Optimal Management of High-Voltage Line Congestions Using Power Source Redispatching
Abstract
:1. Introduction
2. Literature Review
3. Description of the Research Methodology
- Case 1 (C1)–the power deficit is covered only by the source connected in the balancing node theoretical case;
- Case 2 (C2)–the distribution of the power deficit is determined in relation to the maximum power of the sources responsible for maintaining the balance;
- Case 3 (C3)–the distribution of the power deficit is determined in relation to the difference between the maximum and current power of the sources responsible for maintaining the balance;
- Case 4 (C4)–the distribution of the power deficit is determined using the same coefficients for each source responsible for maintaining the balance;
- Case 5 (C5)–power deficit distribution is determined by different coefficients for each source responsible for maintaining the balance, which is determined arbitrarily.
4. Calculation Results and Discussion
4.1. Test Network Description
4.2. Computational Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity. Off. J. Eur. Union 2019, L 158, 54–124.
- Regulation of the Council of Ministers on the List of Accompanying Investments Involving the Reconstruction of Existing Power Lines Constituting Elements of the Distribution Network with a Voltage Equal to or Higher than 110 kV. 2023. Available online: https://www.gov.pl/web/premier/rozporzadzenie-w-sprawie-wykazu-inwestycji-towarzyszacych-polegajacych-na-przebudowie-istniejacych-linii-elektroenergetycznych-stanowiacych-elementy-sieci-dystrybucyjnej-o-napieciu-rownym-lub-wyzszym-niz-110-kv (accessed on 20 April 2025).
- Pijarski, P.; Belowski, A. Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue. Energies 2024, 17, 516. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P.; Belowski, A. Redysponowanie instalacji OZE w praktyce—Konieczność versus konsekwencje. Rynek Energii 2025, 177, 3–10. [Google Scholar]
- EirGrid. Annual Renewable Energy Constraint and Curtailment Report 2018; EirGrid: Dublin, Ireland, 2019. [Google Scholar]
- Germany’s Network Agency. EEG in Number 2014. Available online: http://www.bundesnetzagentur.de (accessed on 9 October 2016).
- Lu, X.; McElroy, M.B.; Peng, W.; Liu, S.; Nielsen, C.P.; Wang, H. Challenges faced by China compared with the US in developing wind power. Nat. Energy 2016, 1, 16061. [Google Scholar] [CrossRef]
- Bird, L.; Cochran, J.; Wang, X. Wind and Solar Energy Curtailment: Experience and Practices in the United States; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014.
- Kacejko, P.; Pijarski, P.; Wancerz, M.; Adamek, S. Risk Assessment of Generation Curtailment in RES for Emergency States of Power Grids. Autom. Elektr. Zaklocenia 2023, 14, 10–34. [Google Scholar] [CrossRef]
- Adamek, S. Kryteria przyłączania źródeł i magazynów energii do sieci średniego napięcia. Przegląd Elektrotech. 2024, 1, 8–11. [Google Scholar] [CrossRef]
- Pająk, P. Duży Wzrost Odmów Przyłączenia OZE I Magazynów Energii. Available online: https://www.gramwzielone.pl/trendy/20190874/duzy-wzrost-odmow-przylaczenia-oze-i-magazynow-energii (accessed on 26 September 2024).
- National Energy System Operator. Available online: https://www.neso.energy/ (accessed on 20 April 2025).
- Available online: https://www.netztransparenz.de/en/Ancillary-Services/System-operations/Redispatch (accessed on 20 April 2025).
- Pijarski, P.; Kacejko, P. Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources. Energies 2023, 16, 3751. [Google Scholar] [CrossRef]
- Kumar, N.; Prabhansu. Artificial intelligence and machine learning applications in energy storage system: Technology overview and perspectives. In Emerging Trends in Energy Storage Systems and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–26. ISBN 9780323905213. [Google Scholar]
- Gush, T.; Kim, C.-H.; Admasie, S.; Kim, J.-S.; Song, J.-S. Optimal Smart Inverter Control for PV and BESS to Improve PV Hosting Capacity of Distribution Networks Using Slime Mould Algorithm. IEEE Access 2021, 9, 52164–52176. [Google Scholar] [CrossRef]
- Manohar, P.; Rajesh, P.; Shajin, F.H. A Comprehensive Review of Congestion Management in Power System. Int. J. Integr. Eng. 2022, 14, 346–362. [Google Scholar] [CrossRef]
- Pillay, A.; Prabhakar Karthikeyan, S.; Kothari, D.P. Congestion management in power systems—A review. Int. J. Electr. Power Energy Syst. 2015, 70, 83–90. [Google Scholar] [CrossRef]
- Yuan, C.; Hu, C.; Li, T. Review of Congestion Management Methods for Power Systems. IOP Conf. Ser. Earth Environ. Sci. 2019, 233, 32025. [Google Scholar] [CrossRef]
- Yusoff, N.I.; Zin, A.A.M.; Bin Khairuddin, A. Congestion management in power system: A review. In Proceedings of the 2017 3rd International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Johor Bahru, Malaysia, 4–6 April 2017; IEEE: New York, NY, USA, 2017; pp. 22–27, ISBN 978-1-5090-5353-7. [Google Scholar]
- Longchao, Z.; Jianjun, X.; Limei, Y. Research on congestion elimination method of circuit overload and transmission congestion in the internet of things. Multimed. Tools Appl. 2017, 76, 18047–18066. [Google Scholar] [CrossRef]
- Jobanputra, J.; Kotwal, C. Power flow management analysis using compensating techniques for managing congestion within electrical energy network. SN Appl. Sci. 2021, 3, 237. [Google Scholar] [CrossRef]
- Fan, M.; Huang, L. Generator Redispatch Control Strategy with Big Data for Power Systems with Renewable Energy. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; IEEE: New York, NY, USA, 2019; pp. 1–5, ISBN 978-1-7281-1981-6. [Google Scholar]
- Khan, B.; Mahela, O.P.; Padmanaban, S.; Alhelou, H.H. (Eds.) Deregulated Electricity Structures and Smart Grids; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003278030. [Google Scholar]
- Huang, H.; Kazerooni, M.; Hossain-McKenzie, S.; Etigowni, S.; Zonouz, S.; Davis, K. Fast Generation Redispatch Techniques for Automated Remedial Action Schemes. In Proceedings of the 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), New Delhi, India, 10–14 December 2019; IEEE: New York, NY, USA, 2019; pp. 1–8, ISBN 978-1-7281-3192-4. [Google Scholar]
- Chen, Y.; Wei, W. Robust Generation Dispatch with Strategic Renewable Power Curtailment and Decision-Dependent Uncertainty. IEEE Trans. Power Syst. 2023, 38, 4640–4654. [Google Scholar] [CrossRef]
- Linnemann, C.; Echternacht, D.; Breuer, C.; Moser, A. Modeling optimal redispatch for the European Transmission grid. In Proceedings of the 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011; IEEE: New York, NY, USA, 2011; pp. 1–8, ISBN 978-1-4244-8418-8. [Google Scholar]
- Munz, U.; Mesanovic, A. Optimal redispatch and primary reserve allocation for power systems with uncertain load and generation. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; IEEE: New York, NY, USA, 2016; pp. 1806–1811, ISBN 978-1-5090-2591-6. [Google Scholar]
- Vazinram, F.; Gandomkar, M.; Nikoukar, J. Optimal Active Power Rescheduling of Generators for Congestion Management Based On Big Bang-Big Crunch Optimization Using New Definition of Sensitivity. Int. J. Eng. Adv. Technol. 2013, 3, 44–52. [Google Scholar]
- van den Bergh, K.; Couckuyt, D.; Delarue, E.; D’haeseleer, W. Redispatching in an interconnected electricity system with high renewables penetration. Electr. Power Syst. Res. 2015, 127, 64–72. [Google Scholar] [CrossRef]
- Vlaisavljevic, D.; Djukanovic, M.B.; Sobajic, D.J.; Babic, B.S. Fuzzy linear programming based optimal power system rescheduling including preventive redispatch. IEEE Trans. Power Syst. 1999, 14, 525–531. [Google Scholar] [CrossRef]
- Verma, S.; Mukherjee, V. Optimal real power rescheduling of generators for congestion management using a novel ant lion optimiser. IET Gener. Transm. Distrib. 2016, 10, 2548–2561. [Google Scholar] [CrossRef]
- Golden, R.; Paulos, B. Curtailment of Renewable Energy in California and Beyond. Electr. J. 2015, 28, 36–50. [Google Scholar] [CrossRef]
- Therapontos, P.; Aristidou, P. The Impact of RES Curtailment Strategies for Congestion Avoidance on the Dynamic Frequency Performance of Low-Inertia Systems. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–6, ISBN 978-1-6654-8778-8. [Google Scholar]
- Saha, S.; Sriprasath, V.J.; Ashwin, M.R.; Shivram, B.; Kumar, A.G. Renewable Energy Curtailment Reduction for California. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021; IEEE: New York, NY, USA, 2021; pp. 1–7, ISBN 978-1-7281-5791-7. [Google Scholar]
- Shams, M.H.; Niaz, H.; Na, J.; Anvari-Moghaddam, A.; Liu, J.J. Machine learning-based utilization of renewable power curtailments under uncertainty by planning of hydrogen systems and battery storages. J. Energy Storage 2021, 41, 103010. [Google Scholar] [CrossRef]
- Balaraman, S.; Kamaraj, N. Transmission congestion management using particle swarm optimization. J. Electr. Syst. 2011, 7, 54–70. [Google Scholar]
- Chychykina, I.; Klabunde, C.; Wolter, M. Comparison of different redispatch optimization strategies. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; IEEE: New York, NY, USA, 2017; pp. 1–6, ISBN 978-1-5090-4237-1. [Google Scholar]
- Venkaiah, C.; Vinod Kumar, D.M. Fuzzy adaptive bacterial foraging congestion management using sensitivity based optimal active power re-scheduling of generators. Appl. Soft Comput. 2011, 11, 4921–4930. [Google Scholar] [CrossRef]
- Naruto, D.T.; Kohler, M.; Pacheco, M.A. Wind Power Curtailment Optimization using Genetic Algorithm. In Proceedings of the 2023 6th International Conference on Power and Energy Applications (ICPEA), Weihai, China, 24–26 November 2023; IEEE: New York, NY, USA, 2023; pp. 159–164, ISBN 979-8-3503-5905-3. [Google Scholar]
- Sankaramurthy, P.; Chokkalingam, B.; Padmanaban, S.; Leonowicz, Z.; Adedayo, Y. Rescheduling of Generators with Pumped Hydro Storage Units to Relieve Congestion Incorporating Flower Pollination Optimization. Energies 2019, 12, 1477. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. Methods of Simulated Annealing and Particle Swarm Applied to the Optimization of Reactive Power Flow in Electric Power Systems. Adv. Electr. Comput. Eng. 2018, 18, 43–48. [Google Scholar] [CrossRef]
- Medeiros Junior, M.F.; Costa Oliveira, A.V.; Costa Oliveira, A.R. Employment of Corrective Switching in Congestion Management for Eliminating Multiple Overloads in Power Systems. IEEE Lat. Am. Trans. 2016, 14, 179–187. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Júnior, M.F.M.; Oliveira, A.V.C.; Fonseca, J.R.L. A linear model for overload rerouting and testing switching measures for overload elimination by means of Relief Functions. In Proceedings of the IX Simpósio Brasileiro de Sistemas Elétricos, Santa Maria, Rio Grande do Sul, Brazil, 10–13 July 2022; Bernardon, D.P., Ed.; SBA Sociedade Brasileira de Automática Campinas: São Paulo, Brazil, 2018. [Google Scholar]
- da Fonseca, J.R.L.; da Costa Oliveira, A.V.; de Almeida, M.A.D.; da Silva, J.L.; de Medeiros, M.F. Self healing feature incorporated to RTDS for solving reconfiguration network problem. In Proceedings of the 2018 VII Brazilian Electrical Systems Symposium (SBSE), Niteroi, Brazil, 12–16 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–6, ISBN 978-1-5386-3363-2. [Google Scholar]
- da Fonseca, J.R.L.; da Costa Oliveira, A.V.; de Almeida, M.A.D.; da Silva, J.L.; de Medeiros, M.F. A New Algorithm for Implementing Automation Process Based on Self Healing Technique. In Proceedings of the 2018 IEEE PES Transmission & Distribution Conference and Exhibition—Latin America (T&D-LA), Lima, Peru, 18–21 September 2018; IEEE: New York, NY, USA, 2018; pp. 1–5, ISBN 978-1-5386-5844-4. [Google Scholar]
- Pijarski, P.; Saigustia, C.; Kacejko, P.; Belowski, A.; Miller, P. Optimal Network Reconfiguration and Power Curtailment of Renewable Energy Sources to Eliminate Overloads of Power Lines. Energies 2024, 17, 2965. [Google Scholar] [CrossRef]
- Pijarski, P.; Saigustia, C.; Kacejko, P.; Bena, L.; Belowski, A. The impact of renewable energy sources on the overload of high voltage lines—Power flow tracking versus direct current method. Arch. Electr. Eng. 2024, 73, 519–541. [Google Scholar] [CrossRef]
- Dutta, S.; Singh, S.P. Optimal Rescheduling of Generators for Congestion Management Based on Particle Swarm Optimization. IEEE Trans. Power Syst. 2008, 23, 1560–1569. [Google Scholar] [CrossRef]
- Alves, R.; Reis, F.S.; Shen, H. Wind power curtailment optimization for day-ahead operational planning. In Proceedings of the 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Ljubljana, Slovenia, 9–12 October 2016; IEEE: New York, NY, USA, 2016; pp. 1–6, ISBN 978-1-5090-3358-4. [Google Scholar]
- Miranda, V.; Fonseca, N. EPSO—best-of-two-worlds meta-heuristic applied to power system problems. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002; IEEE: New York, NY, USA, 2002; pp. 1080–1085, ISBN 0-7803-7282-4. [Google Scholar]
- Mouassa, S.; Bouktir, T.; Salhi, A. Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng. Sci. Technol. Int. J. 2017, 20, 885–895. [Google Scholar] [CrossRef]
- Verma, S.; Saha, S.; Mukherjee, V. Optimal rescheduling of real power generation for congestion management using teaching-learning-based optimization algorithm. J. Electr. Syst. Inf. Technol. 2018, 5, 889–907. [Google Scholar] [CrossRef]
- Roald, L.; Krause, T.; Andersson, G. Integrated balancing and congestion management under forecast uncertainty. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; IEEE: New York, NY, USA, 2016; pp. 1–6, ISBN 978-1-4673-8463-6. [Google Scholar]
- Horsch, J.; Mendes, C. Integrating balancing reserves and congestion management to re-balance the German system. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; IEEE: New York, NY, USA, 2017; pp. 1–6, ISBN 978-1-5090-5499-2. [Google Scholar]
- Wei, T.; Chu, X.; Yang, D.; Ma, H. Power balance control of RES integrated power system by deep reinforcement learning with optimized utilization rate of renewable energy. Energy Rep. 2022, 8, 544–553. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Hua, C.; Jatoi, M.A.; Ansari, M.M.; Qader, A.A. Application of grey wolf optimisation algorithm in parameter calculation of overhead transmission line system. IET Sci. Meas. Technol. 2021, 15, 218–231. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Raj, S.; Babu, R.; Kumar, S.; Sagrolikar, K. A hybrid moth–flame algorithm with particle swarm optimization with application in power transmission and distribution. Decis. Anal. J. 2023, 6, 100182. [Google Scholar] [CrossRef]
- Zhang, N.; Yan, J.; Hu, C.; Sun, Q.; Yang, L.; Gao, D.W.; Guerrero, J.M.; Li, Y. Price-Matching-Based Regional Energy Market with Hierarchical Reinforcement Learning Algorithm. IEEE Trans. Ind. Inf. 2024, 20, 11103–11114. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid Policy-Based Reinforcement Learning of Adaptive Energy Management for the Energy Transmission-Constrained Island Group. IEEE Trans. Ind. Inf. 2023, 19, 10751–10762. [Google Scholar] [CrossRef]
- Bialek, J. Tracing the flow of electricity. IEE Proc. Gener. Transm. Distrib. 1996, 143, 313–320. [Google Scholar] [CrossRef]
- Pijarski, P.; Kacejko, P. A new metaheuristic optimization method: The algorithm of the innovative gunner (AIG). Eng. Optim. 2019, 51, 2049–2068. [Google Scholar] [CrossRef]
- KIOS Research Center. IEEE 118-Bus Modified Test System. Available online: https://www.kios.ucy.ac.cy/testsystems/index.php/ieee-118-bus-modified-test-system/ (accessed on 19 January 2023).
Line | P16-17 | Line Sources Affecting the Line | |||||||
---|---|---|---|---|---|---|---|---|---|
From–To | MW | G-17 | G-24 | G-25 | G-26 | G-27 | G-31 | G-72 | G-113 |
16-17 | 72.38 | Power generated by sources, MW | |||||||
37.507 | 49.602 | 99.674 | 60.259 | 9.212 | 13.871 | 49.813 | 69.719 | ||
Source coefficients uil,k according to Equation (1) | |||||||||
0.365 | 0.008 | 0.156 | 0.310 | 0.002 | 0.133 | 0.004 | 0.316 | ||
Power flowing through the line, originating from a given source, MW | |||||||||
13.695 | 0.381 | 15.551 | 18.679 | 0.022 | 1.847 | 0.187 | 22.036 | ||
Power contribution of the source to the line load 16-17 [%] | |||||||||
18.92 | 0.53 | 21.48 | 25.80 | 0.03 | 2.55 | 0.26 | 30.44 |
Line | P17-113 | Line Sources Affecting the Line |
---|---|---|
From–To | MW | G-113 |
17-113 | 56.26 | Power generated by the source, MW |
67.719 | ||
Source coefficients uil,k according to Equation (1) | ||
0.807 | ||
Power flowing through the line from a given source, MW | ||
56.256 | ||
Power contribution of the source to the line load 17-113 [%] | ||
100 |
Line | P23-24 | Line Sources Affecting the Line | |
---|---|---|---|
From–To | MW | G-24 | G-72 |
23-24 | 62.40 | Power generated by the source, MW | |
49.602 | 49.813 | ||
Source coefficients uil,k according to Equation (1) | |||
0.844 | 0.412 | ||
Power flowing through the line from a given source, MW | |||
41.864 | 20.539 | ||
Power contribution of the source to the line load 23-24 [%] | |||
67.09 | 32.91 |
Line | P94-95 | Line Sources Affecting the Line | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
From–To | MW | G-91 | G-99 | G-100 | G-103 | G-105 | G-110 | G-111 | G-112 | G-125 |
94-95 | 43.64 | Power generated by the source, MW | ||||||||
48.867 | 91.456 | 59.878 | 67.025 | 9.576 | 11.760 | 21.964 | 10.621 | 95.815 | ||
Source coefficients uil,k according to Equation (1) | ||||||||||
0.047 | 0.033 | 0.223 | 0.177 | 0.010 | 0.074 | 0.074 | 0.074 | 0.101 | ||
Power flowing through the line, originating from a given source, MW | ||||||||||
2.305 | 3.045 | 13.354 | 11.873 | 0.096 | 0.871 | 1.627 | 0.787 | 9.686 | ||
Power contribution of the source to the line load 94-95 [%] | ||||||||||
5.28 | 6.98 | 30.60 | 27.20 | 0.22 | 2 | 3.73 | 1.80 | 22.19 |
Line | P100-103 | Line Sources Affecting the Line | |||
---|---|---|---|---|---|
From–To | MW | G-103 | G-110 | G-111 | G-112 |
100-103 | 53.33 | Power generated by the source, MW | |||
67.025 | 11.760 | 21.964 | 10.621 | ||
Source coefficients uil,k according to Equation (1) | |||||
0.689 | 0.273 | 0.273 | 0.273 | ||
Power flowing through the line from a given source, MW | |||||
46.209 | 3.215 | 6.006 | 2.904 | ||
Power contribution of the source to the line load 100-103 [%] | |||||
79.21 | 5.51 | 10.30 | 4.98 |
G-99 | G-49 | G-59 | G-65 | G-116 | G-100 | G-125 | G-38 | G-8 | G-26 | G-64 | |
---|---|---|---|---|---|---|---|---|---|---|---|
C2 | 600 | 200 | 300 | 800 | 800 | 200 | 300 | 400 | 1000 | 600 | 400 |
C3 | 508.3 | 139.6 | 255 | 719.4 | 719.4 | 102.8 | 204.1 | 359.7 | 899.3 | 539.6 | 359.7 |
C4 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
C5 | 91.7 | 60.4 | 45 | 80.6 | 80.6 | 97.2 | 95.9 | 40.3 | 100.7 | 60.4 | 40.3 |
G-99 | G-49 | G-59 | G-65 | G-116 | G-100 | G-125 | G-38 | G-8 | G-26 | G-64 | |
---|---|---|---|---|---|---|---|---|---|---|---|
C2 | 0.107 | 0.036 | 0.054 | 0.143 | 0.143 | 0.036 | 0.054 | 0.071 | 0.179 | 0.107 | 0.071 |
C3 | 0.106 | 0.029 | 0.053 | 0.15 | 0.15 | 0.021 | 0.042 | 0.075 | 0.187 | 0.112 | 0.075 |
C4 | 0.091 | 0.091 | 0.091 | 0.091 | 0.091 | 0.091 | 0.091 | 0.091 | 0.091 | 0.091 | 0.091 |
C5 | 0.116 | 0.076 | 0.057 | 0.102 | 0.102 | 0.123 | 0.121 | 0.051 | 0.127 | 0.076 | 0.051 |
RES | PG, MW | Calculation Cases/PGopt, MW | ||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | ||
G-24 | 50 | 50 | 38 | 39 | 37 | 38 |
G-113 | 70 | 42 | 36 | 36 | 35 | 36 |
G-103 | 90 | 48 | 47 | 48 | 36 | 25 |
Sum of power ΣPG, MW | 210 | 140 | 121 | 123 | 108 | 99 |
Power reduction ΣPG-ΣPGopt, MW | 70 | 89 | 87 | 102 | 111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pijarski, P.; Belowski, A.; Beňa, Ľ.; Binkowski, T.; Mroczek, B. Optimal Management of High-Voltage Line Congestions Using Power Source Redispatching. Appl. Sci. 2025, 15, 6594. https://doi.org/10.3390/app15126594
Pijarski P, Belowski A, Beňa Ľ, Binkowski T, Mroczek B. Optimal Management of High-Voltage Line Congestions Using Power Source Redispatching. Applied Sciences. 2025; 15(12):6594. https://doi.org/10.3390/app15126594
Chicago/Turabian StylePijarski, Paweł, Adrian Belowski, Ľubomír Beňa, Tomasz Binkowski, and Bartłomiej Mroczek. 2025. "Optimal Management of High-Voltage Line Congestions Using Power Source Redispatching" Applied Sciences 15, no. 12: 6594. https://doi.org/10.3390/app15126594
APA StylePijarski, P., Belowski, A., Beňa, Ľ., Binkowski, T., & Mroczek, B. (2025). Optimal Management of High-Voltage Line Congestions Using Power Source Redispatching. Applied Sciences, 15(12), 6594. https://doi.org/10.3390/app15126594