Hybrid Machine Learning Model for Predicting Shear Strength of Rock Joints
Abstract
1. Introduction
2. Methodology
2.1. Multilayer Perception (MLP)
2.2. Slime Mold Algorithm (SMA)
2.3. SMA-MLP Model
3. Dataset Description and Processing
3.1. Data Processing
3.2. Performance Evaluation Indicators
4. Results and Analysis
4.1. Results of the Proposed Hybrid ML Model
4.2. Feature Importance Analysis
4.3. Comparison with Previous Models
4.4. Discussion on Data Processing Method
- (i)
- Z-score normalization (Equation (7)), which standardizes the data to have zero mean and unit variance;
- (ii)
- Min–Max normalization (Equation (13)), which linearly scales features into the [0, 1] interval;
- (iii)
- Arctangent normalization (Equation (14)), which applies a nonlinear transformation to compress input values into the (−1, 1) interval to suppress the influence of outliers.
4.5. Limitations
- (1)
- ML techniques extract knowledge from input data in datasets and construct corresponding nonlinear functions for prediction [75]. Due to differing underlying mechanisms, the output results of the trained models may vary across different datasets. The hyperparameters of the models trained on different datasets are inherently distinct. Therefore, to ensure optimal predictive accuracy in practical scenarios, it is advisable to retrain the model individually for each specific dataset, taking into account the unique geological, mechanical, and statistical characteristics inherent in that dataset. Such tailored training allows the model to better capture domain-specific patterns and minimizes potential biases arising from data heterogeneity.
- (2)
- High-quality datasets are fundamental to ensuring the predictive accuracy of ML models [76]. Input features have an important influence on the prediction accuracy of ML models. The datasets collected in Section 3 can be enriched by introducing new data to improve the model’s universality and prediction accuracy. It is worth mentioning that when combining data from different sources, it is necessary to pay attention to possible differences between measurements that may lead to bias or inconsistencies in the data. Additional features may need to be added to the combined dataset to ensure data consistency and integrity. In ML models, reasonable input feature selection and processing can significantly improve the performance of the model [77]. In addition, the size and diversity of the dataset are also important factors affecting the generalization ability of the model. Therefore, in the future, we plan to expand the dataset and improve the applicability of ML models by diversifying data sources and further optimizing input characteristics.
- (3)
- In subsequent studies, the application of this model to predict other properties of rock joints, such as shear stiffness and peak dilatancy angle, will be further explored. At the same time, the research scope will gradually expand to the engineering scale and will be combined with numerical simulation methods such as the simplified finite element model (FEM) [78] to evaluate the applicability and robustness of this method in a wider range of application scenarios. Therefore, it is necessary to combine more advanced machine learning algorithms to optimize model hyperparameters to improve the accuracy and generalization ability of model predictions.
- (4)
- The uncertainty inherent in ML models is another aspect that warrants attention. The main sources of uncertainty in this study include (i) data-level uncertainty caused by measurement errors, sampling bias, and the heterogeneity of geological conditions; (ii) algorithmic stochasticity stemming from random initialization and evolutionary processes during model optimization; (iii) sensitivity to hyperparameters and structural configurations of the hybrid ML model; and (iv) limited generalization capacity when applied to unseen or out-of-distribution datasets. To mitigate these uncertainties, future research should consider incorporating uncertainty quantification strategies—such as ensemble methods, bootstrap resampling, or Bayesian frameworks—to explicitly estimate and reduce the variance in model predictions. This will enhance the reliability and interpretability of the developed models when applied in practical engineering settings.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Selçuk, L.; Yabalak, E. Evaluation of the ratio between uniaxial compressive strength and Schmidt hammer rebound number and its effectiveness in predicting rock strength. Nondestruct. Test. Eval. 2015, 30, 1–12. [Google Scholar] [CrossRef]
- Shokri, B.J.; Mirzaghorbanali, A.; Nourizadeh, H.; McDougall, K.; Karunasena, W.; Aziz, N.; Entezam, S.; Entezam, A. Axial Load Transfer Mechanism in Fully Grouted Rock Bolting System: A Systematic Review. Appl. Sci. 2024, 14, 5232. [Google Scholar] [CrossRef]
- Xie, S.; Han, Z.; Lin, H. A quantitative model considering crack closure effect of rock materials. Int. J. Solids Struct. 2022, 251, 111758. [Google Scholar] [CrossRef]
- Mehranpour, M.H.; Kulatilake, P.H.S.W. Improvements for the smooth joint contact model of the particle flow code and its applications. Comput. Geotech. 2017, 87, 163–177. [Google Scholar] [CrossRef]
- Li, Y.; Su, G.; Liu, X.; Wang, L.; Cao, G.; Pang, J. Laboratory study of the effects of grouted rebar bolts on shear failure of structural planes in deep hard rocks. Int. J. Rock. Mech. Min. Sci. 2023, 162, 105308. [Google Scholar] [CrossRef]
- Xie, S.; Han, Z.; Zhou, T. A semiempirical constitutive relationship for rocks under uniaxial compression considering the initial damage recovery. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1300–1313. [Google Scholar] [CrossRef]
- Shang, J.; Zhao, Z.; Ma, S. On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: Insights from DEM modelling. Eng. Geol. 2018, 234, 153–166. [Google Scholar] [CrossRef]
- Bahaaddini, M.; Hagan, P.C.; Mitra, R.; Hebblewhite, B.K. Scale effect on the shear behaviour of rock joints based on a numerical study. Eng. Geol. 2014, 181, 212–223. [Google Scholar] [CrossRef]
- Guo, B.; Dong, H. Shear failure modes and AE characteristics of sandstone and marble fractures. Open Geosci. 2019, 11, 249–262. [Google Scholar] [CrossRef]
- Kainthola, A.; Singh, P.K.; Singh, T.N. Stability investigation of road cut slope in basaltic rockmass, Mahabaleshwar, India. Geosci. Front. 2015, 6, 837–845. [Google Scholar] [CrossRef]
- Patton, F.D. Multiple modes of shear failure in rock. In Proceedings of the 1st Congress of International Society of Rock Mechanics, Lisbon, Portugal, 25 September–1 October 1966. [Google Scholar]
- Li, H.; Feng, H.; Liu, B. Study on strength behaviors of rock joints under different shearing deformation velocities. Chin. J. Rock. Mech. Eng. 2006, 25, 2435–2440. [Google Scholar]
- Ladanyi, B.; Archambault, G. Simulation of shear behavior of a jointed rock mass. In Proceedings of The 11th US Symposium on Rock Mechanics (USRMS), Berkeley, CA, USA, 16–19 June 1969. [Google Scholar]
- Jaeger, J.C.; Cook, N.G.; Zimmerman, R. Fundamentals of Rock Mechanics; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Barton, N.; Choubey, V. The shear strength of rock joints in theory and practice. Rock. Mech. 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Jiang, Y.; Wu, X.; Wang, S. Rate-dependent mechanical behavior of rough rock joints. Int. J. Rock. Mech. Min. Sci. 2016, 83, 231–240. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Cheng, C.; Chen, Y.; Wang, Y.; Zhao, Y.; Yong, W. Shear strength model of joints based on Gaussian smoothing method and macro-micro roughness. Comput. Geotech. 2022, 143, 104605. [Google Scholar] [CrossRef]
- Desai, C.S. Disturbed state concept as unified constitutive modeling approach. J. Rock. Mech. Geotech. 2016, 8, 277–293. [Google Scholar] [CrossRef]
- Feng, W.; Zou, D.; Wang, T.; Qiao, C.; Xu, S. Study on a nonlinear shear damage constitutive of structural plane and application of discrete element. Comput. Geotech. 2023, 155, 105190. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Duan, H. A novel criterion for yield shear displacement of rock discontinuities based on renormalization group theory. Eng. Geol. 2023, 314, 107008. [Google Scholar] [CrossRef]
- Barton, N. Review of a new shear-strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Kleepmek, M.; Khamrat, S.; Thongprapha, T.; Fuenkajorn, K. Displacement velocity effects on rock fracture shear strengths. J. Struct. Geol. 2016, 90, 48–60. [Google Scholar] [CrossRef]
- Zhao, J. Joint surface matching and shear strength part B: JRC-JMC shear strength criterion. Int. J. Rock. Mech. Min. Sci. 1997, 34, 179–185. [Google Scholar] [CrossRef]
- Grasselli, G.; Egger, P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int. J. Rock. Mech. Min. Sci. 2003, 40, 25–40. [Google Scholar] [CrossRef]
- Singh, H.K.; Basu, A. Evaluation of existing criteria in estimating shear strength of natural rock discontinuities. Eng. Geol. 2018, 232, 171–181. [Google Scholar] [CrossRef]
- Barton, N. Shear strength Criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. J. Rock. Mech. Geotech. 2013, 5, 249–261. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Chen, Y.; Yao, R.; Sun, Z.; Zhou, X. Hybrid machine learning models to predict the shear strength of discontinuities with different joint wall compressive strength. Nondestruct. Test. Eval. 2024, 40, 2439–2459. [Google Scholar] [CrossRef]
- Karimpouli, S.; Tahmasebi, P. Physics informed machine learning: Seismic wave equation. Geosci. Front. 2020, 11, 1993–2001. [Google Scholar] [CrossRef]
- Shakirov, A.; Molchanov, A.; Ismailova, L.; Mezghani, M. Quantitative assessment of rock lithology from gamma-ray and mud logging data. Geoenergy Sci. Eng. 2023, 225, 211664. [Google Scholar] [CrossRef]
- Marques, A.E.; Pereira, A.F.G.; Ribeiro, B.M.; Prates, P.A. Machine learning applications in sheet metal constitutive Modelling: A review. Int. J. Solids Struct. 2024, 303, 113024. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Ma, T.; Peng, K.; Sun, Z. Prediction of joint roughness coefficient via hybrid machine learning model combined with principal components analysis. J. Rock. Mech. Geotech. Eng. 2025, 17, 2291–2306. [Google Scholar] [CrossRef]
- Dantas Neto, S.A.; Indraratna, B.; Oliveira, D.A.F.; de Assis, A.P. Modelling the shear behaviour of clean rock discontinuities using artificial neural networks. Rock. Mech. Rock. Eng. 2017, 50, 1817–1831. [Google Scholar] [CrossRef]
- Fathipour-Azar, H. Stacking ensemble machine learning-based shear strength model for rock discontinuity. Geotech. Geol. Eng. 2022, 40, 3091–3106. [Google Scholar] [CrossRef]
- Babanouri, N.; Fattahi, H. Constitutive modeling of rock fractures by improved support vector regression. Environ. Earth Sci. 2018, 77, 243. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Z.; Zhang, J. Predicting peak shear strength of rock fractures using tree-based models and convolutional neural network. Comput. Geotech. 2024, 166, 105965. [Google Scholar] [CrossRef]
- Arena, P.; Fortuna, L.; Re, R.; Xibilia, M.G. Multilayer perceptrons to approximate complex valued functions. Int. J. Neural Syst. 1995, 6, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Murlidhar, B.R.; Nguyen, H.; Rostami, J.; Bui, X.; Armaghani, D.J.; Ragam, P.; Mohamad, E.T. Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network. J. Rock. Mech. Geotech. Eng. 2021, 13, 1413–1427. [Google Scholar] [CrossRef]
- Babanouri, N.; Nasab, S.K.; Sarafrazi, S. A hybrid particle swarm optimization and multi-layer perceptron algorithm for bivariate fractal analysis of rock fractures roughness. Int. J. Rock. Mech. Min. Sci. 2013, 60, 66–74. [Google Scholar] [CrossRef]
- Ebrahimabadi, A.; Azimipour, M.; Bahreini, A. Prediction of roadheaders performance using artificial neural network approaches (MLP and KOSFM). J. Rock. Mech. Geotech. 2015, 7, 573–583. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, Z.; Lin, H.; Ma, T.; Peng, K.; Liu, H.; Liu, B. A new integrated intelligent computing paradigm for predicting joints shear strength. Geosci. Front. 2024, 15, 101884. [Google Scholar] [CrossRef]
- Xu, Y.G.; Liu, G.R.; Wu, Z.P.; Huang, X.M. Adaptive multilayer perceptron networks for detection of cracks in anisotropic laminated plates. Int. J. Solids Struct. 2001, 38, 5625–5645. [Google Scholar] [CrossRef]
- De Alcantara, N. Identification of steel bars immersed in reinforced concrete based on experimental results of eddy current testing and artificial neural network analysis. Nondestruct. Test. Eval. 2013, 28, 58–71. [Google Scholar] [CrossRef]
- Mfetoum, I.M.; Ngoh, S.K.; Molu, R.J.J.; Nde Kenfack, B.F.; Onguene, R.; Naoussi, S.R.D.; Tamba, J.G.; Bajaj, M.; Berhanu, M. Author Correction: A multilayer perceptron neural network approach for optimizing solar irradiance forecasting in Central Africa with meteorological insights. Sci. Rep. 2024, 14, 5334. [Google Scholar] [CrossRef]
- Deng, J. Structural reliability analysis for implicit performance function using radial basis function network. Int. J. Solids Struct. 2006, 43, 3255–3291. [Google Scholar] [CrossRef]
- Panahi, M.; Jaafari, A.; Shirzadi, A.; Shahabi, H.; Rahmati, O.; Omidvar, E.; Lee, S.; Bui, D.T. Deep learning neural networks for spatially explicit prediction of flash flood probability. Geosci. Front. 2021, 12, 101076. [Google Scholar] [CrossRef]
- Yang, L.B.; Nguyen-Thoi, T.; Tran, T.T. Predicting the friction angle of clays using a multi-layer perceptron neural network enhanced by yeo-johnson transformation and coral reefs optimization. J. Rock. Mech. Geotech. 2024, 16, 3982–4003. [Google Scholar] [CrossRef]
- Maroufi, K.; Zahmatkesh, I. Effect of lithological variations on the performance of artificial intelligence techniques for estimating total organic carbon through well logs. Geoenergy Sci. Eng. 2023, 220, 111213. [Google Scholar] [CrossRef]
- Li, S.M.; Chen, H.L.; Wang, M.J.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. -Int. J. Escience 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Chen, H.L.; Li, C.Y.; Mafarja, M.; Heidari, A.A.; Chen, Y.; Cai, Z.N. Slime mould algorithm: A comprehensive review of recent variants and applications. Int. J. Syst. Sci. 2023, 54, 204–235. [Google Scholar] [CrossRef]
- Albedran, H.; Alsamia, S.; Koch, E. Flower fertilization optimization algorithm with application to adaptive controllers. Sci. Rep. 2025, 15, 6273. [Google Scholar] [CrossRef]
- Ghiasi, R.; Noori, M.; Kuok, S.C.; Silik, A.; Wang, T.Y.; Pozo, F.; Altabey, W.A. Structural Assessment under Uncertain Parameters via the Interval Optimization Method Using the Slime Mold Algorithm. Appl. Sci. 2022, 12, 1876. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Chen, Y.F.; Yong, R.; Xiong, W.; Du, S.G. A damage constitutive model for shear behavior of joints based on determination of the yield point. Int. J. Rock. Mech. Min. Sci. 2020, 128, 104269. [Google Scholar] [CrossRef]
- Marinos, V. Tunnel behaviour and support associated with the weak rock masses of flysch. J. Rock. Mech. Geotech. Eng. 2014, 6, 227–239. [Google Scholar] [CrossRef]
- Xie, S.J.; Lin, H.; Duan, H.Y.; Liu, H.W.; Liu, B.H. Numerical study on cracking behavior and fracture failure mechanism of fractured rocks under shear loading. Comp. Part. Mech. 2024, 11, 903–920. [Google Scholar] [CrossRef]
- Babanouri, N.; Fattahi, H. An ANFIS–TLBO criterion for shear failure of rock joints. Soft Comput. 2020, 24, 4759–4773. [Google Scholar] [CrossRef]
- Hatamizadeh, A.; Sedaee, B. Simulation of carbonate reservoirs acidizing using machine and meta-learning methods and its optimization by the genetic algorithm. Geoenergy Sci. Eng. 2023, 223, 211509. [Google Scholar] [CrossRef]
- Ribeiro, M.G.D.; Ferreira, G.R.B.; Parente, L.E.R.; Batista, J.H.G.; Kubrusly, A.C.; Ayala, H.V.H.; Braga, A.M.B. Machine learning-based evaluation of eccentricity and acoustic impedance in oil well using VDL data. Geoenergy Sci. Eng. 2023, 231, 212288. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating TBM advance rate in granitic rocks. J. Rock. Mech. Geotech. 2019, 11, 779–789. [Google Scholar] [CrossRef]
- Achu, A.L.; Aju, C.D.; Di Napoli, M.; Prakash, P.; Gopinath, G.; Shaji, E.; Chandra, V. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geosci. Front. 2023, 14, 101657. [Google Scholar] [CrossRef]
- Liu, H.Y.; Ma, T.X.; Lin, Y.; Peng, K.; Hu, X.Q. Deep Learning in Rockburst Intensity Level Prediction: Performance Evaluation and Comparison of the NGO-CNN-BiGRU-Attention Model. Appl. Sci. 2024, 14, 5719. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Duan, H.; Yao, R.; Ma, T. A novel triaxial strength criterion for rocks based on the ultimate strength and its application. Geoenergy Sci. Eng. 2025, 246, 213590. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Chen, Y.; Ma, T. Modified Mohr–Coulomb criterion for nonlinear strength characteristics of rocks. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 2228–2242. [Google Scholar] [CrossRef]
- Khatti, J.; Grover, K.S. Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models. J. Rock. Mech. Geotech. 2023, 15, 3010–3038. [Google Scholar] [CrossRef]
- Kang, C.; Brotherton, M.; Anderson, K.; Semeniuk, K.; Mayer, G.; Law, A.; Xia, Z.Y.; Zhang, L.; Farrag, A.; You, J.; et al. Examination of the correlation between SPT and undrained shear strength: Case study of clay till in Alberta, Canada. Eng. Geol. 2024, 334, 107510. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.L.; Yang, Y.X.; Su, L. Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: Optimized XGBoost models and experimental validation. Constr. Build. Mater. 2024, 416, 135133. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Usman, M.; Guo, H.W. Spatiotemporal pore-water pressure prediction using multi-input long short-term memory. Eng. Geol. 2023, 322, 107194. [Google Scholar] [CrossRef]
- Ma, T.X.; Hu, X.Q.; Liu, H.Y.; Peng, K.; Lin, Y.; Chen, Y.; Luo, K. Elastic modulus prediction for high-temperature treated rock using multi-step hybrid ensemble model combined with coronavirus herd immunity optimizer. Measurement 2025, 240, 115596. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Su, L.; Niu, D.; Luo, D.; He, W. Investigation of electrical resistivity for fiber-reinforced coral aggregate concrete. Constr. Build. Mater. 2024, 414, 135011. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Han, T.; Huang, H.; Huang, X.; Wang, L.; Wu, Z. Pipeline deformation monitoring based on long-gauge FBG sensing system: Missing data recovery and deformation calculation. J. Civ. Struct. Health Monit. 2025, 1–25. [Google Scholar] [CrossRef]
- Montsion, R.M.; Perrouty, S.; Lindsay, M.D.; Jessell, M.W.; Sherlock, R. Development and application of feature engineered geological layers for ranking magmatic, volcanogenic, and orogenic system components in Archean greenstone belts. Geosci. Front. 2024, 15, 101759. [Google Scholar] [CrossRef]
- Yeomans, C.M.; Shail, R.K.; Grebby, S.; Nykänen, V.; Middleton, M.; Lusty, P.A.J. A machine learning approach to tungsten prospectivity modelling using knowledge-driven feature extraction and model confidence. Geosci. Front. 2020, 11, 2067–2081. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Han, T.; Wang, L.; Zhu, Z.; Huang, H.; Ding, J.; Wu, Z. Pipeline deformation prediction based on multi-source monitoring information and novel data-driven model. Eng. Struct. 2025, 337, 120461. [Google Scholar] [CrossRef]
- Abdollahi, A.; Li, D.; Deng, J.; Amini, A. An explainable artificial-intelligence-aided safety factor prediction of road embankments. Eng. Appl. Artif. Intell. 2024, 136, 108854. [Google Scholar] [CrossRef]
- Yuvaraj, P.; Murthy, A.R.; Iyer, N.R.; Samui, P.; Sekar, S.K. Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine. Int. J. Damage Mech. 2014, 23, 979–1004. [Google Scholar] [CrossRef]
- Ozsagir, M.; Erden, C.; Bol, E.; Sert, S.; Ozocak, A. Machine learning approaches for prediction of fine-grained soils liquefaction. Comput. Geotech. 2022, 152, 105014. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Han, T.; Su, L.; Zhu, X.; He, J.; Xie, S.; Shi, Y. Performance evaluation of hybrid fiber-reinforced concrete based on electrical resistivity: Experimental and data-driven method. Constr. Build. Mater. 2024, 446, 137992. [Google Scholar] [CrossRef]
- He, J.-X.; Xu, Z.-D.; Hu, Z.-W.; Zhang, L.-Y.; Li, Q.-Q.; Dong, Y.-R.; Milani, G. A novel multi-dimensional viscoelastic mitigation device: Shake table tests and numerical assessment of precast concrete sandwich wall panel structure. Eng. Struct. 2025, 336, 120388. [Google Scholar] [CrossRef]
- Rathnayaka, M.; Karunasinghe, D.; Gunasekara, C.; Wijesundara, K.; Lokuge, W.; Law, D.W. Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review. Constr. Build. Mater. 2024, 419, 135519. [Google Scholar] [CrossRef]
- Ma, T.X.; Chen, H.; Zhang, K.; Shen, L.X. The rheological intelligent constitutive model of debris flow: A new paradigm for integrating mechanics mechanisms with data-driven approaches by combining data mapping and deep learning. Expert Syst. Appl. 2025, 269, 126405. [Google Scholar] [CrossRef]
Variables | Skewness | Kurtosis | Coefficient of Variation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
σn (MPa) | 0.035 | −1.310 | 0.4724 | 0.57 | 1.3 | 2.5 |
σc (MPa) | −0.209 | −1.593 | 0.48818 | 8 | 37.37 | 52.505 |
E (GPa) | −0.015 | −1.483 | 0.42237 | 2.88 | 7.54 | 11.91 |
φb (°) | 0.395 | −1.889 | 0.09737 | 28 | 28 | 34 |
JRC | 0.229 | −1.392 | 0.49666 | 4.1 | 12.4 | 18.9 |
τp (MPa) | 0.511 | −0.262 | 0.46326 | 0.37 | 1.08 | 2.54 |
Model | Dataset | RMSE | MAE | R2 | VAF |
---|---|---|---|---|---|
SMA-MLP | Training set | 0.01819 | 0.01232 | 0.99863 | 99.864% |
Test set | 0.09699 | 0.06677 | 0.96869 | 97.145% | |
MLP | Training set | 0.03322 | 0.02306 | 0.99583 | 99.583% |
Test set | 0.14861 | 0.12334 | 0.89092 | 89.943% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, D.; Zhang, Y.; Lu, Z.; Lin, H.; Chen, Y. Hybrid Machine Learning Model for Predicting Shear Strength of Rock Joints. Appl. Sci. 2025, 15, 7097. https://doi.org/10.3390/app15137097
Lei D, Zhang Y, Lu Z, Lin H, Chen Y. Hybrid Machine Learning Model for Predicting Shear Strength of Rock Joints. Applied Sciences. 2025; 15(13):7097. https://doi.org/10.3390/app15137097
Chicago/Turabian StyleLei, Daxing, Yaoping Zhang, Zhigang Lu, Hang Lin, and Yifan Chen. 2025. "Hybrid Machine Learning Model for Predicting Shear Strength of Rock Joints" Applied Sciences 15, no. 13: 7097. https://doi.org/10.3390/app15137097
APA StyleLei, D., Zhang, Y., Lu, Z., Lin, H., & Chen, Y. (2025). Hybrid Machine Learning Model for Predicting Shear Strength of Rock Joints. Applied Sciences, 15(13), 7097. https://doi.org/10.3390/app15137097