Common Molecular Mechanisms and Biomarkers in Breast, Colon and Ovarian Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Strategy and Analysis
2.2. Data Mining and Protein Screening
2.3. Gene Ontology and KEGG Pathways Analysis
2.4. Clusters Identification and Protein-Protein Interaction Analysis
2.5. Validation
3. Results
3.1. Data Mining and Protein Screening
3.2. Interaction Networks
3.3. Identification of Common Proteins
3.4. Gene Ontology and KEGG Pathways Analysis
3.5. Clusters Identification
3.6. Protein-Protein Interaction Analysis
3.7. Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDR | False Discovery Rate |
GEPIA2 | Gene Expression Profiling Interactive Analysis |
GO | Gene Ontology |
GTEx | Genotype-Tissue Expression Project |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MCODE | Molecular Complex Detection |
PPI | Protein-Protein Interactions |
STRING | Search Tool for the Retrieval of Interacting Genes |
TCGA | The Cancer Genome Atlas |
References
- Labianca, R.; Beretta, G.D.; Kildani, B.; Milesi, L.; Merlin, F.; Mosconi, S.; Pessi, M.A.; Prochilo, T.; Quadri, A.; Gatta, G.; et al. Colon cancer. Crit. Rev. Oncol. 2010, 74, 106–133. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.; Sellers, T.; Rich, S.; Potter, J.; McGovern, P.; Kushi, L. Familial clustering of colon, breast, uterine, and ovarian cancers as assessed by family history. Genet. Epidemiol. 1993, 10, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Segelman, J.; Nordgren, A.; Lindström, L.; Frisell, J.; Martling, A. Increased risk of colorectal cancer in patients diagnosed with breast cancer in women. Cancer Epidemiol. 2016, 41, 57–62. [Google Scholar] [CrossRef]
- Abu-Sbeih, H.; Ali, F.S.; Ge, P.S.; Barcenas, C.H.; Lum, P.; Qiao, W.; Bresalier, R.S.; Bhutani, M.S.; Raju, G.S.; Wang, Y. Patients with breast cancer may be at higher risk of colorectal neoplasia. Ann. Gastroenterol. 2019, 32, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, A.; Lendorf, M.E.; Couchman, J.R.; Multhaupt, H.A. Breast and ovarian cancers: A survey and possible roles for the cell surface heparan sulfate proteoglycans. J. Histochem. Cytochem. 2012, 60, 9–21. [Google Scholar] [CrossRef]
- Farrell, C.; Lyman, M.; Freitag, K.; Fahey, C.; Piver, M.S.; Rodabaugh, K.J. The role of hereditary nonpolyposis colorectal cancer in the management of familial ovarian cancer. Genet. Med. 2006, 8, 653–657. [Google Scholar] [CrossRef]
- Iorga, C.; Iorga, C.R.; Grigorescu, A.; Bengulescu, I.; Constantin, T.; Strambu, V. Synchronous breast and colorectal malignant tumors-A systematic review. Life 2024, 14, 1008. [Google Scholar] [CrossRef]
- Tung, K.H.; Goodman, M.T.; Wu, A.H.; McDuffie, K.; Wilkens, L.R.; Nomura, A.M.; Kolonel, L.N. Aggregation of ovarian cancer with breast, ovarian, colorectal, and prostate cancer in first-degree relatives. Am. J. Epidemiol. 2004, 159, 750–758. [Google Scholar] [CrossRef]
- Auranen, S.A.; Grénman, S.K.; Mäkinen, J.I.; Salmi, T.A. Primary breast and colon cancer associated with endometrial or ovarian cancer. Ann. Chir. Gynaecol. Suppl. 1994, 208, 5–9. [Google Scholar]
- Llinás-Quintero, N.; Cabrera-Florez, E.; Mendoza-Fandiño, G.; Matute-Turizo, G.; Vasquez-Trespalacios, E.M.; Gallón-Villegas, L.J. Synchronous ovarian and breast cancers with a novel variant in BRCA2 gene: A case report. Case Rep. Oncol. Med. 2019, 2019, 6958952. [Google Scholar] [CrossRef]
- Travis, L.; Curtis, R.; Boice, J.; Platz, C.; Hankey, B.; Fraumeni, J. Second malignant neoplasms among long-term survivors of ovarian cancer. Cancer Res. 1996, 56, 1564–1570. [Google Scholar] [PubMed]
- Lagkadas, A.; Mantas, D.; Pittokopitou, S.; Papadimitriou, A.; Daglas, K.; Chionis, A.; Giannakopoulos, K. Ovarian metastasis from colorectal carcinoma: A case report and review of the literature. Int. J. Gynecol. Cancer 2019, 29, A484–A485. [Google Scholar] [CrossRef]
- Cheng, H.; Chang, C.; Wang, P.; Hung, P.; Chang, K. Breast metastasis and ovary metastasis of primary colon cancer. J. Cancer Res. Pract. 2015, 2, 330–334. [Google Scholar] [CrossRef]
- Reimer, R.; Hoover, R.; Fraumeni, J.; Young, R. Second primary neoplasms following ovarian cancer. J. Natl. Cancer Inst. 1978, 61, 1195–1197. [Google Scholar] [CrossRef]
- Mori, R.; Futamura, M.; Morimitsu, K.; Saigo, C.; Miyazaki, T.; Yoshida, K. The diagnosis of a metastatic breast tumor from ovarian cancer by the succession of a p53 mutation: A case report. World J. Surg. Oncol. 2017, 15, 117. [Google Scholar] [CrossRef]
- Ford, D.; Easton, D.F.; Bishop, D.T.; Narod, S.A.; Goldgar, D.E. Risks of cancer in BRCA1-mutation carriers. Lancet 1994, 343, 692–695. [Google Scholar] [CrossRef]
- Infante, M.; Arranz-Ledo, M.; Lastra, E.; Olaverri, A.; Ferreira, R.; Orozco, M.; Hernández, L.; Martínez, N.; Durán, M. Profiling of the genetic features of patients with breast, ovarian, colorectal and extracolonic cancers: Association to CHEK2 and PALB2 germline mutations. Clin. Chim. Acta 2024, 552, 117695. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y. The application and outlook of proteomics in Ovarian Cancer, Breast Cancer, and Colon Cancer. BIO Web Conf. 2024, 111, 03004. [Google Scholar] [CrossRef]
- Pawar, S.; Liew, T.O.; Stanam, A.; Lahiri, C. Common cancer biomarkers of breast and ovarian types identified through artificial intelligence. Chem. Biol. Drug Des. 2020, 96, 995–1004. [Google Scholar] [CrossRef]
- González-Vidal, A.; Mercado-Sáenz, S.; Burgos-Molina, A.M.; Alamilla-Presuel, J.C.; Alcaraz, M.; Sendra-Portero, F.; Ruiz-Gómez, M.J. Molecular Mechanisms of Resistance to Ionizing Radiation in S. cerevisiae and Its Relationship with Aging, Oxidative Stress, and Antioxidant Activity. Antioxidants 2023, 12, 1690. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Annika, G.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Oliveros, J.C.; Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. 2007–2015. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 7 February 2025).
- Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef]
- Garcia-Moreno, A.; López-Domínguez, R.; Villatoro-García, J.A.; Ramirez-Mena, A.; Aparicio-Puerta, E.; Hackenberg, M.; Pascual-Montano, A.; Carmona-Saez, P. Functional Enrichment Analysis of Regulatory Elements. Biomedicines 2022, 10, 590. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef]
- Shin, D.W.; Choi, Y.J.; Kim, H.S.; Han, K.D.; Yoon, H.; Park, Y.S.; Kim, N.; Lee, D.H. Secondary breast, ovarian, and uterine cancers after colorectal cancer: A nationwide population-based cohort study in Korea. Dis. Colon Rectum 2018, 61, 1250–1257. [Google Scholar] [CrossRef]
- Vasen, H.F. Inherited forms of colorectal, breast, and ovarian cancer: Guidelines for surveillance. Surg. Oncol. Clin. N. Am. 1994, 3, 501–521. [Google Scholar] [CrossRef]
- Woodward, E.R.; Green, K.; Burghel, G.J.; Bulman, M.; Clancy, T.; Lalloo, F.; Schlecht, H.; Wallace, A.J.; Evans, D.G. 30 year experience of index case identification and outcomes of cascade testing in high-risk breast and colorectal cancer predisposition genes. Eur. J. Hum. Genet. 2022, 30, 413–419. [Google Scholar] [CrossRef]
- Barili, V.; Ambrosini, E.; Bortesi, B.; Minari, R.; De Sensi, E.; Cannizzaro, I.R.; Taiani, A.; Michiara, M.; Sikokis, A.; Boggiani, D.; et al. Genetic Basis of Breast and Ovarian Cancer: Approaches and Lessons Learnt from Three Decades of Inherited Predisposition Testing. Genes 2024, 15, 219. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting p53 pathways: Mechanisms, structures and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Chapman, A.; Pickard, L.A.; Porplycia, D.; McConkey, H.; Jarosz, P.; Sinfield, J.; Lauzon-Young, C.; Cecchini, M.J.; Howlett, C.; et al. Evaluation of HER2 immunohistochemistry expression in non-standard solid tumors from a Single-Institution Prospective Cohort. Explor. Target. Anti-Tumor Ther. 2024, 5, 1100–1109. [Google Scholar] [CrossRef]
- Kanapathy Pillai, S.K.; Tay, A.; Nair, S.; Leong, C.O. Triple-negative breast cancer is associated with EGFR, CK5/6 and c-KIT expression in Malaysian women. BMC Clin. Pathol. 2012, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Shnaider, P.V.; Petrushanko, I.Y.; Aleshikova, O.I.; Babaeva, N.A.; Ashrafyan, L.A.; Borovkova, E.I.; Dobrokhotova, J.E.; Borovkov, I.M.; Shender, V.O.; Khomyakova, E. Expression level of CD117 (KIT) on ovarian cancer extracellular vesicles correlates with tumor aggressiveness. Front. Cell Dev. Biol. 2023, 11, 1057484. [Google Scholar] [CrossRef] [PubMed]
- Cheo, S.W.; Zhao, J.J.; Ong, P.Y.; Ow, S.G.W.; Ow, C.J.L.; Chan, G.H.J.; Walsh, R.J.; Lim, J.S.J.; Lim, S.E.; Lim, Y.W.; et al. Pathogenic germline variants in cancer predisposition genes in patients with multiple primary cancers in an Asian population and the role of extended panel genetic testing. ESMO Open 2025, 10, 104495. [Google Scholar] [CrossRef]
- Lepage, M.; Uhrhammer, N.; Molnar, I.; Privat, M.; Ponelle-Chachuat, F.; Gay-Bellile, M.; Bidet, Y.; Cavaillé, M. Prevalence of constitutional pathogenic variant in a cohort of 348 patients with multiple primary cancer addressed in oncogenetic consultation. Mol. Genet. Genom. Med. 2025, 13, e70086. [Google Scholar] [CrossRef]
- Nakano, Y.; Nishikawa, G.; Degawa, K.; Moriyoshi, K.; Kuriyama, K.; Watanabe, Y.; Miyamoto, S. A case of multiple advanced colon cancers with spontaneous regression of only one lesion after biopsy: A case report and literature review. Clin. J. Gastroenterol. 2025, 18, 393–398. [Google Scholar] [CrossRef]
- Burgos-Molina, A.M.; Mercado-Sáenz, S.; Cárdenas, C.; López-Díaz, B.; Sendra-Portero, F.; Ruiz-Gómez, M.J. Identification of new proteins related with cisplatin resistance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2021, 105, 1965–1977. [Google Scholar] [CrossRef]
- Alamilla-Presuel, J.C.; Burgos-Molina, A.M.; González-Vidal, A.; Sendra-Portero, F.; Ruiz-Gómez, M.J. Factors and molecular mechanisms of radiation resistance in cancer cells. Int. J. Radiat. Biol. 2022, 98, 1301–1315. [Google Scholar] [CrossRef]
- Friedenson, B. Identifying safeguards disabled by Epstein-Barr virus infections in genomes from patients with breast cancer: Chromosomal bioinformatics analysis. JMIRx Med 2025, 6, e50712. [Google Scholar] [CrossRef]
Breast Cancer | Colon Cancer | Ovarian Cancer |
---|---|---|
Breast adenocarcinoma | Anal canal adenocarcinoma | Endometrioid ovary carcinoma |
Breast cancer | Anal canal cancer | Hereditary breast ovarian cancer syndrome |
Breast carcinoma | Anal carcinoma | Krukenberg carcinoma |
Breast lymphoma | Anal canal neoplasm | Malignant epithelial tumor of ovary |
Breast neoplasm | Anus cancer | Malignant ovarian neoplasm |
Breast sarcoma | Anus adenocarcinoma | Ovarian cancer |
Cribriform carcinoma | Appendix cancer | Ovarian carcinoma |
Ductal carcinoma in situ | Cecum cancer | Ovarian cystadenocarcinoma |
Hereditary breast ovarian cancer syndrome | Cecum carcinoma | Ovarian neoplasm |
Invasive ductal carcinoma | Colon adenocarcinoma | Ovarian papillary adenocarcinoma |
Invasive lobular carcinoma | Colon cancer | Ovarian serous cystadenocarcinoma |
Lobular neoplasia | Colon carcinoma | Ovarian teratoma |
Mammary gland tumor cell line | Colonic adenocarcinoma cell | Ovarian tumor |
Mammary Paget’s disease | Colonic cancer cell | Ovary adenocarcinoma |
Triple-negative breast cancer | Colonic neoplasm | Ovary cancer |
Colorectal adenocarcinoma | ||
Colorectal cancer | ||
Colorectal carcinoma | ||
Colorectal neoplasm | ||
Rectum adenocarcinoma | ||
Rectum cancer | ||
Neoplasm of the colon | ||
Neoplasm of the large intestine | ||
Neoplasm of the rectum |
Protein | Description—Functions |
---|---|
AKT1 | RAC-alpha serine/threonine-protein kinase—Metabolism; proliferation; cell survival; growth; angiogenesis |
ANXA5 | Annexin A5—Anticoagulant protein; indirect inhibitor of the thromboplastin–specific complex |
BAX | Apoptosis regulator BAX—Mitochondrial apoptotic process; activation of CASP3 |
BRCA2 | Breast cancer type 2 susceptibility protein—Double-strand break repair |
CASP3 | Caspase-3 subunit p12—Activation of caspases responsible for apoptosis |
CDH1 | Cadherin-1—Connecting cells; regulation of cell–cell adhesions; mobility and proliferation of epithelial cells; invasive suppressor role; promotes uptake of bacteria |
CHEK2 | Serine/threonine-protein kinase Chk2—Cell cycle arrest; activation of DNA repair and apoptosis |
CTNNB1 | Catenin beta-1—Promotes phosphorylation and ubiquitination promoting degradation by the proteasome; regulation of cell adhesion |
ERBB2 | Receptor tyrosine-protein kinase erbB-2—Regulates outgrowth and stabilization of peripheral microtubules |
IDH2 | Isocitrate dehydrogenase [NADP], mitochondrial—Intermediary metabolism and energy production |
KIT | Mast/stem cell growth factor receptor Kit—Cell surface receptor; regulation of cell survival and proliferation; hematopoiesis; stem cell maintenance; gametogenesis; mast cell development; migration; melanogenesis |
KRAS | GTPase KRas, N-terminally processed—GTPase activity; regulation of cell proliferation; promoting oncogenic events |
KRT7 | Keratin, type II cytoskeletal 7—Blocks interferon-dependent interphase; stimulates DNA synthesis; regulation of the human papillomavirus type 16 E7 mRNA |
MDM2 | E3 ubiquitin-protein ligase Mdm2—Ubiquitination of p53/TP53 for degradation; inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis; nuclear export of p53/TP53; promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein; inhibits DAXX-mediated apoptosis |
MLH1 | DNA mismatch repair protein Mlh1—Component of the post-replicative DNA mismatch repair system (MMR); generates new entry points for the exonuclease EXO1 to degrade the DNA strand |
MSH2 | DNA mismatch repair protein Msh2—Component of the post-replicative DNA mismatch repair system (MMR); binds to DNA mismatches initiating DNA repair |
MSH6 | DNA mismatch repair protein Msh6—Component of the post-replicative DNA mismatch repair system (MMR); binds to DNA mismatches initiating DNA repair |
MYC | Myc proto-oncogene protein—Binds DNA; activates the transcription of growth-related genes; promotes angiogenesis; regulator of somatic reprogramming; controls self-renewal of embryonic stem cells; activates target gene expression |
PARP1 | Poly [ADP-ribose] polymerase 1—Plays a key role in DNA repair |
PIK3CA | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform—Activates signaling cascades involved in cell growth, survival, proliferation, motility, and morphology |
PTEN | Phosphatase and tensin homolog—Tumor suppressor; acts as a dual-specificity protein phosphatase; acts as a lipid phosphatase |
RABL3 | Rab-like protein 3—Member of RAS oncogene family like 3; belongs to the small GTPase superfamily |
RNF43 | E3 ubiquitin-protein ligase RNF43—Negative regulator of the Wnt signaling pathway by mediating the ubiquitination, endocytosis and subsequent degradation of Wnt receptor complex |
SMAD4 | Mothers against decapentaplegic homolog 4—In muscle physiology, plays a central role in the balance between atrophy and hypertrophy; acts synergistically with SMAD1 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression |
STK11 | Serine/threonine-protein kinase STK11—Tumor suppressor playing a role in cell metabolism, cell polarity, apoptosis and DNA damage response; promotes de activity of the AMPK family proteins |
TERT | Telomerase reverse transcriptase—Active in progenitor and cancer cells; inactive, or very low activity, in normal somatic cells; elongation of telomeres by acting as a reverse transcriptase |
TP53 | Cellular tumor antigen p53—Acts as a tumor suppressor; induces growth arrest or apoptosis depending on the physiological circumstances and cell type; involved in cell cycle regulation; apoptosis induction |
MCODE 1 1 | MCODE 2 2 | MCODE 3 3 |
---|---|---|
AKT1 | BRCA2 | CHEK2 |
CASP3 | MLH1 | ERBB2 |
CTNNB1 | MSH2 | KIT |
MDM2 | MSH6 | KRAS |
PTEN | PARP1 | |
TERT | TP53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Cañizares, V.M.; González-Vidal, A.; Burgos-Molina, A.M.; Mercado-Sáenz, S.; Sendra-Portero, F.; Ruiz-Gómez, M.J. Common Molecular Mechanisms and Biomarkers in Breast, Colon and Ovarian Cancer. Appl. Sci. 2025, 15, 7018. https://doi.org/10.3390/app15137018
García-Cañizares VM, González-Vidal A, Burgos-Molina AM, Mercado-Sáenz S, Sendra-Portero F, Ruiz-Gómez MJ. Common Molecular Mechanisms and Biomarkers in Breast, Colon and Ovarian Cancer. Applied Sciences. 2025; 15(13):7018. https://doi.org/10.3390/app15137018
Chicago/Turabian StyleGarcía-Cañizares, Vicente M., Alejandro González-Vidal, Antonio M. Burgos-Molina, Silvia Mercado-Sáenz, Francisco Sendra-Portero, and Miguel J. Ruiz-Gómez. 2025. "Common Molecular Mechanisms and Biomarkers in Breast, Colon and Ovarian Cancer" Applied Sciences 15, no. 13: 7018. https://doi.org/10.3390/app15137018
APA StyleGarcía-Cañizares, V. M., González-Vidal, A., Burgos-Molina, A. M., Mercado-Sáenz, S., Sendra-Portero, F., & Ruiz-Gómez, M. J. (2025). Common Molecular Mechanisms and Biomarkers in Breast, Colon and Ovarian Cancer. Applied Sciences, 15(13), 7018. https://doi.org/10.3390/app15137018