Investigating the Potential of Newly Isolated Microalgae Strains from the Ionian Sea (Greece) Cultured in an Open Raceway Pond
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material and Culture Conditions
2.2. Growth and Biomass Determination
2.3. Lipid Extraction and Purification
2.4. Lipid Fractionation
2.5. Fatty Acid Composition of Cellular Lipids
2.6. Polysaccharide Determination
2.7. Protein and Amino Acid Profile Determination
2.8. Pigment Estimation
2.9. Phosphorus and Nitrogen Uptake
2.10. Microscopy
2.11. Data Treatment & Statistical Analysis
3. Results and Discussion
3.1. Growth and Biomass Production
3.2. Synthesis of Storage Lipids and Fatty Acid Composition of Total Lipids and Lipid Fractions
3.3. Synthesis of Polysaccharides, Proteins, and Amino Acid Profile
3.4. Synthesis of Pigments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PUFA | Poly-Unsaturated Fatty Acids |
HUFA | Highly-Unsaturated Fatty Acids |
EPA | n-3 Eicosapentaenoic Acid |
DHA | n-3 Docosahexaenoic Acid |
ORWP | Open Raceway Pond |
mASW | modified Artificial Sea Water |
NL | Neutral Lipids |
G+S | Glycolipids + Sphingolipids |
P | Phospholipids |
References
- Bellou, S.; Baeshen, M.N.; Elazzazy, A.M.; Aggeli, D.; Sayegh, F.; Aggelis, G. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv. 2014, 32, 1476–1493. [Google Scholar] [CrossRef]
- Dourou, M.; Dritsas, P.; Baeshen, M.N.; Elazzazy, A.; Al-Farga, A.; Aggelis, G. High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS Microbiol. Lett. 2021, 367, fnaa081. [Google Scholar] [CrossRef] [PubMed]
- Mahlangu, D.; Mphahlele, K.; De Paola, F.; Mthombeni, N.H. Microalgae-mediated biosorption for effective heavy metals removal from wastewater: A review. Water 2024, 16, 718. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Kalkan, A.E.; Yılmaz, K.; Gurdal, S.; Göksan, T.; Witkowska, A.M.; Lombardo, M.; Karav, S. Biological and nutritional applications of microalgae. Nutrients 2025, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.; Maia, I.B.; Cunha, P.; Guerra, I.; Magina, T.; Santos, T.; Schulze, P.S.C.; Pereira, H.; Malcata, F.X.; Navalho, J.; et al. Effects of LED lighting on Nannochloropsis oceanica grown in outdoor raceway ponds. Algal Res. 2022, 64, 102685. [Google Scholar] [CrossRef]
- Millán-Oropeza, A.; Fernández-Linares, L. Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions. Environ. Sci. Pollut. Res. 2017, 24, 25618–25626. [Google Scholar] [CrossRef]
- Patrinou, V.; Daskalaki, A.; Kampantais, D.; Kanakis, D.C.; Economou, C.N.; Bokas, D.; Kotzamanis, Y.; Aggelis, G.; Vayenas, D.V.; Tekerlekopoulou, A.G. Optimization of cultivation conditions for Tetraselmis striata and biomass quality evaluation for fish feed production. Water 2022, 14, 3162. [Google Scholar] [CrossRef]
- Coulombier, N.; Nicolau, E.; Le Déan, L.; Barthelemy, V.; Schreiber, N.; Brun, P.; Lebouvier, N.; Jauffrais, T. Effects of nitrogen availability on the antioxidant activity and carotenoid content of the microalgae Nephroselmis sp. Mar. Drugs 2020, 18, 453. [Google Scholar] [CrossRef]
- Ma, M.; Hu, Q. Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac. 2024, 16, 818–835. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Sørensen, M.; Islam, S.M.M.; Saha, N.; Rahman, M.A.; Francis, D.S. Expanded utilisation of microalgae in global aquafeeds. Rev. Aquac. 2024, 16, 6–33. [Google Scholar] [CrossRef]
- Lupette, J.; Benning, C. Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie 2020, 178, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Karrar, E.; Albakry, Z.; Mohamed Ahmed, I.A.; Zhang, L.; Chen, C.; Wu, D.; Li, J. Docosahexaenoic acid and eicosapentaenoic acid from microalgae: Extraction, purification, separation, and analytical methods. Algal Res. 2024, 77, 103365. [Google Scholar] [CrossRef]
- Ananthi, V.; Raja, R.; Carvalho, I.S.; Brindhadevi, K.; Pugazhendhi, A.; Arun, A. A realistic scenario on microalgae based biodiesel production: Third generation biofuel. Fuel 2021, 284, 118965. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Mishra, S.K.; Shrivastav, A.; Park, M.S.; Yang, J.W. Recent trends in the mass cultivation of algae in raceway ponds. Renew. Sustain. Energy Rev. 2015, 51, 875–885. [Google Scholar] [CrossRef]
- Patel, A.; Gami, B.; Patel, P.; Patel, B. Microalgae: Antiquity to era of integrated technology. Renew. Sust. Energy Rev. 2017, 71, 535–547. [Google Scholar] [CrossRef]
- Sarker, N.K.; Kaparaju, P. A critical review on the status and progress of microalgae cultivation in outdoor photobioreactors conducted over 35 years (1986–2021). Energies 2023, 16, 3105. [Google Scholar] [CrossRef]
- Jain, P.; Minhas, A.K.; Shukla, S.; Puri, M.; Barrow, C.J.; Mandal, S. Bioprospecting indigenous marine microalgae for polyunsaturated fatty acids under different media conditions. Front. Bioeng. Biotechnol. 2022, 10, 842797. [Google Scholar] [CrossRef]
- Lee, J.C.; Joo, J.H.; Chun, B.H.; Moon, K.; Song, S.H.; Kim, Y.J.; Lee, S.M.; Lee, A.H. Isolation and screening of indigenous microalgae species for domestic and livestock wastewater treatment, biodiesel production, and carbon sequestration. J. Environ. Manag. 2022, 318, 115648. [Google Scholar] [CrossRef]
- Phyu, K.K.; Zhi, S.; Graham, D.W.; Cao, Y.; Xu, X.; Liu, J.; Wang, H.; Zhang, K. Impact of indigenous vs. cultivated microalgae strains on biomass accumulation, microbial community composition, and nutrient removal in algae-based dairy wastewater treatment. Bioresour. Technol. 2025, 426, 132349. [Google Scholar] [CrossRef]
- Dritsas, P.; Asimakis, E.; Lianou, A.; Efstratiou, M.; Tsiamis, G.; Aggelis, G. Microalgae from the Ionian Sea (Greece): Isolation, molecular identification and biochemical features of biotechnological interest. Algal Res. 2023, 74, 103210. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Dourou, M.; Mizerakis, P.; Papanikolaou, S.; Aggelis, G. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl. Microbiol. Biotechnol. 2017, 101, 7213–7226. [Google Scholar] [CrossRef] [PubMed]
- Bellou, S.; Aggelis, G. Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J. Biotechnol. 2012, 164, 318–329. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Kotzamanis, Y.; Kumar, V.; Tsironi, T.; Grigorakis, K.; Ilia, V.; Vatsos, I.; Brezas, A.; van Eys, J.; Gisbert, E. Taurine supplementation in high-soy diets affects fillet quality of European sea bass (Dicentrarchus labrax). Aquaculture 2020, 520, 734655. [Google Scholar] [CrossRef]
- Sumanta, N.; Imranul Haque, C.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar]
- Cecchin, M.; Berteotti, S.; Paltrinieri, S.; Vigliante, I.; Iadarola, B.; Giovannone, B.; Maffei, M.E.; Delledonne, M.; Ballottari, M. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnol. Biofuels 2020, 13, 78. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. (Eds.) Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works, Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Jorquera, O.; Kiperstok, A.; Sales, E.A.; Embiruçu, M.; Ghirardi, M.L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 2010, 101, 1406–1413. [Google Scholar] [CrossRef]
- Ferentinos, G.; Papatheodorou, G.; Geraga, M.; Iatrou, M.; Fakiris, E.; Christodoulou, D.; Dimitriou, E.; Koutsikopoulos, C. Fjord water circulation patterns and dysoxic/anoxic conditions in a Mediterranean semi-enclosed embayment in the Amvrakikos gulf, Greece. Estuar. Coast. Shelf Sci. 2010, 88, 473–481. [Google Scholar] [CrossRef]
- Kalpaxis, D.L.; Theos, C.; Xaplanteri, M.A.; Dinos, G.P.; Catsiki, A.V.; Leotsinidis, M. Biomonitoring of gulf of Patras, N. Peloponnesus, Greece. Application of a biomarker suite including evaluation of translation efficiency in Mytilus galloprovincialis cells. Environ. Res. 2004, 94, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Rasdi, N.W.; Qin, J.G. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J. Appl. Phycol. 2015, 27, 2221–2230. [Google Scholar] [CrossRef]
- Daneshvar, E.; Santhosh, C.; Antikainen, E.; Bhatnagar, A. Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity. J. Environ. Chem. Eng. 2018, 6, 1848–1854. [Google Scholar] [CrossRef]
- Patel, A.; Barrington, S.; Lefsrud, M. Microalgae for phosphorus removal and biomass production: A six species screen for dual-purpose organisms. GCB Bioenergy 2012, 4, 485–495. [Google Scholar] [CrossRef]
- Gao, S.; Edmundson, S.; Huesemann, M.; Gutknecht, A.; Laurens, L.M.L.; Van Wychen, S.; Pittman, K.; Greer, M. DISCOVR strain screening pipeline—Part III: Strain evaluation in outdoor raceway ponds. Algal Res. 2023, 70, 102990. [Google Scholar] [CrossRef]
- Krishnan, A.; Likhogrud, M.; Cano, M.; Edmundson, S.; Melanson, J.B.; Huesemann, M.; McGowen, J.; Weissman, J.C.; Posewitz, M.C. Picochlorum celeri as a model system for robust outdoor algal growth in seawater. Sci. Rep. 2021, 11, 11649. [Google Scholar] [CrossRef]
- Das, P.; Thaher, M.I.; Hakim, M.A.Q.M.A.; Al-Jabri, H.M.S.J. Sustainable production of toxin free marine microalgae biomass as fish feed in large scale open system in the Qatari desert. Bioresour. Technol. 2015, 192, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Crowe, B.; Attalah, S.; Agrawal, S.; Waller, P.; Ryan, R.; Van Wagenen, J.; Chavis, A.; Kyndt, J.; Kacira, M.; Ogden, K.L.; et al. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: Conventional raceways versus the arid pond with superior temperature management. Int. J. Chem. Eng. 2012, 2012, 920608. [Google Scholar] [CrossRef]
- Mastropetros, S.G.; Tsigkou, K.; Cladas, Y.; Priya, A.K.; Kornaros, M. Effect of nitrogen, salinity, and light intensity on the biomass composition of Nephroselmis sp.: Optimization of lipids accumulation (including EPA). Mar. Drugs 2023, 21, 331. [Google Scholar] [CrossRef]
- Ahn, Y.; Park, S.; Ji, M.K.; Ha, G.S.; Jeon, B.H.; Choi, J. Biodiesel production potential of microalgae, cultivated in acid mine drainage and livestock wastewater. J. Environ. Manag. 2022, 314, 115031. [Google Scholar] [CrossRef]
- Yun, H.S.; Lee, H.; Park, Y.T.; Ji, M.K.; Kabra, A.N.; Jeon, C.; Jeon, B.H.; Choi, J. Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production. Appl. Biochem. Biotechnol. 2014, 173, 2054–2064. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.P.; Silva, S.O.; Baptista, J.M.; Malcata, F.X. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1275–1288. [Google Scholar] [CrossRef]
- de la Vega, M.; Díaz, E.; Vila, M.; León, R. Isolation of a new strain of Picochlorum sp. and characterization of its potential biotechnological applications. Biotechnol. Prog. 2011, 27, 1535–1543. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol. Rev. 2021, 96, 2373–2391. [Google Scholar] [CrossRef]
- Grubišić, M.; Šantek, B.; Zorić, Z.; Čošić, Z.; Vrana, I.; Gašparović, B.; Čož-Rakovac, R.; Šantek, M.I. Bioprospecting of microalgae isolated from the Adriatic sea: Characterization of biomass, pigment, lipid and fatty acid composition, and antioxidant and antimicrobial activity. Molecules 2022, 27, 1248. [Google Scholar] [CrossRef]
- Li, Y.; Lou, Y.; Mu, T.; Ke, A.; Ran, Z.; Xu, J.; Chen, J.; Zhou, C.; Yan, X.; Xu, Q.; et al. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal. Chim. Acta 2017, 986, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Miazek, K.; Lebecque, S.; Hamaidia, M.; Paul, A.; Danthine, S.; Willems, L.; Frederich, M.; De Pauw, E.; Deleu, M.; Richel, A.; et al. Sphingolipids: Promising lipid-class molecules with potential applications for industry. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 321–336. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef]
- Harwood, J.L.; Guschina, I.A. The versatility of algae and their lipid metabolism. Biochimie 2009, 91, 679–684. [Google Scholar] [CrossRef]
- Hoffmann, M.; Marxen, K.; Schulz, R.; Vanselow, K.H. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar. Drugs 2010, 8, 2526–2545. [Google Scholar] [CrossRef]
- Ohta, H.; Awai, K.; Takamiya, K.-I. Glyceroglycolipids of photosynthetic organisms-their biosynthesis and evolutionary origin. Trends Glycosci. Glycotechnol. 2000, 12, 241–253. [Google Scholar] [CrossRef]
- Alakhras, R.; Bellou, S.; Fotaki, G.; Stephanou, G.; Demopoulos, N.A.; Papanikolaou, S.; Aggelis, G. Fatty acid lithium salts from Cunninghamella echinulata have cytotoxic and genotoxic effects on HL-60 human leukemia cells. Eng. Life Sci. 2015, 15, 243–253. [Google Scholar] [CrossRef]
- Kalampounias, G.; Gardeli, C.; Alexis, S.; Anagnostopoulou, E.; Androutsopoulou, T.; Dritsas, P.; Aggelis, G.; Papanikolaou, S.; Katsoris, P. Poly-unsaturated fatty acids (PUFAs) from Cunninghamella elegans grown on glycerol induce cell death and increase intracellular reactive oxygen species. J. Fungi 2024, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharmacother. 2006, 60, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Su, K.P.; Huang, S.Y.; Chiu, C.C.; Shen, W.W. Omega-3 fatty acids in major depressive disorder: A preliminary double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 2003, 13, 267–271. [Google Scholar] [CrossRef]
- Damiani, M.C.; Popovich, C.A.; Constenla, D.; Leonardi, P.I. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 2010, 101, 3801–3807. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Gu, M.; Cong, W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J. Appl. Phycol. 2013, 25, 311–318. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Z.; Miao, X. Nitrogen and hydrophosphate affects glycolipids composition in microalgae. Sci. Rep. 2016, 6, 30145. [Google Scholar] [CrossRef]
- Chen, B.; Wan, C.; Mehmood, M.A.; Chang, J.S.; Bai, F.; Zhao, X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products—A review. Bioresour. Technol. 2017, 244, 1198–1206. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.-Y.; Yang, J.; Wu, Y.-H. Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1. Bioresour. Technol. 2010, 101, 9819–9821. [Google Scholar] [CrossRef]
- Sin, Y.W.; Buesching, C.D.; Burke, T.; MacDonald, D.W. Molecular characterization of the microbial communities in the subcaudal gland secretion of the european badger (Meles meles). FEMS Microbiol. Ecol. 2012, 81, 648–659. [Google Scholar] [CrossRef]
- Viso, A.-C.; Marty, J.-C. Fatty acids from 28 marine microalgae. Phytochemistry 1993, 34, 1521–1533. [Google Scholar] [CrossRef]
- Chen, Y.; Mai, Q.; Chen, Z.; Lin, T.; Cai, Y.; Han, J.; Wang, Y.; Zhang, M.; Tan, S.; Wu, Z.; et al. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis. Gut Microbes 2023, 15, 2211501. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.L.; Soares, J.; dos Reis Coimbra, J.S.; de Oliveira Leite, M.; Albino, L.F.T.; Martins, M.A. Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Crit. Rev. Food Sci. Nutr. 2021, 61, 1976–2002. [Google Scholar] [CrossRef]
- Marsham, S.; Scott, G.W.; Tobin, M.L. Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem. 2007, 100, 1331–1336. [Google Scholar] [CrossRef]
- León-Vaz, A.; Giráldez, I.; Moreno-Garrido, I.; Varela, J.; Vigara, J.; León, R.; Cañavate, J.P. Amino acids profile of 56 species of microalgae reveals that free amino acids allow to distinguish between phylogenetic groups. Algal Res. 2023, 74, 103181. [Google Scholar] [CrossRef]
- Čmiková, N.; Kowalczewski, P.Ł.; Kmiecik, D.; Tomczak, A.; Drożdżyńska, A.; Ślachciński, M.; Królak, J.; Kačániová, M. Characterization of selected microalgae species as potential sources of nutrients and antioxidants. Foods 2024, 13, 2160. [Google Scholar] [CrossRef]
- Chacón-Lee, T.L.; González-Mariño, G.E. Microalgae for “healthy” foods-possibilities and challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- Cerri, R.; Niccolai, A.; Cardinaletti, G.; Tulli, F.; Mina, F.; Daniso, E.; Bongiorno, T.; Chini Zittelli, G.; Biondi, N.; Tredici, M.R.; et al. Chemical composition and apparent digestibility of a panel of dried microalgae and cyanobacteria biomasses in rainbow trout (Oncorhynchus mykiss). Aquaculture 2021, 544, 737075. [Google Scholar] [CrossRef]
Compound | Supplier | Concentration (g/L) |
NaCl | PENTA (Prague, Czech Republic) | 27.0 |
MgSO4.7H2O | PanReac AppliChem (Darmstadt, Germany) | 6.6 |
CaCl2 | PENTA | 1.5 |
KNO3 | Scharlau (Barcelona, Spain) | 1.0 |
KH2PO4 | Himedia (Mumbai, India) | 0.07 |
FeCl3.6H2O | BDH (Poole, UK) | 0.014 |
Na2EDTA | Merck (Darmstadt, Germany) | 0.019 |
Microelement solution | ||
Compound | Supplier | Concentration (mg/L) |
ZnSO4.7H2O | Merck | 40.0 |
H3BO3 | Fluka (Steinheim, Germany) | 600.0 |
CoCl2.6H2O | Sigma–Aldrich (St. Louis, MO, USA) | 1.5 |
CuSO4.5H2O | BDH | 40.0 |
MnCl2 | Sigma–Aldrich | 400.0 |
(NH4)6MO7O24.4H2O | Sigma–Aldrich | 370.0 |
Strain | t (d) | Biomass (x) | Lipids (L) | Polysaccharides (S) | Proteins (P) | Pigments | Growth Parameters | Nutrients Uptake | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | px | L/x (%) | Lipid Fractions (%) | S/x (%) | P/x (%) | TCh/x (%) | TC/x (%) | xmax (g/L) | μ (1/d) | R2 | NO3−-N (%) | PO43− (%) | ||||
(g/L) | (g/L∙d) | NL | G+S | P | ||||||||||||
P. costavermella VAS2.5 | 10 | 0.21 ± 0.04 | 0.02 ± 0.00 | 12.0 ± 2.1 | UND | UND | UND | 7.3 ± 0.3 | 24.8 ± 0.9 | UND | UND | 0.57 ± 0.06 | 0.23 ± 0.02 | 0.98 | UND | UND |
19 | 0.41 ± 0.00 | 18.5 ± 1.4 | 27.1 ± 0.9 | 55.4 ± 6.4 | 17.4 ± 5.6 | 7.7 ± 0.1 | 25.4 ± 2.1 | 3.2 ± 0.1 | 1.5 ± 0.3 | 23.0 ± 6.9 | 60.4 ± 0.8 | |||||
P. oklahomense SAG4.4 | 10 | 0.17 ± 0.00 | 0.01 ± 0.00 | 23.2 ± 0.9 | UND | UND | UND | 11.6 ± 1.3 | 21.8 ± 2.0 | UND | UND | 0.31 ± 0.02 | 0.24 ± 0.01 | 1.00 | UND | UND |
19 | 0.21 ± 0.01 | 13.2 ± 1.1 | 38.0 ± 6.4 | 44.6 ± 8.5 | 17.4 ± 2.1 | 14.7 ± 0.7 | 23.4 ± 2.5 | 5.0 ± 0.6 | 1.6 ± 0.1 | 14.8 ± 3.1 | 63.6 ± 8.3 | |||||
M. gaditana VON5.3 | 10 | 0.20 ± 0.02 | 0.02 ± 0.00 | 18.7 ± 1.5 | UND | UND | UND | 10.7 ± 1.4 | 41.4 ± 6.1 | UND | UND | 0.60 ± 0.15 | 0.19 ± 0.03 | 0.98 | UND | UND |
19 | 0.36 ± 0.04 | 18.3 ± 2.3 | 32.4 ± 2.2 | 51.9 ± 0.5 | 15.7 ± 1.7 | 9.0 ± 0.2 | 29.8 ± 1.7 | 4.0 ± 0.5 | 1.3 ± 0.2 | 37.8 ± 3.9 | 79.2 ± 4.1 | |||||
N. pyriformis PAT2.7 | 10 | 0.18 ± 0.01 | 0.02 ± 0.00 | 7.2 ± 0.4 | UND | UND | UND | 10.5 ± 0.5 | 47.3 ± 2.3 | UND | UND | 0.47 ± 0.04 | 0.23 ± 0.03 | 0.97 | UND | UND |
19 | 0.42 ± 0.08 | 7.3 ± 0.3 | 50.1 ± 0.4 | 43.6 ± 0.7 | 6.9 ± 0.2 | 14.3 ± 0.3 | 49.7 ± 4.9 | 1.0 ± 0.2 | 0.2 ± 0.0 | 29.9 ± 4.2 | 80.0 ± 5.1 |
Strain | Lipid Fraction | Composition of Total Lipids and Lipid Fractions in Fatty Acids (%, wt/wt) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | Δ9C14:1 | C16:0 | Δ9C16:1 | C17:0 | C18:0 | Δ9C18:1 | Δ9,12C18:2 | Δ9,12,15C18:3 | Δ6,9,12,15C18:4 | Δ13C20:1 | Δ5,8,11,14,17C20:5 | ||
P. costavermella VAS2.5 | TL | 6.1 ± 0.2 | 3.1 ± 0.2 | 15.7 ± 0.1 | 27.9 ± 0.5 | <0.5 | <0.5 | 6.6 ± 0.0 | 3.0 ± 0.0 | ND | ND | 3.1 ± 0.0 | 23.4 ± 3.9 |
NL | 5.7 ± 0.6 | 0.9 ± 0.1 | 23.3 ± 1.0 | 33.0 ± 3.4 | ND | 2.5 ± 2.0 | 14.7 ± 3.9 | 2.2 ± 0.1 | ND | ND | 2.9 ± 0.9 | 10.0 ± 2.5 | |
G | 8.5 ± 1.5 | 2.9 ± 0.2 | 16.8 ± 0.1 | 26.8 ± 1.3 | <0.5 | 1.9 ± 0.4 | 6.5 ± 0.6 | 2.1 ± 0.6 | ND | ND | 2.0 ± 0.0 | 25.6 ± 1.6 | |
P | 1.8 ± 0.2 | 1.0 ± 0.2 | 11.2 ± 0.3 | 23.8 ± 0.7 | 0.6 ± 0.1 | 1.6 ± 0.2 | 14.1 ± 0.7 | 5.9 ± 0.2 | ND | ND | 6.6 ± 0.1 | 31.1 ± 0.9 | |
P. oklahomense SAG4.4 | TL | 1.7 ± 0.2 | 4.0 ± 0.0 | 14.8 ± 0.0 | 3.4 ± 0.2 | 7.3 ± 0.2 | <0.5 | 13.8 ± 1.4 | 29.6 ± 2.0 | 16.6 ± 0.6 | 1.3 ± 0.7 | ND | ND |
NL | 5.0 ± 0.4 | 13.1 ± 0.4 | 9.3 ± 1.1 | 1.6 ± 0.1 | 1.4 ± 0.0 | 2.7 ± 1.0 | 6.9 ± 1.1 | 10.9 ± 0.9 | 9.4 ± 1.6 | 3.8 ± 1.9 | ND | ND | |
G | <0.5 | 0.5 ± 0.3 | 14.5 ± 2.8 | 2.1 ± 0.1 | 15.7 ± 0.1 | <0.5 | 16.6 ± 0.3 | 17.6 ± 1.8 | 18.9 ± 0.8 | 2.6 ± 0.3 | ND | ND | |
P | <0.5 | <0.5 | 16.4 ± 0.6 | 5.4 ± 0.1 | 2.6 ± 0.3 | 3.5 ± 1.7 | 11.2 ± 2.3 | 27.3 ± 1.7 | 14.7 ± 1.4 | 3.0 ± 0.0 | ND | ND | |
M. gaditana VON5.3 | TL | 6.8 ± 0.1 | 3.1 ± 0.1 | 15.5 ± 1.1 | 31.5 ± 0.5 | <0.5 | <0.5 | 7.2 ± 0.3 | 2.6 ± 0.0 | <0,5 | ND | 3.6 ± 0.2 | 22.7 ± 0.8 |
NL | 3.0 ± 0.7 | 0.9 ± 0.1 | 15.7 ± 3.3 | 17.9 ± 4.9 | ND | <0.5 | 4.7 ± 0.2 | 1.8 ± 0.5 | <0,5 | ND | 2.7 ± 0.8 | 7.6 ± 2.2 | |
G | 8.2 ± 0.1 | 3.2 ± 0.0 | 15.3 ± 1.3 | 23.8 ± 1.8 | ND | 1.0 ± 0.2 | 3.5 ± 1.2 | 2.7 ± 1.3 | ND | ND | 2.0 ± 0.1 | 23.7 ± 0.7 | |
P | 2.3 ± 0.1 | 0.5 ± 0.1 | 16.0 ± 0.9 | 23.5 ± 0.9 | ND | 0.9 ± 0.1 | 11.0 ± 0.4 | 4.5 ± 0.4 | ND | ND | 6.5 ± 1.0 | 22.2 ± 2.0 | |
N. pyriformis PAT2.7 | TL | 32.7 ± 1.0 | 5.3 ± 0.0 | 8.9 ± 0.4 | 41.4 ± 1.6 | ND | 0.5 ± 0.2 | 3.3 ± 0.1 | 0.6 ± 0.0 | ND | ND | ND | ND |
NL | 35.8 ± 1.5 | 6.1 ± 0.2 | 10.6 ± 0.2 | 42.0 ± 1.2 | ND | <0.5 | 2.1 ± 0.6 | 1.4 ± 0.0 | ND | ND | ND | ND | |
G | 31.9 ± 0.2 | 6.0 ± 0.1 | 7.8 ± 0.4 | 39.1 ± 1.0 | ND | 0.9 ± 0.2 | 18 ± 0.7 | <0.5 | ND | ND | ND | ND | |
P | 16.2 ± 0.3 | 0.5 ± 0.0 | 14.8 ± 1.7 | 30.0 ± 2.8 | ND | 6.9 ± 1.3 | 21.7 ± 3.0 | 1.4 ± 1.0 | ND | ND | ND | ND |
Essentials AA (g/100 g Dry Biomass) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Lysine | Methionine | Histidine | Isoleucine | Leucine | Phenylalanine | Threonine | Valine | Arginine | |
P. costavermella VAS2.5 | 3.5 ± 0.0 | 0.6 ± 0.1 | 0.8 ± 0.0 | 2.1 ± 0.1 | 4.4 ± 0.1 | 2.0 ± 0.1 | 2.3 ± 0.1 | 2.6 ± 0.0 | 2.3 ± 0.1 |
P. oklahomense SAG4.4 | 2.3 ± 1.0 | 0.7 ± 0.2 | 1.2 ± 0.4 | 1.9 ± 0.2 | 3.9 ± 0.6 | 3.5 ± 1.1 | 2.7 ± 0.2 | 2.7 ± 0.3 | 3.0 ± 0.8 |
M. gaditana VON5.3 | 2.4 ± 0.2 | 0.6 ± 0.0 | 0.9 ± 0.1 | 1.9 ± 0.0 | 4.0 ± 0.0 | 2.4 ± 0.2 | 2.4 ± 0.0 | 2.5 ± 0.0 | 2.5 ± 0.1 |
N. pyriformis PAT2.7 | 3.3 ± 0.1 | 1 ± 0.1 | 1.4 ± 0.4 | 3.4 ± 0.0 | 5.5 ± 0.0 | 3.2 ± 0.3 | 3.6 ± 0.3 | 3.4 ± 0.0 | 3.9 ± 0.0 |
Non-Essentials AA (g/100 g Dry Biomass) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Taurine | Tyrosine | Cysteine | Hydroxyproline | Serine | Alanine | Proline | Glutamic Acid | Aspartic Acid | Glycine | |
P. costavermella VAS2.5 | 0.0 ± 0.0 | 1.3 ± 0.1 | 0.1 ± 0.0 | 0.0 ± 0.0 | 2.0 ± 0.1 | 3.3 ± 0.0 | 2.1 ± 0.0 | 5.4 ± 0.0 | 4.5 ± 0.0 | 2.4 ± 0.1 |
P. oklahomense SAG4.4 | 0.2 ± 0.2 | 2.0 ± 0.7 | 0.3 ± 0.1 | 0.3 ± 0.2 | 2.5 ± 0.3 | 3.3 ± 0.6 | 2.4 ± 0.1 | 5.5 ± 0.8 | 4.6 ± 1.4 | 3.0 ± 0.5 |
M. gaditana VON5.3 | 0.0 ± 0.0 | 1.5 ± 0.1 | 0.1 ± 0.0 | 0.0 ± 0.0 | 2.1 ± 0.1 | 3.1 ± 0.1 | 2.0 ± 0.0 | 5.1 ± 0.0 | 4.1 ± 0.1 | 2.6 ± 0.0 |
N. pyriformis PAT2.7 | 0.0 ± 0.0 | 2.8 ± 0.4 | 0.2 ± 0.0 | 0.0 ± 0.0 | 3.3 ± 0.1 | 4.6 ± 0.0 | 2.3 ± 0.0 | 7.7 ± 0.0 | 6.5 ± 0.2 | 3.1 ± 0.1 |
Sum of EAA | Sum of NEAA | EEAA/NEAA | |
---|---|---|---|
P. costavermella VAS2.5 | 20.6 ± 0.6 | 21.2 ± 0.2 | 1.0 ± 0.0 |
P. oklahomense SAG4.4 | 21.8 ± 0.5 | 24.1 ± 0.5 | 0.9 ± 0.0 |
M. gaditana VON5.3 | 19.6 ± 0.3 | 20.6 ± 0.0 | 1.0 ± 0.0 |
N. pyriformis PAT2.7 | 28.7 ± 1.1 | 30.4 ± 0.5 | 0.9 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dritsas, P.; Patsialou, S.; Kampantais, D.; Roussos, E.; Kotzamanis, Y.; Tekerlekopoulou, A.; Vayenas, D.V.; Aggelis, G. Investigating the Potential of Newly Isolated Microalgae Strains from the Ionian Sea (Greece) Cultured in an Open Raceway Pond. Appl. Sci. 2025, 15, 6680. https://doi.org/10.3390/app15126680
Dritsas P, Patsialou S, Kampantais D, Roussos E, Kotzamanis Y, Tekerlekopoulou A, Vayenas DV, Aggelis G. Investigating the Potential of Newly Isolated Microalgae Strains from the Ionian Sea (Greece) Cultured in an Open Raceway Pond. Applied Sciences. 2025; 15(12):6680. https://doi.org/10.3390/app15126680
Chicago/Turabian StyleDritsas, Panagiotis, Stefania Patsialou, Dimitrios Kampantais, Efstratios Roussos, Yannis Kotzamanis, Athanasia Tekerlekopoulou, Dimitris V. Vayenas, and George Aggelis. 2025. "Investigating the Potential of Newly Isolated Microalgae Strains from the Ionian Sea (Greece) Cultured in an Open Raceway Pond" Applied Sciences 15, no. 12: 6680. https://doi.org/10.3390/app15126680
APA StyleDritsas, P., Patsialou, S., Kampantais, D., Roussos, E., Kotzamanis, Y., Tekerlekopoulou, A., Vayenas, D. V., & Aggelis, G. (2025). Investigating the Potential of Newly Isolated Microalgae Strains from the Ionian Sea (Greece) Cultured in an Open Raceway Pond. Applied Sciences, 15(12), 6680. https://doi.org/10.3390/app15126680