, L.; Niekamp, K. Evaporation over the Baltic Sea as an example of a semi-enclosed sea. Contrib. Atmos. Phys. 1998, 71, 249–261. [Google Scholar]
- Knasik, M.; Rutkowski, D.; Tadajewski, A. Wpływ Warunków Hydrochemicznych Zalewu Szczecińskiego na Chemizm Wód Zatoki Pomorskiej z Uwzględnieniem Układów Hydrologicznych Estuarium Odry. In Proceedings of the Zebranie Plenarnego Komitetu Badań Morza Polskiej Akademii Nauk, Szczecin, Poland, 22 May 1990. [Google Scholar]
- Bendtsen, J.; Gustafsson, K.E.; Söderkvist, J.; Hansen, J.L.S. Ventilation of bottom water in the North Sea–Baltic Sea transition zone. J. Mar. Syst. 2009, 75, 138–149. [Google Scholar] [CrossRef]
- Lehmann, A.; Myrberg, K.; Post, P.; Chubarenko, I.; Dailidiene, I.; Hinrichsen, H.H.; Bukanova, T. Salinity dynamics of the Baltic Sea. Earth Syst. Dyn. 2022, 13, 373–392. [Google Scholar] [CrossRef]
- Holland, H.D. Sea level, sediments and the composition of seawater. Am. J. Sci. 2005, 305, 220–239. [Google Scholar] [CrossRef]
- Gustafsson, B.G. Quantification of water, salt, oxygen and nutrient exchange of the Baltic Sea from observations in the Arkona Basin. Cont. Shelf Res. 2001, 21, 1485–1500. [Google Scholar] [CrossRef]
- Samuelsson, M. Interannual salinity variations in the Baltic Sea during the period 1954–1990. Cont. Shelf Res. 1996, 16, 1463–1477. [Google Scholar] [CrossRef]
- Thurman, E.M.; Wershaw, R.L.; Malcolm, R.L.; Pinckney, D.J. Molecular size of aquatic humic substances. Org. Geochem. 1982, 4, 27–35. [Google Scholar] [CrossRef]
- Zalewska, T.; Iwaniak, M.; Kraśniewski, W.; Sapiega, P.; Danowska, B.; Saniewski, M.; Wawryniuk, K. Hydromorphology of the southern Baltic coastal and transitional waters–New index-based assessment method. Cont. Shelf Res. 2023, 270, 105195. [Google Scholar] [CrossRef]
- Bangel, H.; Schernewski, G.; Bachor, A.; Landsberg-Uczciwek, M. Spatial Pattern and Long-Term Development of Water Quality in the Oder Estuary; Institut Für Ostseeforschung: Warnemünde, Germany, 2004; p. 21. [Google Scholar]
- Stont, Z.I.; Bukanova, T.V. General features of air temperature over coastal waters of the south-eastern Baltic Sea for 2004–2017. Russ. J. Earth Sci. 2019, 19, 5. [Google Scholar] [CrossRef]
- Girjatowicz, J.P.; Świątek, M. Effects of atmospheric circulation on water temperature along the southern Baltic Sea coast. Oceanologia 2019, 61, 38–49. [Google Scholar] [CrossRef]
- Bradtke, K.; Herman, A.; Urbanski, J.A. Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea. Oceanologia 2010, 52, 345–362. [Google Scholar] [CrossRef]
- Janecki, M.; Dybowski, D.; Rak, D.; Dzierzbicka-Glowacka, L. A new method for thermocline and halocline depth determination at shallow seas. J. Phys. Oceanogr. 2022, 52, 2205–2218. [Google Scholar] [CrossRef]
- Prandke, H.; Stips, A. A model of Baltic thermocline turbulence patches, deduced from experimental investigations. Cont. Shelf Res. 1992, 12, 643–659. [Google Scholar] [CrossRef]
- Dutheil, C.; Meier, H.E.M.; Gröger, M.; Börgel, F. Understanding past and future sea surface temperature trends in the Baltic Sea. Clim. Dyn. 2022, 58, 3021–3039. [Google Scholar] [CrossRef]
- Liblik, T.; Lips, U. Stratification Has Strengthened in the Baltic Sea—An Analysis of 35 Years of Observational Data. Front. Earth Sci. 2019, 7, 00174. [Google Scholar] [CrossRef]
- Kożuchowski, K.; Wibig, J. Współczesne zmiany zlodzenia Bałtyku a cyrkulacja atmosferyczna. Przegląd Geofiz. 2024, 69, 87–113. [Google Scholar]
- Leppäranta, M.; Lewis, J.E. Observations of ice surface temperature and thickness in the Baltic Sea. Int. J. Remote Sens. 2007, 28, 3963–3977. [Google Scholar] [CrossRef]
- HELCOM ACTION. Conditions That Influence Good Environmental Status (GES) in the Baltic Sea. 2021. Available online: https://helcom.fi/wp-content/uploads/2021/11/Conditions-that-influence-Good-Environmental-Status-GES-in-the-Baltic-Sea.pdf (accessed on 23 July 2024).
- Medvedev, I.P.; Rabinovich, A.B.; Kulikov, E.A. Tides in Three Enclosed Basins: The Baltic, Black, and Caspian Seas. 2016. Available online: https://scispace.com/pdf/tides-in-three-enclosed-basins-the-baltic-black-and-caspian-15mwob1zbb.pdf (accessed on 27 April 2025).
- Ardalan, A.A.; Hashemifaraz, A. Tidal modeling based on satellite altimetry observations of TOPEX/Poseidon, Jason1, Jason2, and Jason3 with high prediction capability: A case study of the Baltic Sea. Geod. Geodyn. 2024, 15, 404–418. [Google Scholar] [CrossRef]
- Hagen, E.; Feistel, R. Observations of low-frequency current fluctuations in deep water of the Eastern Gotland Basin/Baltic Sea. J. Geophys. Res. Ocean. 2004, 109, C002017. [Google Scholar] [CrossRef]
- Jędrasik, J.; Kowalewski, M. Mean annual and seasonal circulation patterns and long-term variability of currents in the Baltic Sea. J. Mar. Syst. 2019, 193, 1–26. [Google Scholar] [CrossRef]
- Barnett, T.P.; Kenyon, K.E. Recent advances in the study of wind waves. Rep. Prog. Phys. 1975, 38, 667. [Google Scholar] [CrossRef]
- Brahtz, J.F.; Hendershott, M.C. Physical and hydrodynamical factors. In Ocean Engineering: Goals, Environment, Technology; John Wiley and Sons, Inc.: New York, NY, USA, 1968. [Google Scholar]
- Maat, N.; Kraan, C.; Oost, W.A. The roughness of wind waves. Bound.-Layer Meteorol. 1991, 54, 89–103. [Google Scholar] [CrossRef]
- Li, T.; Shen, L. The principal stage in wind-wave generation. J. Fluid Mech. 2022, 934, A41. [Google Scholar] [CrossRef]
- Phillips, O.M. On the generation of waves by turbulent wind. J. Fluid Mech. 2006, 2, 417–445. [Google Scholar] [CrossRef]
- Akademia Morska w Gdyni, Wydział Nawigacyjny, Katedra Meteorologii i Oceanografii Nautycznej. Falowanie Wiatrowe. 1999. Available online: https://archive.is/9p58 (accessed on 27 April 2025).
- Sokolov, A.; Chubarenko, B. Baltic sea wave climate in 1979–2018: Numerical modelling results. Ocean Eng. 2024, 297, 117088. [Google Scholar] [CrossRef]
- Vanem, E. Joint statistical models for significant wave height and wave period in a changing climate. Mar. Struct. 2016, 49, 180–205. [Google Scholar] [CrossRef]
- Munk, W.H. Proposed Uniform Procedure for Observing Waves and Interpreting Instrument Records; Wave Project Rep; Scripps Institution of Oceanography: San Diego, CA, USA, 1944; Volume 26, p. 22. [Google Scholar]
- Stewart, R.H. Introduction to Physical Oceanography; University Press of Florida: Gainesville, FL, USA, 2008. [Google Scholar]
- Kwiecień, K. Warunki klimatyczne. [w:] B. Augustowski (red.), Bałtyk Południowy. Gdańskie Towarzystwo Naukowe; Ossolineum: Wrocław, Poland, 1987; pp. 219–288. [Google Scholar]
- Kislov, A.V.; Surkova, G.V.; Arkhipkin, V.S. Occurence frequency of storm wind waves in the Baltic, Black, and Caspian Seas under changing climate conditions. Russ. Meteorol. Hydrol. 2016, 41, 121–129. [Google Scholar] [CrossRef]
- Pietrek, S.A.; Jasiński, J.M.; Winnicki, I.A. Analysis of a storm situation over the southern Baltic Sea using direct hydrometeorological and remote sensing measurements results. Zesz. Nauk. Akad. Morskiej Szczecinie 2014, 38, 81–88. [Google Scholar]
- Marosz, M.; Wójcik, R.; Biernacik, D.; Jakusik, E.; Pilarski, M.; Owczarek, M.; Miętus, M. Zmienność klimatu polski od połowy xx wieku. rezultaty projektu klimat poland’s climate variability 1951–2008. KLIMAT project’s results. Pr. I Stud. Geogr. 2011, 47, 51–66. [Google Scholar]
- IMGW PIB, Klimat Polski w. 2022. Available online: https://www.imgw.pl/sites/default/files/inline-files/klimat-polski-2022_raport-koncowy.pdf (accessed on 19 July 2024).
- Zalewska, T.; Wilman, B.; Łapeta, B.; Marosz, M.; Biernacik, D.; Wochna, A.; Iwaniak, M. Seawater temperature changes in the southern Baltic Sea (1959–2019) forced by climate change. Oceanologia 2024, 66, 37–55. [Google Scholar] [CrossRef]
- Qu, X.; Alex, H. Assessing snow albedo feedback in simulated climate change. J. Clim. 2006, 19, 2617–2630. [Google Scholar] [CrossRef]
- Gardner, A.S.; Sharp, M.J. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res. Earth Surf. 2010, 115, F001444. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Fletcher, C.G. Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Prog. Phys. Geogr. 2016, 40, 392–408. [Google Scholar] [CrossRef]
- Bednorz, T. Synoptic Conditions of the Occurrence of Snow Cover in Central European Lowlands; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Skliris, N.; Zika, J.D.; Nurser, G.; Josey, S.A.; Marsh, R. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep. 2016, 6, 38752. [Google Scholar] [CrossRef] [PubMed]
- Koźmiński, C.; Michalska, B. Międzydobowe zmiany ciśnienia atmosferycznego w strefie polskiego wybrzeża Bałtyku. Przegląd Geogr. 2010, 82, 73–84. [Google Scholar]
- Jakusik, E.; Wójcik, R.; Pilarski, M.; Biernacik, D.M.M.; Miętus, M. Poziom morza w polskiej strefie brzegowej–stan obecny i spodziewane zmiany w przyszłości. KLIMAT “Wpływ zmian klimatu na środowisko, gospodarkę i społeczeństwo (zmiany, skutki i sposoby ich ograniczania, wnioski dla nauki, praktyki inżynierskiej i planowania gospodarczego)”. Zadanie 2012, 6, 146–169. [Google Scholar]
- Weisse, R.; Dailidienė, I.; Hünicke, B.; Kahma, K.; Madsen, K.; Omstedt, A.; Parnell, K.; Schöne, T.; Soomere, T.; Zhang, W.; et al. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dyn. 2021, 12, 871–898. [Google Scholar] [CrossRef]
- Miętus, M. Vector of geostrophic wind in the Baltic Sea region as an index of local circulation and its relationship to hydro-meteorological characteristics along the Polish coast. In Proceedings of the European Workshop on Climate Variations, Majvik, Finland, 15–18 May 1994; pp. 8–23. [Google Scholar]
- IMGW PIB, Klimat Polski w. 2023. Available online: https://www.imgw.pl/sites/default/files/2024-05/imgw-pib_klimat_polski_2023_raport.pdf (accessed on 23 July 2024).
- IPCC; Core Writing Team; Pachauri, R.K.; Reisinger, A. (Eds.) Climate Change 2007: Synthesis Report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate IPCC; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Ustrnul, Z.; Czekierda, D.; Wypych, A. Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Phys. Chem. Earth Parts A/B/C 2010, 35, 429–436. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E.; Półrolniczak, M.; Kolendowicz, L. Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theor. Appl. Climatol. 2019, 137, 1909–1923. [Google Scholar] [CrossRef]
- Sztobryn, M.; Stanislawczyk, I. Changes of sea ice climate during the XX century–Polish coastal waters. In Proceedings of the Fourth Workshop on the Baltic Sea Ice Climate, Norrköping, Sweden, 22–24 May 2002; pp. 69–76. [Google Scholar]
- Dyrcz, C. Zlodzenie Morza Bałtyckiego w latach 2000–2018. Nautologia 2019, 156, 10–16. [Google Scholar]
- Sztobryn, M.; Wójcik, R.; Miętus, M. Występowanie zlodzenia na Bałtyku–stan obecny i spodziewane zmiany w przyszłości. In Warunki Klimatyczne i Oceanograficzne w Polsce i na Bałtyku Południowym. Spodziewane Zmiany i Wytyczne do Opracowania Strategii Adaptacyjnych w Gospodarce Krajowej, Seria Monografie; 2012; pp. 189–215. Available online: https://www.researchgate.net/publication/266605153_Wystepowanie_zlodzenia_na_Baltyku_-_stan_obecny_i_spodziewane_zmiany_w_przyszlosci (accessed on 15 April 2025).
- Ptak, M.; Choinski, A. Ice phenomena in rivers of the coastal zone (southern Baltic) in the years 1956–2015. Zone J. Ecol. Prot. Coastline 2016, 20, 73–83. [Google Scholar]
- Jevrejeva, S.; Drabkin, V.V.; Kostjukov, J.; Lebedev, A.A.; Leppäranta, M.; Mironov Ye, U.; Schmelzer, N.; Sztobryn, M. Baltic Sea ice seasons in the twentieth century. Clim. Res. 2004, 25, 217–227. [Google Scholar] [CrossRef]
- Nakićenović, N.; Swart, R. Emissions Scenarios—Special Report of the Intergovernmental Panel on Climate Change. 2000. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/sres-en.pdf (accessed on 15 April 2025).
- Directive 2012/33/EU of the European Parliament and of the Council of November 21 Amending Council Directive 1999/32/ as Regards the Sulfur Content of Marine Fuels. Available online: https://eur-lex.europa.eu/eli/dir/2012/33/oj/eng (accessed on 1 April 2025).
- Directive (EU) 2018/2001 on the Promotion of the Use of Energy from Renewable Sources. Renewable Energy Directive II. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 4 April 2025).
- Zannis, T.C.; Katsanis, J.S.; Christopoulos, G.P.; Yfantis, E.A.; Papagiannakis, R.G.; Pariotis, E.G.; Vallis, A.G. Marine exhaust gas treatment systems for compliance with the IMO 2020 global sulfur cap and tier III NOx limits: A review. Energies 2022, 15, 3638. [Google Scholar] [CrossRef]
- Livaniou, S.; Chatzistelios, G.; Lyridis, D.V.; Bellos, E. LNG vs. MDO in marine fuel emissions tracking. Sustainability 2022, 14, 3860. [Google Scholar] [CrossRef]
- Çelikaslan, Z.; Kılıç, A. Safety Precautions for The Use of LNG as Marine Fuel. J. Marit. Transp. Logist. 2023, 4, 11–22. [Google Scholar] [CrossRef]
- Salarkia, M.; Golabi, S.I. Liquefied Natural Gas (LNG): Alternative Marine Fuel Restriction and Regulation Considerations, Environmental and Economic Assessment. Energy Eng. Manag. 2023, 10, 44–59. [Google Scholar]
- DNV GL. Decarbonization of Maritime Transport: The Role of LNG and Hydrogen. In Energy Policy; DNV GL: Bærum, Norway, 2020. [Google Scholar]
- DNV GL. Rising LNG demand: Overcoming bunkering challenges. In Energy Policy; DNV GL: Bærum, Norway, 2025. [Google Scholar]
- Thunder Said Energy. The Research Consultancy for Energy Technologies. Available online: https://thundersaidenergy.com/ (accessed on 4 April 2025).
- Chae, G.Y.; An, S.H.; Lee, C.Y. Demand forecasting for liquified natural gas bunkering by country and region using meta-analysis and artificial intelligence. Sustainability 2021, 13, 9058. [Google Scholar] [CrossRef]
- International Energy Agency. Gas Market Report, Q1-2025; International Energy Agency: Paris, France, 2025. [Google Scholar]
- Gas Exporting Countries Forum. Global Gas Outlook 2050, 9th ed.; Gas Exporting Countries Forum: Doha, Qatar, 2025. [Google Scholar]
- International Energy Agency: 2021–2025: Rebound and beyond. Available online: https://www.iea.org/reports/gas-2020/2021-2025-rebound-and-beyond (accessed on 20 January 2025).
- Institute for Energy Economics and Financial Analysis. Global LNG Outlook 2024–2028. Available online: https://www.energy.gov/sites/default/files/2024-06/067.%20IEEFA%2C%20Global%20LNG%20Outlook%202024-2028.pdf (accessed on 1 April 2024).
- Central Statistical Office in Poland—Statistical Office in Szczecin, Statistical Yearbook of Maritime Economy. Warszawa, Szczecin 2021, 2022, 2023, 2024. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/ (accessed on 10 April 2024).
- IMO. International Code of Safety for Ships Using Gases or Other Low-Flashpoint Fuels (IGF Code); IMO: London, UK, 2017. [Google Scholar]
- ISO 20519; Ships and Marine Technology—Specification for Bunkering of Liquefied Natural Gas. ISO: Geneva, Switzerland, 1917.
- IMO MSC/Circ.850; Guidelines for the Prevention of LNG Leakage and Freezing of Equipment. IMO: London, UK, 1998.
- IMO MSC.285(86); Interim Guidelines on Safety for Natural Gas-Fueled Engine Installations. IMO: London, UK, 2009.
Gdańsk [hPa] | Hel [hPa] | Kołobrzeg [hPa] | Łeba [hPa] | Świnoujście [hPa] | Szczecin [hPa] | Ustka [hPa] | |
---|---|---|---|---|---|---|---|
January | 1011.6 | 1012.0 | 1012.4 | 1011.8 | 1012.6 | 1013.1 | 1010.9 |
February | 1014.9 | 1015.4 | 1015.0 | 1015.2 | 1016.0 | 1016.5 | 1014.4 |
March | 1014.1 | 1014.8 | 1015.8 | 1014.5 | 1014.6 | 1014.8 | 1013.5 |
April | 1015.1 | 1016.0 | 1016.5 | 1015.9 | 1015.9 | 1015.6 | 1015.0 |
May | 1015.5 | 1016.4 | 1015.5 | 1016.2 | 1016.1 | 1015.9 | 1015.2 |
June | 1015.0 | 1015.9 | 1015.6 | 1015.8 | 1015.6 | 1015.2 | 1014.8 |
July | 1012.6 | 1013.3 | 1013.4 | 1013.3 | 1013.8 | 1013.8 | 1012.5 |
August | 1013.8 | 1014.6 | 1013.9 | 1014.3 | 1014.1 | 1014.0 | 1013.3 |
September | 1015.4 | 1016.1 | 1015.2 | 1015.9 | 1015.9 | 1016.0 | 1014.9 |
October | 1013.3 | 1013.8 | 1012.8 | 1013.4 | 1013.3 | 1013.8 | 1012.3 |
November | 1013.7 | 1014.2 | 1011.4 | 1013.6 | 1012.9 | 1013.3 | 1012.5 |
December | 1011.1 | 1011.6 | 1010.4 | 1011.2 | 1011.1 | 1011.6 | 1010.1 |
Yearly | 1013.8 | 1014.5 | 1014.0 | 1014.3 | 1014.3 | 1014.5 | 1013.3 |
Port | Mean Total Yearly Precipitation [mm/m2] |
---|---|
Łeba | 661.6 |
Ustka | 666.9 |
Hel | 598.1 |
Świnoujście | 585.1 |
Szczecin | 567.0 |
Kołobrzeg | 697.6 |
Gdańsk | 571.1 |
Gdańsk [h] | Hel [h] | Kołobrzeg [h] | Łeba [h] | Świnoujście [h] | Szczecin [h] | Ustka [h] | |
---|---|---|---|---|---|---|---|
January | 37 | 36 | 38 | 39 | 18 | 38 | 35 |
February | 98 | 94 | 87 | 100 | 81 | 94 | 83 |
March | 165 | 160 | 152 | 170 | 154 | 157 | 158 |
April | 241 | 253 | 248 | 269 | 246 | 235 | 261 |
May | 277 | 286 | 279 | 312 | 280 | 269 | 317 |
June | 323 | 330 | 326 | 334 | 299 | 289 | 344 |
July | 266 | 272 | 270 | 300 | 268 | 256 | 298 |
August | 246 | 248 | 242 | 266 | 246 | 238 | 261 |
September | 204 | 201 | 195 | 207 | 196 | 202 | 198 |
October | 127 | 122 | 109 | 126 | 116 | 118 | 109 |
November | 49 | 50 | 40 | 50 | 29 | 48 | 40 |
December | 36 | 34 | 29 | 30 | 13 | 28 | 26 |
Total | 2069 | 2085 | 2016 | 2203 | 1946 | 1972 | 2129 |
Mist | |||||||
Gdańsk | Hel | Kołobrzeg | Łeba | Świnoujście | Szczecin | Ustka | |
January | 20 | 17 | 28 | 21 | 26 | 25 | 19 |
February | 15 | 14 | 17 | 13 | 19 | 19 | 13 |
March | 18 | 16 | 18 | 17 | 19 | 19 | 15 |
April | 10 | 8 | 10 | 9 | 9 | 7 | 8 |
May | 10 | 9 | 10 | 11 | 12 | 8 | 10 |
June | 12 | 9 | 16 | 13 | 9 | 7 | 8 |
July | 8 | 7 | 7 | 11 | 7 | 8 | 7 |
August | 12 | 3 | 10 | 6 | 8 | 5 | 4 |
September | 9 | 5 | 12 | 7 | 12 | 11 | 6 |
October | 17 | 11 | 14 | 13 | 19 | 19 | 10 |
November | 23 | 18 | 21 | 20 | 24 | 24 | 20 |
December | 23 | 18 | 21 | 21 | 24 | 22 | 19 |
Total | 178 | 134 | 182 | 161 | 188 | 173 | 139 |
Fog | |||||||
Gdańsk | Hel | Kołobrzeg | Łeba | Świnoujście | Szczecin | Ustka | |
January | 3 | 1 | 2 | 2 | 2 | 0 | 1 |
February | 4 | 1 | 4 | 3 | 2 | 3 | 3 |
March | 2 | 2 | 4 | 2 | 3 | 2 | 2 |
April | 4 | 2 | 4 | 7 | 1 | 1 | 3 |
May | 3 | 1 | 3 | 6 | 3 | 3 | 5 |
June | 3 | 1 | 7 | 11 | 1 | 1 | 7 |
July | 3 | 0 | 1 | 9 | 0 | 2 | 2 |
August | 6 | 0 | 3 | 3 | 0 | 2 | 1 |
September | 6 | 0 | 2 | 3 | 1 | 3 | 1 |
October | 5 | 1 | 2 | 3 | 2 | 7 | 1 |
November | 7 | 2 | 3 | 3 | 3 | 5 | 1 |
December | 4 | 2 | 4 | 3 | 2 | 2 | 1 |
Total | 49 | 11 | 38 | 55 | 21 | 31 | 29 |
Gdańsk | Hel | Kołobrzeg | Łeba | Świnoujście | Szczecin | Ustka | |
---|---|---|---|---|---|---|---|
January | 86 | 87 | 88 | 87 | 87 | 85 | 86 |
February | 81 | 83 | 83 | 84 | 81 | 79 | 82 |
March | 75 | 79 | 79 | 79 | 77 | 73 | 78 |
April | 72 | 75 | 77 | 75 | 75 | 67 | 76 |
May | 73 | 76 | 77 | 77 | 74 | 67 | 77 |
June | 74 | 77 | 78 | 78 | 75 | 68 | 77 |
July | 76 | 79 | 78 | 81 | 75 | 70 | 78 |
August | 76 | 80 | 80 | 81 | 77 | 73 | 77 |
September | 77 | 81 | 81 | 82 | 79 | 78 | 78 |
October | 83 | 85 | 84 | 84 | 84 | 83 | 81 |
November | 88 | 87 | 87 | 88 | 88 | 87 | 85 |
December | 88 | 88 | 87 | 88 | 89 | 87 | 86 |
Mean | 79 | 81 | 82 | 82 | 80 | 77 | 80 |
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 5.2 | 3.6 | 4.7 | 3.5 | 3.9 | 2.6 | 3.3 | 2.8 | 3.8 | 5.2 | 4.9 | 6.4 |
2014 | 5.0 | 3.8 | 4.4 | 3.0 | 3.4 | 3.9 | 2.2 | 3.8 | 5.5 | 3.5 | 2.9 | 4.5 |
2015 | 7.3 | 4.7 | 4.9 | 3.4 | 3.1 | 2.5 | 3.6 | 2.5 | 3.3 | 3.3 | 5.3 | 2.6 |
2016 | 2.4 | 2.2 | 1.8 | 1.3 | 1.4 | 1.2 | 1.5 | 3.4 | 3.3 | 4.4 | 5.4 | 5.9 |
2017 | 5.6 | 4.3 | 3.1 | 3.7 | 3.4 | 3.4 | 3.4 | 2.9 | 5.4 | 4.4 | 4.1 | 4.5 |
2018 | 4.5 | 3.5 | 3.9 | 3.6 | 2.6 | 3.1 | 3.2 | 3.6 | 4.9 | 4.7 | 3.1 | 3.9 |
2019 | 6.4 | 3.3 | 5.1 | 2.4 | 3.3 | 2.6 | 3.6 | 2.5 | 4.2 | 4.0 | 3.9 | 4.3 |
2020 | 3.9 | 4.7 | 5.7 | 4.3 | 2.9 | 2.9 | 3.3 | 2.3 | 3.4 | 4.8 | 4.2 | 3.2 |
2021 | 3.3 | 3.4 | 3.4 | 3.1 | 3.6 | 2.3 | 3.8 | 4.2 | 3.7 | 4.3 | 4.0 | 4.1 |
2022 | 5.2 | 5.0 | 2.8 | 4.4 | 2.7 | 2.1 | 2.8 | 3.0 | 3.0 | 3.2 | 2.9 | 5.0 |
2023 | 5.1 | 6.1 | 5.0 | 3.8 | 2.4 | 2.4 | 3.9 | 5.1 | 2.9 | 4.9 | 5.4 | 4.7 |
Mean | 4.9 | 4.1 | 4.1 | 3.3 | 3.0 | 2.6 | 3.1 | 3.3 | 3.9 | 4.2 | 4.2 | 4.5 |
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 16 | 13 | 15 | 10 | 9 | 8 | 8 | 10 | 13 | 17 | 13 | 22 |
2014 | 15 | 14 | 14 | 9 | 14 | 12 | 9 | 7 | 14 | 11 | 14 | 15 |
2015 | 21 | 14 | 11 | 11 | 11 | 11 | 11 | 12 | 13 | 12 | 11 | 10 |
2016 | 11 | 11 | 7 | 8 | 7 | 7 | 5 | 12 | 13 | 17 | 7 | 18 |
2017 | 18 | 15 | 10 | 10 | 10 | 12 | 9 | 11 | 18 | 17 | 14 | 13 |
2018 | 13 | 12 | 15 | 13 | 9 | 11 | 11 | 10 | 16 | 17 | 16 | 14 |
2019 | 19 | 13 | 15 | 12 | 12 | 6 | 12 | 9 | 15 | 13 | 10 | 13 |
2020 | 13 | 15 | 16 | 14 | 11 | 13 | 12 | 7 | 12 | 18 | 17 | 17 |
2021 | 11 | 14 | 14 | 11 | 11 | 10 | 12 | 12 | 16 | 15 | 13 | 8 |
2022 | 21 | 16 | 10 | 14 | 11 | 10 | 10 | 12 | 13 | 12 | 11 | 17 |
2023 | 15 | 19 | 18 | 14 | 9 | 7 | 15 | 18 | 10 | 17 | 16 | 17 |
Mean | 16 | 14 | 13 | 11 | 10 | 10 | 10 | 11 | 14 | 15 | 13 | 15 |
Northerly N (Sector 315–45°) | Easterly (Sector 45–135°) | Southerly (Sector 135–225°) | Westerly (Sector 225–315°) | |
---|---|---|---|---|
2013 | 17% | 8% | 0% | 75% |
2014 | 33% | 8% | 8% | 50% |
2015 | 8% | 17% | 8% | 67% |
2016 | 0% | 8% | 42% | 50% |
2017 | 17% | 8% | 25% | 50% |
2018 | 17% | 17% | 17% | 50% |
2019 | 17% | 8% | 8% | 67% |
2020 | 8% | 0% | 8% | 83% |
2021 | 0% | 8% | 17% | 75% |
2022 | 8% | 0% | 8% | 83% |
2023 | 8% | 0% | 25% | 67% |
Mean | 12% | 8% | 15% | 65% |
Western Baltic | Southern Baltic | Gulf of Finland | Sea of Åland | Bothnian Sea | Norra Kvarken | Bothnian Bay | |
---|---|---|---|---|---|---|---|
Mean | 1.3 | 1.9 | 4.3 | 2.3 | 4.1 | 6.2 | 7.9 |
Max | 5.6 | 4.8 | 6.6 | 5.8 | 6.5 | 8.0 | 9.3 |
Min | 0.0 | 0.1 | 0.8 | 0.0 | 0.5 | 2.9 | 5.6 |
Year | Total [Units] |
---|---|
2020 | 20,690 |
2021 | 24,387 |
2022 | 21,638 |
2023 | 18,735 |
2024 | 20,690 |
Weather Component | Boundary Value | Value in the Baltic Sea | Compliance with Regulations | Remarks |
---|---|---|---|---|
Wind speed | Max. 15–20 m/s | Max. 15–20 m/s | Yes | Additionally: guidelines of the Baltic ports. |
Sea state | Max. 3–4 Beaufort scale (wave height 1.25–2.5 m) | Max. 3–4 Beaufort scale (wave height 1.25–2.5 m) | Yes | Additionally: guidelines of the Baltic ports (due to frequent storms and short waves specific to the Baltic). |
Visibility | Min. 500 m–1 km | Minimum 500 m–1 km | Yes | Additionally: port guidelines. |
Air temperature | From −20 °C to +35 °C | From −20 °C to +35 °C | Yes | Specific to LNG: low temperatures may affect equipment performance and pose a risk of the freezing of valves. |
Precipitation | No heavy rain or snow | No heavy rain or snow | Yes | Provided that the risk of equipment failure and restricted visibility are minimized. |
Barometric pressure | Steady, no sudden changes | Steady, no sudden changes | Yes | Sudden changes may affect LNG cryogenic systems and LNG handling operations. |
Icing | No icing of equipment or infrastructure | No icing of equipment or infrastructure | Yes | Baltic ports require anti-icing systems for the LNG handling equipment/infrastructure, especially in winter. |
Humidity | Range: less than 90% | Less than 90% | Yes | High air humidity in a cold climate may lead to icing and hinder the operation of valves and cryogenic armature. |
Mist and fog | Operations prohibited at restricted visibility < 500 m | Operations prohibited at restricted visibility < 500 m | Yes | Standards for the Baltic ports, considering frequent fog. |
Sea currents | Max. 1.5 kn | Max. 1.5 kn | Yes | Additionally: guidelines of the Baltic ports (strong currents may affect the stability of vessels during the LNG bunkering operation). |
Salinity | - | Mean 7 PSU, in the Bothnian Bay < 3 | Lower than in oceans; the Baltic has a lower salinity than oceans (mean 35 PSU), which affects water quality | Additionally: guidelines of the Baltic ports. |
Sunshine duration | - | Summer 8–12 h daily, winter 0–3 h | Variable across seasons; highly dependent on the season—very short in winter, long in summer | Port guidelines. |
Waves | - | Mean 0.5–2 m, during storms 4–7 m | Sometimes above standard; values within standard, but during storms may be significantly higher than permitted | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orysiak, E.; Figas, J.; Prygiel, M.; Ziółek, M.; Ryłko, B. Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel. Appl. Sci. 2025, 15, 7118. https://doi.org/10.3390/app15137118
Orysiak E, Figas J, Prygiel M, Ziółek M, Ryłko B. Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel. Applied Sciences. 2025; 15(13):7118. https://doi.org/10.3390/app15137118
Chicago/Turabian StyleOrysiak, Ewelina, Jakub Figas, Maciej Prygiel, Maksymilian Ziółek, and Bartosz Ryłko. 2025. "Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel" Applied Sciences 15, no. 13: 7118. https://doi.org/10.3390/app15137118
APA StyleOrysiak, E., Figas, J., Prygiel, M., Ziółek, M., & Ryłko, B. (2025). Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel. Applied Sciences, 15(13), 7118. https://doi.org/10.3390/app15137118