HRR-Based Calibration of an FDS Model for Office Fire Simulations Using Full-Scale Wood Crib Experiments
Abstract
1. Introduction
2. Experimental Set-Up
2.1. Scaling Strategy and Crib Configuration
- -
- cross-section of the wood stick (D2);
- -
- spacing between sticks (S);
- -
- crib height (hC);
- -
- number of sticks per row (n);
- -
- ventilated area (Av);
- -
- height of the ventilated area (hv);
- -
- initial mass of the crib (m0);
- -
- heat of combustion (HU).
2.2. Experimental Stand
2.3. Experimental Equipment and Data Collection
3. Experimental Results
- Slow burning phase (0–320 s);
- Active burning phase (320–700 s);
- Generalized burning phase (700–1280 s);
- Regression phase (1280–1600 s).
4. Development of the Numerical Model
4.1. Model Geometry
4.2. Domain and Mesh
4.3. Boundary Conditions and Burner Characteristics
- -
- Initial oxygen concentration was set to 20.8%;
- -
- Indoor temperature in the building was set to 20 °C;
- -
- Initial carbon dioxide concentration was set to 0.04%;
- -
- Initial visibility, at all points, was set to 30 m;
- -
- Atmospheric pressure was set to 101,325 Pa.
5. Numerical Results
5.1. Temperature Variation Inside the Stand
5.2. Air Velocity Variation Inside the Stand
5.3. Visibility and CO/CO2 Concentration Variation Inside the Stand
6. Numerical Model Calibration
6.1. Calibration Methodology
6.2. Calibration Based on HRR
6.3. Calibration Based on Temperature
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMahon, C. OSHA Office Space Requirements Per Person in 2023. Zippia. 2023. Available online: https://www.zippia.com/advice/how-much-office-space-per-employee/ (accessed on 14 May 2025).
- CBRE. Market Outlook H1 2023, Romania Real Estate Report. 2023. Available online: https://mktgdocs.cbre.com/2299/e8e123c5-f516-46db-a17e-bcf28937f65e-799713409.pdf (accessed on 14 May 2025).
- Alarie, Y. Toxicity of Fire Smoke. Crit. Rev. Toxicol. 2002, 32, 259–289. [Google Scholar] [CrossRef] [PubMed]
- Mei, F.; Tang, F.; Ling, X.; Yu, J. Evolution characteristics of fire smoke layer thickness in a mechanical ventilation tunnel with multiple point extraction. Appl. Therm. Eng. 2017, 111, 248–256. [Google Scholar] [CrossRef]
- La Nasa, J.; Lomonaco, T.; Manco, E.; Ceccarini, A.; Fuoco, R.; Corti, A.; Modugno, F.; Castelvetro, V.; Degano, I. Plastic breeze: Volatile organic compounds (VOCs) emitted by degrading macro- and microplastics analyzed by selected ion flow-tube mass spectrometry. Chemosphere 2021, 270, 128612. [Google Scholar] [CrossRef]
- Woolley, W.D.; Raftery, M.M. Smoke and toxicity hazards of plastics in fires. J. Hazard. Mater. 1975, 1, 215–222. [Google Scholar] [CrossRef]
- Gormsen, H.; Jeppesen, N.; Lund, A. The causes of death in fire victims. Forensic Sci. Int. 1984, 24, 107–111. [Google Scholar] [CrossRef]
- Ene, I.-C.; Iordache, V.; Becheru, A.-G. The influence of ventilation factors on the development of fires in rooms and buildings. Review of numerical studies. Rom. J. Civ. Eng. 2023, 14, 96–106. [Google Scholar] [CrossRef]
- Babrauskas, V.; Williamson, R. The historical basis of fire resistance testing—Part I. Fire Technol. 1978, 14, 184–194. [Google Scholar] [CrossRef]
- Ariyanayagam, A.D.; Mahendran, M. Fire Safety of Buildings Based on Realistic Fire Time-Temperature Curves. In Proceedings of the 19th International CIB World Building Congress, Brisbane 2013: Construction and Society, Brisbane, Australia, 5–9 May 2013. [Google Scholar]
- EN 1991-1-2: 2005; Eurocode 1: Actions on Structures—Part 1-2: General Actions—Actions on Structures Exposed to Fire. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- Van Mierlo, R.; Sette, B. The Single Burning Item (SBI) test method-a decade of development and plans for the near future. Heron 2005, 50, 191–208. [Google Scholar]
- Proulx, G. Highrise evacuation: A questionable concept. In Proceedings of the 2nd International Symposium on Human Behaviour in Fire, London, UK, 12–14 March 2001; pp. 221–230. [Google Scholar]
- ISO 13943:2017; Fire Safety-Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2017.
- Brohez, S.; Caravita, I. Fire induced pressure in airthigh houses: Experiments and FDS validation. Fire Saf. J. 2020, 114, 103008. [Google Scholar] [CrossRef]
- Gao, R.; Fang, Z.; Li, A.; Shi, C.; Che, L. Estimation of building ventilation on the heat release rate of fire in a room. Appl. Therm. Eng. 2017, 121, 1111–1116. [Google Scholar] [CrossRef]
- Yuan, M.; Chen, B.; Li, C.; Zhang, J.; Lu, S. Analysis of the Combustion Efficiencies and Heat Release Rates of Pool Fires in Ceiling Vented Compartments. Procedia Eng. 2013, 62, 275–282. [Google Scholar] [CrossRef]
- Himoto, K.; Shinohara, M.; Sekizawa, A.; Takanashi, K.; Saiki, H. A field experiment on fire spread within a group of model houses. Fire Saf. J. 2018, 96, 105–114. [Google Scholar] [CrossRef]
- Shi, W.; Ji, J.; Sun, J.; Lo, S.; Li, L.; Yuan, X. Experimental Study on the Characteristics of Temperature Field of Fire Room under Stack Effect in a Scaled High-rise Building Model. Fire Saf. Sci. 2014, 11, 419–431. [Google Scholar] [CrossRef]
- Miloua, H.; Azzi, A.; Wang, H.Y. Evaluation of different numerical approaches for a ventilated tunnel fire. J. Fire Sci. 2011, 29, 403–429. [Google Scholar] [CrossRef]
- Leisted, R.R.; Sørensen, M.X.; Jomaas, G. Experimental study on the influence of different thermal insulation materials on the fire dynamics in a reduced-scale enclosure. Fire Saf. J. 2017, 93, 114–125. [Google Scholar] [CrossRef]
- Stewart, J.R.; Phylaktou, H.N.; Andrews, G.E.; Burns, A.D. Evaluation of CFD simulations of transient pool fire burning rates. J. Loss Prev. Process Ind. 2021, 71, 104495. [Google Scholar] [CrossRef]
- Bolina, F.L.; Fachinelli, E.G.; Pachla, E.C.; Centeno, F.R. A critical analysis of the influence of architecture on the temperature field of RC structures subjected to fire using CFD and FEA models. Appl. Therm. Eng. 2024, 247, 123086. [Google Scholar] [CrossRef]
- Ene, I.-C.; Iordache, V.; Anghel, I. The Impact of an Office Fire Combined with the Stack Effect in a Multi-Story Building. Appl. Sci. 2024, 14, 11659. [Google Scholar] [CrossRef]
- Harvie, D.J.E.; Novozhilov, V.; Kent, J.H.; Fletcher, F.D. An experimental study of wood crib extinguishment by a sprinkler spray. J. Appl. Fire Sci. 1999, 8, 247–263. [Google Scholar] [CrossRef]
- Larsson, I.; Ingason, H.; Arvidson, M. Model Scale Fire Tests on a Vehicle Deck on Board a Ship. 2005. Available online: http://www.diva-portal.org/smash/get/diva2:962221/FULLTEXT01.pdf (accessed on 20 May 2025).
- Xu, Q.; Griffin, G.J.; Jiang, Y.; Bicknell, A.D.; Bradbury, G.P.; White, N. Calibration burning of wood crib under ISO9705 hood. J. Therm. Anal. Calorim. 2008, 91, 355–358. [Google Scholar] [CrossRef]
- ISO 9705-1:2016; Reaction to Fire Tests—Room Corner Test for Wall and Ceiling Lining Products—Part 1: Test Method for a Small Room Configuration. ISO: Geneva, Switzerland, 2016; p. 42.
- SR EN 1991-1-2:2004; Eurocode 1: Actions on Structures—Part 1-2: General Actions—Actions on Structures Exposed to Fire. Romanian Standards Association (ASRO): Bucharest, Romania, 2004.
- Degler, J.; Eliasson, A.; Anderson, J.; Lange, D.; Rush, D. A-Priori Modelling of the Tisova Fire Test as Input to the Experimental Work. In Proceedings of the 1rst International Conference on Structural Safety under Fire & Blast, Glasgow, UK, 2–4 September 2015. [Google Scholar]
- Dima, M. Research Report No. 3; Technical University of Civil Engineering of Bucharest: Bucharest, Romania, 2021. [Google Scholar]
- Karlsson, B.; Quintiere, J.G. Enclosure Fire Dynamics; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Glenn, P. Forney Smokeview, A Tool for Visualizing Fire Dynamics Simulation Data: User’s Guide; NIST Special Publication: Gaithersburg, MD, USA, 2016; Volume I, p. 223. Available online: https://pages.nist.gov/fds-smv/manuals.html (accessed on 18 May 2025).
- Glenn, P. Forney Smokeview, A Tool for Visualizing Fire Dynamics Simulation Data: Verification Guide; NIST Special Publication: Gaithersburg, MD, USA, 2016; Volume III, p. 105. Available online: https://www.nist.gov/publications/smokeview-version-6-tool-visualizing-fire-dynamics-simulation-data-volume-iii (accessed on 18 May 2025).
- Glenn, P. Forney Smokeview, A Tool for Visualizing Fire Dynamics Simulation Data: Technical Reference Guide, NIST Special Publication : Gaithersburg, MD, USA, 2016; Volume II, p. 88. Available online: https://www.fse-italia.eu/PDF/ManualiFDS/SMV_Technical_Reference_Guide.pdf (accessed on 18 May 2025).
- Norén, J.; Rosberg, D. Developing a swedish best practice guideline for proper use of cfd-models when performing aset-analysis. In Proceedings of the Fire and Evacuation Modeling Technical Conference (FEMTC), Gaithersburg, MD, USA, 8–10 September 2014; p. 11. Available online: https://files.thunderheadeng.com/femtc/2014_d1-10-rosberg-paper.pdf (accessed on 18 May 2025).
- Degler, J.; Eliasson, A. A Priori Modeling of the Tisova Fire Test in FDS.; Luleå University of Technology: Luleå, Sweden, 2015. [Google Scholar]
- Su, L.-chu; Wu, X.; Zhang, X.; Huang, X. Smart performance-based design for building fire safety: Prediction of smoke motion via AI. J. Build. Eng. 2021, 43, 102529. [Google Scholar] [CrossRef]
- He, Y. Evaluating Visibility Using FDS Modelling Result. In Proceedings of the International Fire Safety Engineering Conference 2009, 18–19 March, Melbourne, Society of Fire Safety. p. 12. Available online: https://www.westernsydney.edu.au/__data/assets/pdf_file/0006/208716/Evaluating_Visibility_Using_FDS_Modelling_Result.pdf (accessed on 20 May 2025).
- Lulea, M.D.; Iordache, V.; Nastase, I. Numerical Model Development of the Air Temperature Variation in a Room Set on Fire for Different Ventilation Scenarios Marius Dorin Lulea, Vlad Iordache * and Ilinca Năstase. Appl. Sci. 2021, 11, 11698. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Vanella, M. Fire Dynamics Simulator Technical Reference Guide: Verification; NIST Special Publication: Gaithersburg, MD, USA, 2013; Volume II, p. 300. Available online: https://pages.nist.gov/fds-smv/ (accessed on 18 May 2025).
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Vanella, M. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. 2022; p. 207. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1018e6.pdf (accessed on 20 May 2025).
- Klein, R.; Maevski, I.; Bott, J.; Calado, A. Estimating water density for tunnel fixed firefighting system and ventilation requirements to control fires in road tunnels. Fire Saf. J. 2021, 120, 103180. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Vanella, M. Fire Dynamics Simulator User’s Guide, 6th ed.; NIST Special Publication: Gaithersburg, MD, USA, 2013; Volume 434. [CrossRef]
- Panindre, P.; Mousavi, N.S.S.; Kumar, S. Positive Pressure Ventilation for fighting wind-driven high-rise fires: Simulation-based analysis and optimization. Fire Saf. J. 2017, 87, 57–64. [Google Scholar] [CrossRef]
- Panindre, P.; Mousavi, N.S.S.; Kumar, S. Improvement of Positive Pressure Ventilation by optimizing stairwell door opening area. Fire Saf. J. 2017, 92, 195–198. [Google Scholar] [CrossRef]
- Engineering, T. FDS t2 (t-square) Heat Release Rate Calculators, Freezing HRR and Stopping a Simulation after Device Activation. 2021. Available online: https://files.thunderheadeng.com/support/files/t2-hrr-calc-freeze.zip (accessed on 20 May 2025).
- Babrauskas, V. Ignition Handbook; Published by Fire Science Publishers: Issaquah, WA, USA, Co-Published by the Society of Fire Protection Engineers; ISBN 0-9728111-3-3/978-0-9728111-3-2. 2003; Available online: https://doctorfire.com/product/ignition-handbook-pdf-download/ (accessed on 20 May 2025).
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Vanella, M. Fire Dynamics Simulator Technical Reference Guide: Validation, 6th ed.; NIST Special Publication: Gaithersburg, MD, USA; Volume III, p. 1134. Available online: https://pages.nist.gov/fds-smv/ (accessed on 20 May 2025).
- Wahlqvist, J.; Van Hees, P. Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior. Fire Saf. J. 2013, 62, 102–114. [Google Scholar] [CrossRef]
- Steven, J.R.; Kenneth, D.S.; Anthony, H.; Thomas, G.C.; Jiann, Y.C.; Takashi, K. The Effect of Sample Size on the Heat Release Rate of Charring Materials. In Proceedings of the International Association for Fire Safety Science, Melbourne, Australia, 3–7 March 1997; pp. 177–188. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=22bb5f999feadd19c789003f7d52d12854dad922 (accessed on 18 May 2025).
- Waldeck, B. A Comparison Between FDS and the Multi-Zone Fire Model Regarding Gas Temperature and Visibility in Enclosure Fires. Bachelor’s Thesis, Lund University, Lund, Sweden, 2020. [Google Scholar]
Input Data | Output Data |
---|---|
Domain meshing type | Result Precision |
Cell size | Calculation Processing Time |
Surface area of the cribs |
Average Values Compared (0–1280 s) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TC names (°C) | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14 |
Experiment | 626.2 | 595.8 | 635.9 | 548.9 | 455.4 | 671.5 | 607.4 | 535.6 | 480.9 | 631.3 | 524.0 | 565.7 | 466.4 | 666.7 |
Simulation | 624.9 | 626.6 | 568.9 | 490.2 | 433.8 | 624.9 | 587.0 | 515.4 | 460.3 | 369.6 | 337.0 | 401.3 | 316.1 | 613.7 |
Average error | 0.2% | 4.9% | 11.8% | 12.0% | 5.0% | 7.5% | 3.5% | 3.9% | 4.5% | 70.8% | 55.5% | 41.0% | 47.5% | 8.6% |
TC names (°C) | T15 | T16 | T17 | T18 | T19 | T20 | T21 | T22 | T23 | T24 | T25 | T26 | T27 | |
Experiment | 644.6 | 644.9 | 604.2 | 673.8 | 647.5 | 602.6 | 653.4 | 665.5 | 603.4 | 646.7 | 611.4 | 596.4 | 435.6 | |
Simulation | 626.7 | 626.5 | 695.8 | 650.4 | 683.0 | 682.6 | 643.8 | 620.2 | 653.0 | 614.5 | 687.4 | 624.0 | 552.5 | |
Average error | 2.9% | 2.9% | 13.2% | 3.6% | 5.2% | 11.7% | 1.5% | 7.3% | 7.6% | 5.2% | 11.1% | 4.4% | 21.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, I.-C.; Iordache, V.; Dima, M.; Anghel, I. HRR-Based Calibration of an FDS Model for Office Fire Simulations Using Full-Scale Wood Crib Experiments. Appl. Sci. 2025, 15, 6909. https://doi.org/10.3390/app15126909
Ene I-C, Iordache V, Dima M, Anghel I. HRR-Based Calibration of an FDS Model for Office Fire Simulations Using Full-Scale Wood Crib Experiments. Applied Sciences. 2025; 15(12):6909. https://doi.org/10.3390/app15126909
Chicago/Turabian StyleEne, Iulian-Cristian, Vlad Iordache, Mihai Dima, and Ion Anghel. 2025. "HRR-Based Calibration of an FDS Model for Office Fire Simulations Using Full-Scale Wood Crib Experiments" Applied Sciences 15, no. 12: 6909. https://doi.org/10.3390/app15126909
APA StyleEne, I.-C., Iordache, V., Dima, M., & Anghel, I. (2025). HRR-Based Calibration of an FDS Model for Office Fire Simulations Using Full-Scale Wood Crib Experiments. Applied Sciences, 15(12), 6909. https://doi.org/10.3390/app15126909