Physiological Differences in Cardiorespiratory and Metabolic Parameters Between Football Players from Top- and Mid-Ranked Teams in the Serbian Super League
Abstract
1. Introduction
1.1. Cardiorespiratory Demand in Football Players
1.2. Metabolic Demand in Football Players
1.3. Metabolic Demand in Football Players of Different National Leagues
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Anthropometric Characteristics
2.4. Cardiorespiratory Parameters
2.5. Lactate Parameters
2.6. Statistics
3. Results
4. Discussion
Limitations and Future Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TR | Top-ranked team |
MR | Middle-ranked team |
HRmax | Maximum heart rate (bpm) |
THRmax | Theoretical maximum heart rate (bpm) |
V AT | Anaerobic threshold speed (km/h) |
%HRmax | Achieve % of the load on test (%) |
HR AT | Heart rate at the anaerobic threshold (bpm) |
HR AT% | Heart rate at the anaerobic threshold percentages (%) |
HR AT/kg | Cardiovascular efficiency (score) |
%HR AT/kg | Percentage of cardiovascular efficiency (%) |
VO2max | Maximum oxygen uptake (ml/kg/min) |
VO2max/v | Running efficiency (score) |
VO2max/HR | Cardiorespiratory efficiency (score) |
HR 1′ | Heart rate at the first minute of recovery (bpm) |
HR 2′ | Heart rate at the second minute of recovery (bpm) |
%Re 1′ | Percentage of recovery in the first minute (%) |
%Re 2′ | Percentage of recovery in the second minute (%) |
RL | Rest lactate (mmol/L) |
LA 4′ | Lactate at 4 min (mmol/L) |
LA 10′ | Lactate at 10 min (mmol/L) |
Index LA | Metabolic recovery index (score) |
Index ME | Metabolic efficiency index (score) |
References
- Ekblom, B. Applied physiology of soccer. Sports Med. 1986, 3, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Matkovic, B.R.; Jankovic, S.; Heimer, S. Physiological profile of top Croatian soccer players. In Science and Football II; E&FN Spon: London, UK, 1993; pp. 37–39. [Google Scholar]
- Dolci, F.; Hart, N.H.; Kilding, A.; Chivers, P.; Piggott, B.; Spiteri, T. Movement economy in soccer: Current data and limitations. Sports 2018, 6, 124. [Google Scholar] [CrossRef] [PubMed]
- Wisloeff, U.; Helgerud, J.; Hoff, J. Strength and endurance of elite soccer players. Med. Sci. Sports Exerc. 1998, 30, 462–467. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sports Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.; Blanco-Villaseñor, A.; Alvarez, D. Contextual variables and time-motion analysis in soccer. Int. J. Sports Med. 2011, 32, 415–421. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of high intensity activity in Premier League soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F.M. Variation in top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef]
- Reilly, T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997, 15, 257–263. [Google Scholar] [CrossRef]
- Duarte, R.; Araújo, D.; Correia, V.; Davids, K. Sports teams as superorganisms: Implications of sociobiological models of behaviour for research and practice in team sports performance analysis. Sports Med. 2012, 42, 633–642. [Google Scholar] [CrossRef]
- Bangsbo, J.; Michalsik, L. Assessment of the physiological capacity of elite soccer players. In Science and Football IV; Reilly, T., Ed.; Routledge: London, UK, 2002; pp. 53–62. [Google Scholar]
- Bradley, P.S.; Di Mascio, M.; Peart, D.; Olsen, P.; Sheldon, B. High-intensity activity profiles of elite soccer players at different performance levels. J. Strength Cond. Res. 2010, 24, 2343–2351. [Google Scholar] [CrossRef]
- Almeida, A.M.D.; Santos Silva, P.R.; Pedrinelli, A.; Hernandez, A.J. Aerobic fitness in professional soccer players after anterior cruciate ligament reconstruction. PLoS ONE 2018, 13, e0194432. [Google Scholar] [CrossRef]
- Castagna, C.; Abt, G.; D’Ottavio, S. Physiological aspects of soccer refereeing performance and training. Sports Med. 2007, 37, 625–646. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Hem, E.; Leirstein, S.; Haugen, T.; Seiler, S. Maximal aerobic power characteristics of male professional soccer players, 1989–2012. Int. J. Sports Physiol. Perform. 2013, 8, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, Ö.; Bozdoğan, T.K.; Soyal, M.; Beyaz, M.M. The examination of VO2max and anaerobic threshold values in elite soccer players by their positions. J. Phys. Educ. Sport 2022, 22, 2496–2503. [Google Scholar]
- Hoff, J.; Helgerud, J. Endurance and strength training for soccer players: Physiological considerations. Sports Med. 2004, 34, 165–180. [Google Scholar] [CrossRef]
- Bénézet, J.M.; Hasler, H. Youth Football; FIFA Education and Technical Development Department: Zurich, Switzerland, 2016; Available online: https://digitalhub.fifa.com/m/1b3da6976c9290aa/original/mxpozhvr2gjshmxrilpf-pdf.pdf (accessed on 15 April 2022).
- Löllgen, H.; Erdmann, E.; Gitt, A.K. Ergometrie. In Belastungsuntersuchungen in Klinik und Praxis [Ergometry. Stress Tests in Clinic and Practice]; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Mader, A. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfahigkeit [To assess sport-specific endurance performance]. Sportarzt Sportmed. 1976, 27, 80–88. [Google Scholar]
- Stegmann, H.; Kindermann, W.; Schnabel, A. Lactate kinetics and individual anaerobic threshold. Int. J. Sports Med. 1981, 2, 160–165. [Google Scholar] [CrossRef]
- Allen, W.K.; Seals, D.R.; Hurley, B.F.; Ehsani, A.A.; Hagberg, J.M. Lactate threshold and distance-running performance in young and older endurance athletes. J. Appl. Physiol. 1985, 58, 1281–1284. [Google Scholar] [CrossRef]
- Bangsbo, J. The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Engen, L.C.; Wisløff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Bangsbo, J.; Nørregaard, L.; Thorsø, F. Activity profile of competition soccer. Can. J. Sport. Sci. 1991, 16, 110–116. [Google Scholar]
- Roi, G.S.; Sisca, G.; Perondi, F.; Diamante, A.; Nanni, G. Post competition blood lactate accumulation during a first league soccer season. J. Sports Sci. 2004, 22, 560. [Google Scholar]
- Krustrup, P.; Mohr, M.; Steensberg, A.; Bencke, J.; Kjær, M.; Bangsbo, J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006, 38, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, D.L.; Wenger, H.A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001, 31, 1–11. [Google Scholar] [CrossRef]
- MacRae, H.S.; Dennis, S.C.; Bosch, A.N.; Noakes, T.D. Effects of training on lactate production and removal during progressive exercise in humans. J. Appl. Physiol. 1992, 72, 1649–1656. [Google Scholar] [CrossRef]
- Jacobs, I. Blood lactate: Implications for training and sports performance. Sports Med. 1986, 3, 10–25. [Google Scholar] [CrossRef]
- Radaković, R.; Katanić, B.; Stanković, M.; Masanovic, B.; Fišer, S.Ž. The Impact of Cardiorespiratory and Metabolic Parameters on Match Running Performance (MRP) in National-Level Football Players: A Multiple Regression Analysis. Appl. Sci. 2024, 14, 3807. [Google Scholar] [CrossRef]
- Aquino, R.; Gonçalves, L.G.; Galgaro, M.; Maria, T.S.; Rostaiser, E.; Pastor, A.; Nobari, H.; Garcia, G.R.; Moraes-Neto, M.V.; Nakamura, F.Y. Match running performance in Brazilian professional soccer players: Comparisons between successful and unsuccessful teams. BMC Sports Sci. Med. Rehabil. 2021, 13, 93. [Google Scholar] [CrossRef]
- Bjelica, D.; Katanic, B.; Milosevic, Z.; Osmani, A.; Kukic, A.; Stankovic, M. Exploring the Anthropometric Profiles of Youth Footballers: Differences Between Players from Top and Bottom Teams in the Montenegrin First Cadet League. Sport. Mont. 2025, 23, 131–135. [Google Scholar] [CrossRef]
- Brito de Souza, D.; López-Del Campo, R.; Blanco-Pita, H.; Resta, R.; Del Coso, J. An extensive comparative analysis of successful and unsuccessful football teams in LaLiga. Front. Psychol. 2019, 10, 2566. [Google Scholar] [CrossRef] [PubMed]
- Misjuk, M.; Hurt, N.; Rannama, I. Soccer players training load during Estonian Premium League matches: Comparison of high and low ranking teams. J. Hum. Sport. Exerc. 2015, 10, S521–S525. [Google Scholar] [CrossRef]
- Colosio, A.L.; Lievens, M.; Pogliaghi, S.; Bourgois, J.G.; Boone, J. Heart rate-index estimates aerobic metabolism in professional soccer players. J. Sci. Med. Sport. 2020, 23, 1208–1214. [Google Scholar] [CrossRef]
- Clark, N.A.; Edwards, A.M.; Morton, R.H.; Butterly, R.J. Season-to-season variations of physiological fitness within a squad of professional male soccer players. J. Sports Sci. Med. 2008, 7, 157. [Google Scholar]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef]
- Ingebrigtsen, J.; Dalen, T.; Hjelde, G.H.; Drust, B.; Wisloff, U. Acceleration and sprint profiles of a professional elite football team in match play. Eur. J. Sport. Sci. 2015, 15, 101–110. [Google Scholar] [CrossRef]
- Bibić, E.; Barišić, V.; Katanić, B.; Chernozub, A.; Trajković, N. Acute Effects of Foam Rolling and Stretching on Physical Performance and Self-Perceived Fatigue in Young Football Players. J. FunctMorpho. Kinesiol. 2025, 10, 36. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Llodio, I.; Ibáñez, J.; Granados, C.; Navarro, I.; Ruesta, M.; Izquierdo, M. Differences in physical fitness among indoor and outdoor elite male soccer players. Eur. J. Appl. Physiol. 2009, 106, 483–491. [Google Scholar] [CrossRef]
- Mendez-Villanueva, A.; Buchheit, M.; Kuitunen, S.; Douglas, A.; Peltola, E.S.A.; Bourdon, P. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players. J. Sports Sci. 2011, 29, 477–484. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Eston, R.G.; Reilly, T. Kinanthropometry and Exercise Physiology Laboratory Manual: Exercise Physiology; Taylor & Francis: Abingdon, UK, 2009; Volume 2. [Google Scholar]
- Kolic, L. Utjecaj Protokola Testa Hodanja s Progresivnim Opterecenjem na Pokretnom Sagu na Pokazatelje Energetskih Kapaciteta [The Influence of the Walking Test Protocol with Progressive Load on a Moving Carpet on Indicators of Energy Capacities]. Ph.D. Thesis, Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia, 2020. [Google Scholar]
- Todorov, I. Efekti Specifičnog Treninga na Kardiorespiratornu Izdržljivost i Kontraktilni Potencijal Mišića Džudista [Effects of Specific Training on Cardiorespiratory Endurance and Muscle Contractile Potential of Judoka]. Ph.D. Thesis, University of Nis, Nis, Serbia, 2014. [Google Scholar]
- Fox, S.M., III; Naughton, J.P.; Haskell, W.L. Physical activity and the prevention of coronary heart disease. Ann. Clin. Res. 1971, 3, 404–432. [Google Scholar] [CrossRef]
- Von Duvillard, S.P.; Pokan, R.; Hofmann, P.; Wonisch, M.; Smekal, G.; Alkhatib, A.; Leithauser, R. Comparing blood lactate values of three different handheld lactate analyzers to YSI 1500 lactate analyzer. Med. Sci. Sports Exerc. 2005, 37, S25. [Google Scholar]
- Cohen, D. Statistical Power Analysis for the Behaviors Science, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Apor, P. Successful formulae for fitness training. In Science and Football (Routledge Revivals); Routledge: London, UK, 2013; pp. 95–107. [Google Scholar]
- Bangsbo, J. Fitness Training in Football—A Scientific Approach; HO and Storm: Bagsværd, Denmark, 1994. [Google Scholar]
- Modric, T.; Versic, S.; Sekulic, D. Does aerobic performance define match running performance among professional soccer players? A position-specific analysis. Res. Sports Med. 2021, 29, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Metaxas, T.I. Match running performance of elite soccer players: VO2max and players position influences. J. Strength. Cond. Res. 2021, 35, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Sassi, R.; Reilly, T.; Impellizzeri, F. A comparison of small-side games and interval training in elite professional soccer players. In Science and Football V; Oxon: Routledge, UK, 2005; pp. 352–354. [Google Scholar]
- Owen, A.L.; Wong, D.P.; McKenna, M.; Dellal, A. Heart rate responses and technical comparison between small-vs. large-sided games in elite professional soccer. J. Strength Cond. Res. 2011, 25, 2104–2110. [Google Scholar] [CrossRef]
- Day, J.R.; Rossiter, H.B.; Coats, E.M.; Skasick, A.; Whipp, B.J. The maximally attainable VO2 during exercise in humans: The peak vs. maximum issue. J. Appl. Physiol. 2003, 95, 1901–1907. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
- Aspenes, S.T.; Nilsen, T.I.L.; Skaug, E.A.; Bertheussen, G.F.; Ellingsen, Ø.; Vatten, L.; Wisløff, U. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med. Sci. Sports Exerc. 2011, 43, 1465–1473. [Google Scholar] [CrossRef]
- Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauerm, M.S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 1999, 341, 1351–1357. [Google Scholar] [CrossRef]
- Cole, C.R.; Foody, J.M.; Blackstone, E.H.; Lauer, M.S. Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort. Ann. Intern. Med. 2000, 132, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Nishime, E.O.; Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Lauer, M.S. Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA 2000, 284, 1392–1398. [Google Scholar] [CrossRef]
- Shetler, K.; Marcus, R.; Froelicher, V.F.; Vora, S.; Kalisetti, D.; Prakash, M.; Do, D.; Myers, J. Heart rate recovery: Validation and methodologic issues. J. Am. CollCardiol. 2001, 38, 1980–1987. [Google Scholar] [CrossRef]
- Esposito, F.; Impellizzeri, F.M.; Margonato, V.; Vanni, R.; Pizzini, G.; Veicsteinas, A. Validity of heart rate as an indicator of aerobic demand during soccer activities in amateur soccer players. Eur. J. Appl. Physiol. 2004, 93, 167–172. [Google Scholar] [CrossRef]
- Niederseer, D.; Löllgen, H. Medical evaluation of athletes: Exercise testing. In Textbook of Sports and Exercise Cardiology; Springer: Cham, Switzerland, 2020; pp. 181–201. [Google Scholar]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Strudwick, A.; Doran, T.R.D. Anthropometric and fitness profiles of elite players in two football codes. J. Sports Med. Phys. Fitness. 2002, 42, 239. [Google Scholar] [PubMed]
- Botek, M.; Krejčí, J.; McKune, A.J.; Klimešová, I. Somatic, endurance performance and heart rate variability profiles of professional soccer players grouped according to age. J. Hum. Kinet. 2016, 54, 65. [Google Scholar] [CrossRef]
- Aziz, A.R.; Newton, M.J.; Kinugasa, T.; Chuan, T.K. Relationship between aerobic fitness and league positional ranking of clubs in a professional soccer league over three competitive seasons. Footb. Sci. 2007, 4, 9–18. [Google Scholar]
- Cihan, H.; İbrahim, C.A.N.; Seyis, M. Comparison of recovering times and aerobic capacity according to playing positions of elite football players. Beden Egitim Spor Bilim. Derg. 2012, 6, 1–8. [Google Scholar]
- Alves, I.S.; Kalva-Filho, C.A.; Aquino, R.; Travitzki, L.; Tosim, A.; Papoti, M.; Morato, M.P. Relationships between aerobic and anaerobic parameters with game technical performance in elite goalball athletes. Front. Physiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Archacki, D.; Zieliński, J.; Pospieszna, B.; Włodarczyk, M.; Kusy, K. The contribution of energy systems during 15-second sprint exercise in athletes of different sports specializations. PeerJ 2024, 12, e17863. [Google Scholar] [CrossRef] [PubMed]
- Psarras, I.I.; Bogdanis, G.C. Physiological responses and performance during an integrated high-intensity interval aerobic and power training protocol. Sports 2024, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, M.; Djordjevic, D.; Trajkovic, N.; Milanovic, Z. Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Med. Open 2023, 9, 78. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. The effects of high-intensity interval training versus moderate-intensity continuous training on athletes’ aerobic endurance performance parameters. Eur. J. Appl. Physiol. 2024, 124, 2235–2249. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Rein, R.; Memmert, D. Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. SpringerPlus 2016, 5, 1410. [Google Scholar] [CrossRef]
- Reinhardt, L.; Schulze, S.; Kurz, E.; Schwesig, R. An Investigation into the Relationship between Heart Rate Recovery in Small-Sided Games and Endurance Performance in Male, Semi-professional Soccer Players. Sports Med. Open 2020, 6, 43. [Google Scholar] [CrossRef]
- Chatel, B.; Bret, C.; Edouard, P.; Oullion, R.; Freund, H.; Messonnier, L.A. Lactate recovery kinetics in response to high-intensity exercises. Eur. J. Appl. Physiol. 2016, 116, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cai, M.; Shang, Q.; Li, Z.; Feng, Y.; Liu, B.; Xue, X.; Lou, S. Elevated lactate by high-intensity interval training regulates the hippocampal BDNF expression and the mitochondrial quality control system. Front. Physiol. 2021, 12, 629914. [Google Scholar] [CrossRef]
- Wiewelhove, T.; Schneider, C.; Schmidt, A.; Döweling, A.; Meyer, T.; Kellmann, M.; Pfeiffer, M.; Ferrauti, A. Active Recovery After High-Intensity Interval-Training Does Not Attenuate Training Adaptation. Front. Physiol. 2018, 9, 362190. [Google Scholar] [CrossRef]
- Hinojosa, J.N.; Hearon, C.M.; Kowalsky, R.J. Blood lactate response to active recovery in athletes vs. non-athletes. Sports Sci. Health 2021, 17, 699–705. [Google Scholar] [CrossRef]
- Sengoku, Y.; Shinno, A.; Kim, J.; Homoto, K.; Nakazono, Y.; Tsunokawa, T.; Hirai, N.; Nobue, A.; Ishikawa, M. The relationship between maximal lactate accumulation rate and sprint performance parameters in male competitive swimmers. Front. Sports Act. Living 2024, 6, 1483659. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, C.; Celgin, G.S.; Arslanoglu, E.; Demirci, N.; Karakas, F.; Dogan, E.; Cakaloglu, E.; Sahin, F.N.; Kucuk, H. An effective method of aerobic capacity development: Combined training with maximal aerobic speed and small-sided games for amateur football players. Appl. Sci. 2024, 14, 9134. [Google Scholar] [CrossRef]
- Ruddock, A.; James, L.; French, D.; Rogerson, D.; Driller, M.; Hembrough, D. High-Intensity Conditioning for Combat Athletes: Practical Recommendations. Appl. Sci. 2021, 11, 10658. [Google Scholar] [CrossRef]
Variables | Top-Ranked Teams’ Players | Mid-Ranked Teams’ Players |
---|---|---|
n | 29 | 26 |
Age | 23.38 ± 3.36 | 22.96 ± 3.78 |
Body height (cm) | 183.31 ± 5.64 | 181.92 ± 6.55 |
Body mass (kg) | 78.60 ± 7.33 | 76.12 ± 6.57 |
Systolic blood pressure | 119.66 ± 11.80 | 119.23 ± 6.74 |
Diastolic blood pressure | 73.97 ± 8.06 | 73.08 ± 6.64 |
No. | Variable | Abbreviation |
---|---|---|
1. | Maximum heart rate (bpm) | HRmax |
2. | Theoretical maximum heart rate (bpm) | THRmax |
3. | Anaerobic threshold speed (km/h) | V AT |
4. | Achieve % of the load on test (%) | %HRmax |
5. | Heart rate at the anaerobic threshold (bpm) | HR AT |
6. | Heart rate at the anaerobic threshold percentages (%) | HR AT% |
7. | Cardiovascular efficiency (score) | HR AT/kg |
8. | Percentage of cardiovascular efficiency (%) | %HR AT/kg |
9. | Maximum oxygen uptake (ml/kg/min) | VO2max |
10. | Running efficiency (score) | VO2max/v |
11. | Cardiorespiratory efficiency (score) | VO2max/HR |
12. | Heart rate at the first minute of recovery (bpm) | HR 1′ |
13. | Heart rate at the second minute of recovery (bpm) | HR 2′ |
14. | Percentage of recovery in the first minute (%) | %Re 1′ |
15. | Percentage of recovery in the second minute (%) | %Re 2′ |
16. | Rest lactate (mmol/L) | RL |
17. | Lactate at 4 min (mmol/L) | LA 4′ |
18. | Lactate at 10 min (mmol/L) | LA 10′ |
19. | Metabolic recovery index (score) | Index LA |
20. | Metabolic efficiency index (score) | Index ME |
Variables | Top-Ranked Team Players | Mid-Ranked Team Players | p-Value | Cohen’s d |
---|---|---|---|---|
HRmax (bpm) | 192.79 ± 9.31 | 191.15 ± 7.41 | 0.477 | 0.195 |
THRmax (bpm) | 209.86 ± 4.74 | 198.35 ± 3.52 | 0.000 ** | 2.758 |
V AT (km/h) | 17.38 ± 1.35 | 16.73 ± 1.25 | 0.071 | 0.499 |
%HRmax (%) | 91.67 ± 3.75 | 96.48 ± 3.26 | 0.000 ** | 1.369 |
HR AT (bpm) | 162.79 ± 10.26 | 168.77 ± 7.28 | 0.017 * | 0.672 |
HR AT % (%) | 84.90 ± 2.45 | 87.96 ± 3.14 | 0.000 ** | 1.087 |
HR AT/kg (score) | 9.39 ± 0.56 | 10.06 ± 0.74 | 0.000 ** | 1.009 |
% HR AT/kg (%) | 4.91 ± 0.34 | 5.25 ± 0.41 | 0.001 ** | 0.902 |
VO2max (ml/kg/min) | 60.06 ± 3.29 | 62.65 ± 4.48 | 0.017 * | 0.660 |
VO2max/v (score) | 2.82 ± 0.15 | 3.03 ± 0.21 | 0.000 ** | 1.190 |
VO2max/HR (score) | 0.31 ± 0.02 | 0.33 ± 0.02 | 0.011 * | 0.709 |
HR 1′ (bpm) | 171.17 ± 13.50 | 167.08 ± 11.45 | 0.233 | 0.327 |
HR 2′ (bpm) | 116.45 ± 10.84 | 142.96 ± 13.98 | 0.000 ** | 0.119 |
%Re 1′ (%) | 12.98 ± 5.44 | 14.69 ± 4.87 | 0.226 | 0.332 |
%Re 2′ (%) | 66.62 ± 14.08 | 34.53 ± 9.13 | 0.000 ** | 0.705 |
RL (mmol/L) | 2.40 ± 0.50 | 2.21 ± 0.48 | 0.152 | 0.393 |
LA 4′ (mmol/L) | 9.09 ± 1.82 | 9.96 ± 1.57 | 0.064 | 0.513 |
LA 10′ (mmol/L) | 7.00 ± 1.67 | 6.84 ± 0.87 | 0.653 | 0.124 |
Index LA (score) | 35.74 ± 40.90 | 47.29 ± 28.36 | 0.234 | 0.328 |
Index ME (score) | 2.42 ± 0.45 | 2.13 ± 0.35 | 0.011 * | 0.713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radakovic, R.; Martinovic, D.; Katanic, B.; Govindasamy, K.; Prvulovic, N.; Geantă, V.A.; Ardelean, V.P. Physiological Differences in Cardiorespiratory and Metabolic Parameters Between Football Players from Top- and Mid-Ranked Teams in the Serbian Super League. Appl. Sci. 2025, 15, 6685. https://doi.org/10.3390/app15126685
Radakovic R, Martinovic D, Katanic B, Govindasamy K, Prvulovic N, Geantă VA, Ardelean VP. Physiological Differences in Cardiorespiratory and Metabolic Parameters Between Football Players from Top- and Mid-Ranked Teams in the Serbian Super League. Applied Sciences. 2025; 15(12):6685. https://doi.org/10.3390/app15126685
Chicago/Turabian StyleRadakovic, Radivoje, Dejan Martinovic, Borko Katanic, Karuppasamy Govindasamy, Nikola Prvulovic, Vlad Adrian Geantă, and Viorel Petru Ardelean. 2025. "Physiological Differences in Cardiorespiratory and Metabolic Parameters Between Football Players from Top- and Mid-Ranked Teams in the Serbian Super League" Applied Sciences 15, no. 12: 6685. https://doi.org/10.3390/app15126685
APA StyleRadakovic, R., Martinovic, D., Katanic, B., Govindasamy, K., Prvulovic, N., Geantă, V. A., & Ardelean, V. P. (2025). Physiological Differences in Cardiorespiratory and Metabolic Parameters Between Football Players from Top- and Mid-Ranked Teams in the Serbian Super League. Applied Sciences, 15(12), 6685. https://doi.org/10.3390/app15126685