Lightning-Induced Voltages over Gaussian-Shaped Terrain Considering Different Lightning Strike Locations
Abstract
:1. Introduction
2. Method
2.2. Lightning Current Channel Model
2.3. Agrawal Coupling Model
2.4. Model Validation
3. Results and Discussions
3.1. Comparative Analysis of LIVs over Gaussian, Conical, and Flat Terrains
3.2. Impact of Gaussian-Shaped Mountain Height on LIVs
3.3. Impact of Gaussian-Shaped Mountain Width on LIVs
3.4. Impact of Mountain Conductivity on LIVs
4. Discussion
5. Conclusions
- (1)
- Comparative analysis reveals that the influence on LIVs for lightning strikes over complex mountainous terrain is pronounced. Different lightning strike locations correspond to different EM wave propagation paths. For lightning strikes at SL2, the presence of Gaussian-shaped mountainous terrain causes the enhancement in LIVs due to the reflection of EM waves between the mountain and the flat ground. However, the mountain obstructs the propagation of EM waves, which leads to attenuation in LIVs when lightning strikes at SL3.
- (2)
- For lightning strikes at SL1 and SL2, the presence of a Gaussian-shaped mountain leads to the enhancement of induced voltages, and this enhancement intensifies further as mountain height increases.
- (3)
- For lightning strikes at SL3, the Gaussian-shaped mountain is located between the lightning channel and the overhead distribution line. LIVs decrease compared to those of flat ground due to the shielding effect of the mountain, and this impact becomes more pronounced as the height increases.
- (4)
- In the case of a Gaussian-shaped mountain model, the influence of mountain width on the enhancement of LIVs is less significant than that of mountain height. Nonetheless, a sufficiently wide mountain can still result in a stronger EM shielding effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2/3-D | Two-/three-dimensional |
EM | Electromagnetic |
FDTD | Finite-difference time-domain method |
FEM | Finite element method |
LIVs | Lightning-induced voltages |
MOM | Method of moments |
PV | Photovoltaic |
SL | Strike location |
References
- Rakov, V.A.; Rachidi, F. Overview of Recent Progress in Lightning Research and Lightning Protection. IEEE Trans. Electromagn. Compat. 2009, 51, 428–442. [Google Scholar] [CrossRef]
- Ahmad, N.I.; Ab-Kadir, M.Z.A.; Izadi, M.; Azis, N.; Radzi, M.A.M.; Zaini, N.H.; Nasir, M.S.M. Lightning Protection on Photovoltaic Systems: A Review on Current and Recommended Practices. Renew. Sustain. Energy Rev. 2018, 82, 1611–1619. [Google Scholar] [CrossRef]
- Chowdhuri, P. Parameters of Lightning Strokes and Their Effects on Power Systems. In Proceedings of the 2001 IEEE/PES Transmission and Distribution Conference and Exposition: Developing New Perspectives, Atlanta, GA, USA, 2 November 2001; pp. 1047–1051. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Meneghini, R. Electromagnetic Fields Radiated from a Lightning Return Stroke: Application of an Exact Solution to Maxwell’s Equations. J. Geophys. Res. Ocean. 1978, 83, 2377–2384. [Google Scholar] [CrossRef]
- Bakar, A.; Abidin, A.Z.; Illias, H.; Mokhlis, H.; Halim, S.A.; Hassan, N.H.N.; Tan, C.K. Determination of the Striking Distance of a Lightning Rod Using Finite Element Analysis. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 4083–4097. [Google Scholar] [CrossRef]
- Napolitano, F.; Borghetti, A.; Nucci, C.A.; Rachidi, F.; Paolone, M. Use of the Full-Wave Finite Element Method for the Numerical Electromagnetic Analysis of LEMP and Its Coupling to Overhead Lines. Electr. Power Syst. Res. 2013, 94, 24–29. [Google Scholar] [CrossRef]
- Baba, Y.; Rakov, V.A. Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations. IEEE Trans. Electromagn. Compat. 2014, 56, 1506–1521. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Q.; Wang, Z.; Liu, T. Computation of Lightning Horizontal Field Over the Two-Dimensional Rough Ground by Using the Three-Dimensional FDTD. IEEE Trans. Electromagn. Compat. 2014, 56, 143–148. [Google Scholar] [CrossRef]
- Hu, W.; Cummer, S.A. An FDTD Model for Low and High-Altitude Lightning-Generated EM Fields. IEEE Antennas Propag. Mag. 2006, 54, 1513–1522. [Google Scholar] [CrossRef]
- Tatematsu, A.; Rachidi, F.; Rubinstein, M. Analysis of Electromagnetic Fields Inside a Reinforced Concrete Building with Layered Reinforcing Bar Due to Direct and Indirect Lightning Strikes Using the FDTD Method. IEEE Trans. Electromagn. Compat. 2015, 57, 405–417. [Google Scholar] [CrossRef]
- La Fata, A.; Nicora, M.; Mestriner, D.; Aramini, R.; Procopio, R.; Brignone, M.; Delfino, F. Lightning Electromagnetic Fields Computation: A Review of the Available Approaches. Energies 2023, 16, 2436. [Google Scholar] [CrossRef]
- Rachidi, F. A Review of Field-to-Transmission Line Coupling Models with Special Emphasis to Lightning-Induced Voltages on Overhead Lines. IEEE Trans. Electromagn. Compat. 2012, 54, 898–911. [Google Scholar] [CrossRef]
- Taylor, C.D.; Satterwhite, R.S.; Harrison, C.W. The Response of Terminated Two-Wire Transmission Line Excited by Nonuniform Electromagnetic Field. IEEE Trans. Antennas Propag. 1965, 13, 987–989. [Google Scholar] [CrossRef]
- Rachidi, F. Formulation of Field-to-Transmission Line Coupling Equations in Terms of Magnetic Excitation Field. IEEE Trans. Electromagn. Compat. 1993, 35, 404–407. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Price, H.J.; Gurbaxani, S.H. Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field. IEEE Trans. Electromagn. Compat. 1980, EMC-22, 119–129. [Google Scholar] [CrossRef]
- Pokharel, R.K.; Ishii, M.; Baba, Y. Numerical Electromagnetic Analysis of Lightning-Induced Voltage over Ground of Finite Conductivity. IEEE Trans. Electromagn. Compat. 2003, 45, 651–656. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Gao, Q.; Li, X.; Yang, G.; Zhang, Q.; Tang, B. Influences of Soil Water Content and Porosity on Lightning Electromagnetic Fields and Lightning-Induced Voltages on Overhead Lines. Front. Environ. Sci. 2022, 10, 946551. [Google Scholar] [CrossRef]
- Ishii, T.; Oguchi, S.; Sakamoto, Y.; Okabe, S. A Field Study of Lightning Overvoltages in Low-Voltage Distribution Lines. Electr. Eng. Jpn. 2013, 183, 12–21. [Google Scholar] [CrossRef]
- Hossain, M.K.; Tasnim, L. Analysis of the Impact of Ground Conductivity, Source Current Speed, and Source Current Rise Time on Peak Induced Voltage on Overhead Conductors. Discov. Electron. 2025, 2, 3. [Google Scholar] [CrossRef]
- Sun, Q.; Zhong, X.; Liu, J.; Wang, F.; Chen, S.; Zhong, L.; Bian, X. Three-Dimensional Modeling on Lightning Induced Overvoltage for Photovoltaic Arrays Installed on Mountain. J. Clean. Prod. 2021, 288, 125664. [Google Scholar] [CrossRef]
- Nematollahi, A.F.; Vahidi, B.; Mousavi, E.S.A. The Indirect-Lightning Performance of Overhead Distribution Line Considering the Mixed Ocean–Land Propagation Path. IEEE Trans. Electromagn. Compat. 2023, 66, 1137–1145. [Google Scholar] [CrossRef]
- Li, D.; Azadifar, M.; Rachidi, F.; Rubinstein, M.; Paolone, M. On Lightning Electromagnetic Field Propagation Along an Irregular Terrain. IEEE Trans. Electromagn. Compat. 2015, 58, 161–171. [Google Scholar] [CrossRef]
- Mestriner, D.; Marchesoni, F.; Procopio, R.; Brignone, M. Attenuation of Lightning-Induced Effects on Overhead Distribution Systems in Urban Areas. Appl. Sci. 2022, 12, 7632. [Google Scholar] [CrossRef]
- Nicora, M.; Mestriner, D.; Brignone, M.; Procopio, R.; Fiori, E.; Piantini, A.; Rachidi, F. Estimation of the Lightning Performance of Overhead Lines Accounting for Different Types of Strokes and Multiple Strike Points. IEEE Trans. Electromagn. Compat. 2021, 63, 2015–2023. [Google Scholar] [CrossRef]
- Natsui, M.; Ametani, A.; Mahseredjian, J.; Sekioka, S.; Yamamoto, K. 3-D FDTD Analysis of Lightning-Induced Voltages in Distribution Lines Due to Inclined Lightning. IEEE Trans. Electromagn. Compat. 2020, 63, 189–197. [Google Scholar] [CrossRef]
- Petrarca, C.; Balato, M.; Verolino, L.; Andreotti, A.; Assante, D. Computation of Electric and Magnetic Fields Generated by Cloud-to-Cloud Lightning Channels. Energies 2023, 16, 4524. [Google Scholar] [CrossRef]
- Rizk, M.E.; Abulanwar, S.; Ghanem, A.; Lehtonen, M. Computation of Lightning-Induced Voltages Considering Ground Impedance of Multi-Conductor Line for Lossy Dispersive Soil. IEEE Trans. Power Del. 2021, 37, 2464–2473. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Hou, W.; Zhang, L.; Zhou, F.; Ma, Y.; Ma, Y. Evaluation of the Lightning-Induced Voltages of Multiconductor Lines for Striking Cone-Shaped Mountain. IEEE Trans. Electromagn. Compat. 2018, 61, 1534–1542. [Google Scholar] [CrossRef]
- Soto, E.; Perez, E.; Herrera, J. Electromagnetic Field Due to Lightning Striking on Top of a Cone-Shaped Mountain Using the FDTD. IEEE Trans. Electromagn. Compat. 2014, 56, 1112–1120. [Google Scholar] [CrossRef]
- Soto, E.; Pérez, E. Lightning-Induced Voltages on Overhead Lines over Irregular Terrains. Electr. Power Syst. Res. 2019, 176, 105941. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Zhou, F.; Ma, Y.; Pan, H.; Hou, W. Computation of Lightning-Induced Voltages for Striking Oblique Cone-Shaped Mountain by 3-D FDTD Method. IEEE Trans. Electromagn. Compat. 2019, 61, 1543–1551. [Google Scholar] [CrossRef]
- Arzag, K.; Azzouz, Z.E.; Baba, Y.; Ghemri, B. 3-D FDTD Computation of Electromagnetic Fields Associated with Lightning Strikes to a Tower Climbed on a Trapezoidal Mountain. IEEE Trans. Electromagn. Compat. 2019, 61, 606–616. [Google Scholar] [CrossRef]
- Zaini, N.H.; Ab Kadir, M.Z.A.; Mohd Radzi, M.A.; Izadi, M.; Azis, N.; Ahmad, N.I.; Nasir, M.S.M. Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System. Energies 2017, 10, 2149. [Google Scholar] [CrossRef]
- Ahmad, N.I.; Ali, Z.; Ab Kadir, M.Z.A.; Osman, M.; Zaini, N.H.; Roslan, M.H. Impacts of Lightning-Induced Overvoltage on a Hybrid Solar PV–Battery Energy Storage System. Appl. Sci. 2021, 11, 3633. [Google Scholar] [CrossRef]
- Sun, Q.; Zhong, X.; Zhong, L.; Wang, F.; Liu, J.; Chen, S.; Yang, T. Investigation on Induced Voltage of Photovoltaic System on Complex Terrain. Electr. Power Syst. Res. 2021, 201, 107549. [Google Scholar] [CrossRef]
- Willatzen, M. Electromagnetic-Wave Propagation along Curved Surfaces. Phys. Rev. A—At. Mol. Opt. Phys. 2009, 80, 043805. [Google Scholar] [CrossRef]
- Donohue, J.D.; Kuttler, J.R. Propagation Modeling over Terrain Using the Parabolic Wave Equation. IEEE Trans. Antennas Propag. 2000, 48, 260–277. [Google Scholar] [CrossRef]
- Yu, J.; Gu, S.; Liu, J.; Liu, H. Indirect lightning performance of 10-kV overhead distribution lines. Front. Energy Res. 2024, 12, 1367183. [Google Scholar] [CrossRef]
- Teixeira, F.L.; Sarris, C.; Zhang, Y.; Na, D.Y.; Berenger, J.P.; Su, Y.; Okoniewski, M.; Chew, W.C.; Backman, V.; Simpson, J.J. Finite-Difference Time-Domain Methods. Nat. Rev. Methods Primers 2023, 3, 75. [Google Scholar] [CrossRef]
- Mohamed, E.; Souli, A.; Beladel, A.; Khaleel, M. Simulation and Analysis of Lightning Strikes in Electrical Systems by MATLAB/SIMULINK and ATP/EMTP. ITEGAM-JETIA 2024, 10, 142–150. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, B.H.; Gao, C.; Shi, L.H.; Chen, B.; Chen, H.L. Using a two-step finite-difference time-domain method to analyze lightning-induced voltages on transmission lines. IEEE Trans. Electromagn. Compat. 2011, 53, 256–260. [Google Scholar] [CrossRef]
- Mur, G. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations. IEEE Trans. Electromagn. Compat. 1981, EMC-23, 377–382. [Google Scholar] [CrossRef]
- Yu, W.; Mittra, R. A Conformal Finite Difference Time Domain Technique for Modeling Curved Dielectric Surfaces. IEEE Microw. Wirel. Compon. Lett. 2001, 11, 25–27. [Google Scholar] [CrossRef]
- Yu, W.; Mittra, R. A Conformal FDTD Algorithm for Modeling Perfectly Conducting Objects with Curve-Shaped Surfaces and Edges. Microw. Opt. Technol. Lett. 2000, 27, 136–138. [Google Scholar] [CrossRef]
- Heidler, F.; Cvetic, J.M.; Stanic, B.V. Calculation of Lightning Current Parameters. IEEE Trans. Power Deliv. 1999, 14, 399–404. [Google Scholar] [CrossRef]
- Nucci, C.A.; Rachidi, F.; Ianoz, M.V.; Mazzetti, C. Lightning-Induced Voltages on Overhead Lines. IEEE Trans. Electromagn. Compat. 1993, 35, 75–86. [Google Scholar] [CrossRef]
- Nucci, C.A.; Mazzetti, C.; Rachidi, F.; Ianoz, M.V. On Lightning Return Stroke Models for LEMP Calculations. In Proceedings of the 19th International Conference on Lightning Protection, Graz, Austria, 25–29 April 1988; pp. 463–469. [Google Scholar]
- Baba, Y.; Rakov, V.A. On the Transmission Line Model for Lightning Return Stroke Representation. Geophys. Res. Lett. 2003, 30, 2294. [Google Scholar] [CrossRef]
- Thottappillil, R.; Uman, M.A. Comparison of Lightning Return-Stroke Models. J. Geophys. Res. Atmos. 1993, 98, 22903–22914. [Google Scholar] [CrossRef]
- Alves, A.F.S.; Araújo, M.A. Survey on Analytical and Numerical Methods for Lightning-Induced Voltages Calculations. Electr. Eng. 2024, 106, 905–916. [Google Scholar] [CrossRef]
- Li, D.; Azadifar, M.; Rachidi, F.; Rubinstein, M.; Diendorfer, G.; Sheshyekani, K.; Zhang, Q.; Wang, Z. Analysis of Lightning Electromagnetic Field Propagation in Mountainous Terrain and Its Effects on ToA-Based Lightning Location Systems. J. Geophys. Res. Atmos. 2016, 121, 895–911. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, Q.; Wang, L.; Zhang, J. Effect of Striking a Cone-Shaped Mountain Top on the Far Lightning-Radiated Electromagnetic Field. IEEE Trans. Electromagn. Compat. 2019, 61, 1147–1156. [Google Scholar] [CrossRef]
- Su, Z.; Lyu, W.; Chen, L.; Wu, S. Shielding Effect of Surrounding Buildings on the Lightning-Generated Vertical Electric Field at the Top of a Tall Building. IEEE Trans. Electromagn. Compat. 2018, 61, 174–182. [Google Scholar] [CrossRef]
- Hou, W.; Azadifar, M.; Rubinstein, M.; Rachidi, F.; Zhang, Q. On the Propagation of Lightning-Radiated Electromagnetic Fields Across a Mountain. IEEE Trans. Electromagn. Compat. 2020, 62, 2137–2147. [Google Scholar] [CrossRef]
- Peng, X.; Wang, L.; Zhang, J.; Chen, J.; Dai, B. The Field Shielding Effect of Mountain on the Lightning Electromagnetic Field. J. Electromagn. Anal. Appl. 2020, 12, 15–28. [Google Scholar] [CrossRef]
Strike Location | Terrains | Close End (kV) | Center (kV) | Remote End (kV) |
---|---|---|---|---|
SL1 | Flat ground | 17.62 | 11.09 | 20.50 |
Gaussian-shaped | 15.57 | 4.59 | 15.89 | |
Cone-shaped | 14.59 | 2.57 | 13.14 | |
SL2 | Flat ground | 17.70 | 11.12 | 20.54 |
Gaussian-shaped | 25.51 | 23.65 | 44.17 | |
Cone-shaped | 23.99 | 23.33 | 43.08 | |
SL3 | Flat ground | 17.56 | 11.07 | 20.48 |
Gaussian-shaped | 17.07 | 11.04 | 20.16 | |
Cone-shaped | 16.90 | 10.9 | 19.52 |
Strike Location | Terrains | Close End (kV) | Center (kV) | Remote End (kV) |
---|---|---|---|---|
SL1 | Flat ground | 18.09 | 9.35 | 9.98 |
Gaussian-shaped | 16.25 | 8.80 | 10.19 | |
Cone-shaped | 14.77 | 9.36 | 9.48 | |
SL2 | Flat ground | 11.78 | 33.29 | 11.78 |
Gaussian-shaped | 19.42 | 46.95 | 19.42 | |
Cone-shaped | 17.85 | 44.50 | 17.85 | |
SL3 | Flat ground | 4.18 | 10.57 | 4.18 |
Gaussian-shaped | 3.51 | 9.76 | 3.51 | |
Cone-shaped | 3.55 | 10.45 | 3.55 |
Strike Location | Height (m) | Close End (kV) | Center (kV) | Remote End (kV) |
---|---|---|---|---|
SL1 | 200 | 15.41 | 5.13 | 16.18 |
250 | 15.58 | 4.59 | 15.89 | |
300 | 15.79 | 4.06 | 15.57 | |
400 | 15.98 | 3.06 | 14.81 | |
SL2 | 200 | 23.53 | 22.30 | 41.10 |
250 | 25.51 | 23.65 | 44.17 | |
300 | 27.07 | 24.46 | 46.30 | |
400 | 29.25 | 25.02 | 48.71 | |
SL3 | 200 | 17.03 | 11.04 | 20.20 |
250 | 17.07 | 11.03 | 20.16 | |
300 | 16.74 | 11.04 | 20.14 | |
400 | 15.88 | 11.03 | 20.09 |
Strike Location | Height (m) | Close End (kV) | Center (kV) | Remote End (kV) |
---|---|---|---|---|
SL1 | 200 | 16.10 | 8.84 | 9.81 |
250 | 16.25 | 8.80 | 10.19 | |
300 | 16.40 | 8.55 | 10.55 | |
400 | 16.62 | 7.75 | 11.02 | |
SL2 | 200 | 17.59 | 43.74 | 17.55 |
250 | 19.42 | 46.95 | 13.41 | |
300 | 20.24 | 49.23 | 14.89 | |
400 | 19.04 | 51.22 | 17.09 | |
SL3 | 200 | 3.74 | 10.19 | 3.74 |
250 | 3.51 | 9.76 | 3.51 | |
300 | 3.27 | 9.39 | 3.27 | |
400 | 2.74 | 8.70 | 2.74 |
Strike Location | Width | Close End (kV) | Center (kV) | Remote End (kV) |
---|---|---|---|---|
SL1 | 200 | 14.21 | 6.13 | 16.07 |
300 | 14.22 | 5.72 | 15.70 | |
500 | 13.46 | 4.39 | 13.92 | |
700 | 12.70 | 3.05 | 12.33 | |
SL2 | 200 | 21.03 | 18.79 | 37.47 |
300 | 20.79 | 19.15 | 37.79 | |
500 | 20.27 | 18.71 | 36.86 | |
700 | 22.44 | 18.62 | 35.33 | |
SL3 | 200 | 14.03 | 8.66 | 16.94 |
300 | 14.03 | 8.65 | 16.85 | |
500 | 13.92 | 8.49 | 16.26 | |
700 | 13.83 | 8.12 | 15.42 |
Strike Location | Width | Close End (kV) | Center (kV) | Remote End (kV) |
---|---|---|---|---|
SL1 | 200 | 13.54 | 8.18 | 7.61 |
300 | 13.31 | 8.34 | 7.73 | |
500 | 12.61 | 8.39 | 7.58 | |
700 | 10.78 | 2.27 | 8.18 | |
SL2 | 200 | 15.68 | 36.39 | 15.68 |
300 | 15.58 | 36.15 | 15.58 | |
500 | 14.07 | 34.3800 | 14.07 | |
700 | 11.71 | 38.62 | 11.71 | |
SL3 | 200 | 2.95 | 7.96 | 2.95 |
300 | 2.96 | 8.03 | 2.96 | |
500 | 2.99 | 8.22 | 2.99 | |
700 | 2.44 | 5.52 | 2.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, J.; Zhang, J.; Tao, Y.; Zou, J.; Zhang, Q.; Xie, Z.; Wang, Y.; Li, X. Lightning-Induced Voltages over Gaussian-Shaped Terrain Considering Different Lightning Strike Locations. Appl. Sci. 2025, 15, 6428. https://doi.org/10.3390/app15126428
Niu J, Zhang J, Tao Y, Zou J, Zhang Q, Xie Z, Wang Y, Li X. Lightning-Induced Voltages over Gaussian-Shaped Terrain Considering Different Lightning Strike Locations. Applied Sciences. 2025; 15(12):6428. https://doi.org/10.3390/app15126428
Chicago/Turabian StyleNiu, Jiawei, Jinbo Zhang, Yan Tao, Junhua Zou, Qilin Zhang, Zhibin Xie, Yajun Wang, and Xiaolong Li. 2025. "Lightning-Induced Voltages over Gaussian-Shaped Terrain Considering Different Lightning Strike Locations" Applied Sciences 15, no. 12: 6428. https://doi.org/10.3390/app15126428
APA StyleNiu, J., Zhang, J., Tao, Y., Zou, J., Zhang, Q., Xie, Z., Wang, Y., & Li, X. (2025). Lightning-Induced Voltages over Gaussian-Shaped Terrain Considering Different Lightning Strike Locations. Applied Sciences, 15(12), 6428. https://doi.org/10.3390/app15126428