Physicochemical Properties, Trace Elements, and Health Risk Assessment of Edible Vegetable Oils Consumed in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Methods
2.2.1. Acidity Index (AI)
2.2.2. Moisture Content (MC)
2.2.3. Peroxide Value (PV)
2.2.4. Refractive Index (RI)
2.2.5. Iodine Value (IV)
2.2.6. Saponification Value (SV)
2.2.7. Total Phenolic Compounds (TPCs)
2.2.8. Determination of Mn, Cr, Cu, Cd, Pb, Co, and Ni by Graphite Atomic Absorption Spectrometry
2.3. Health Risk Assessment
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Quality Indices
3.2. Potentially Toxic Metals
3.3. Health Risk
4. Discussion
4.1. Physicochemical Quality Indices
4.1.1. Acidity Index
4.1.2. Moisture Content
4.1.3. Peroxide Value
4.1.4. Refractive Index
4.1.5. Iodine Value
4.1.6. Saponification Value
4.1.7. Total Phenolic Compounds
4.2. Potentially Toxic Metals
4.3. Non-Carcinogenic Risk
4.4. Cancer Risk
4.5. Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calmuţchi, L.; Melentiev, E.; Popa, E. Cercetarea unor indici de calitate a uleiurilor vegetale alimentare. Universitatea de Stat din Tiraspol, Conferinta “Instruire prin cercetare pentru o societate prosperă”. In Proceedings of the Conference “Education through Research for a Prosperous Society”, Chişinău, Moldova, 21–22 March 2020; Volume 2, pp. 97–101. [Google Scholar]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2014, 3, 1–23. [Google Scholar] [CrossRef]
- Taghvaei, M.; Jafari, S.M. Application and stability of natural antioxidants in edible oils in order to substitute. Synthetic additives. J. Food Sci. Technol. 2015, 52, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Pedan, V.; Popp, M.; Rohn, S.; Nyfeler, M.; Bongartz, A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules 2019, 24, 2041. [Google Scholar] [CrossRef] [PubMed]
- Amira, P.O.; Babalola, O.O.; Oyediran, A.M. Physicochemical properties of palm kernel oil. Curr. Res. J. Biol. Sci. 2014, 6, 205–207. [Google Scholar] [CrossRef]
- Mousavi, K.; Shoeibi, S.; Ameri, M. Effects of storage conditions and PET packaging on quality of edible oils in Iran. Adv. Environ. Biol. 2012, 6, 694–701. [Google Scholar]
- Gouilleux, B.; Marchand, J.; Charrier, B.; Remaud, G.S.; Giraudeau, P. High throughput authentication of edible oils with benchtop Ultrafast 2D NMR. Food Chem. 2018, 244, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Szyczewski, P.; Frankowski, M.; Zioła-Frankowska, A.; Siepak, J.; Szyczewski, T.; Piotrowski, P. A comparative study of the content of heavy metals in oils: Linseed oil, rapeseed oil and soybean oil in technological production processes. Arch. Environ. Prot. 2016, 42, 37–40. [Google Scholar] [CrossRef]
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The sources of chemical contaminants in food and their health implications. Front. Pharmacol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Huyan, Z.; Ding, S.; Mao, X.; Wu, C.; Yu, X. Effects of packaging materials on oxidative product formation in vegetable oils: Hydroperoxides and volatiles. Food Packag. Shelf Life 2019, 21, 100328. [Google Scholar] [CrossRef]
- Yohannes, L.; Feleke, H.; Melaku, H.S.; Amare, D.E. Analysis of heavy metals and minerals in edible vegetable oils produced and marketed in Gondar City, Northwest Ethiopia. BMC Public Health 2024, 24, 2204. [Google Scholar] [CrossRef]
- Zhu, F.; Fan, W.; Wang, X.; Qu, L.; Yao, S. Health riskassessment of eight heavy metals in nine varieties of ediblevegetable oils consumed in China. Food Chem. Toxicol. 2011, 49, 3081–3085. [Google Scholar] [CrossRef] [PubMed]
- Karasakal, A. Determination of trace and major elements in vegan milk and oils by ICP-OES after microwave digestion. Biol. Trace Elem. Res. 2020, 197, 683–693. [Google Scholar] [CrossRef]
- Ashraf, M.W.; Khobar, A.J. Levels of selected heavy metals in verities of vegetable oils consumed in Kingdom of Saudi Arabia and health risk assessment of local population. J. Chem. Soc. Pak. 2014, 36, 691–698. [Google Scholar]
- Olafisoye, O.B.; Fatoki, O.S.; Oguntibeju, O.O.; Osibote, O.A. Accumulation and risk assessment of metals in palm oil cultivated on contaminated oil palm plantation soils. Toxicol. Rep. 2020, 7, 324–334. [Google Scholar] [CrossRef]
- Cozma, B.; Mihut, A.; Mihut, C.; Petcu, M.; Cozma, A. Determination of some physico-chemical parameters of three varieties of alimentary oil. Res. J. Agric. Sci. 2024, 56, 76–81. [Google Scholar]
- Popovici, C.; Capcanari, T.; Deseatnicova, O.; Sturza, R. Study of quality indices of functional vegetal oil mixture. Ann. Univ. Dunarea Jos Galati 2009, 34, 18–24. [Google Scholar]
- CXS 210-1999; Codex, Codex Standards for Fats and Oils from Vegetable Sources. Codex Alimentarius Commission 1999. Standard for Named Vegetable Oils. FAO: Rome, Italy, 2017.
- AOAC. Official Methods of Analysis, 16th ed.; AOAC International: Washington, DC, USA, 1999. [Google Scholar]
- Soceanu, A.; Matei, N.; Dobrinas, S.; Birghila, S.; Popescu, V.; Crudu, G. Metal content in caps and stalks of edible mushrooms: Health benefits and risk evaluation. Biol. Trace Elem. Res. 2023, 202, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Dobrinas, S.; Soceanu, A. Determination of total phenolic content from plant extracts used in cosmetic purpose. J. Sci. Arts 2021, 1, 247–260. [Google Scholar] [CrossRef]
- Birghila, S.; Matei, N.; Dobrinas, S.; Popescu, V.; Soceanu, A.; Niculescu, A. Assessment of heavy metal content in soil and Lyco-persicon esculentum (tomato) and their health implications. Biol. Trace Elem. Res. 2022, 201, 1547–1556. [Google Scholar] [CrossRef]
- US-Environmental Protection Agency. Regional Screening Levels (RSLs)–Generic Tables (May 2016); U.S. Environmental Protection Agency: Washington, DC, USA, 2016.
- Niu, B.; Zhang, H.; Zhou, G.; Zhang, S.; Yang, Y.; Deng, X.; Chen, Q. Safety risk assessment and early warning of chemical contamination in vegetable oil. Food Control 2021, 125, 107970. [Google Scholar] [CrossRef]
- EPA. EPA Region 3 RBC Table. 2007. Available online: https://semspub.epa.gov/work/05/229825.pdf (accessed on 18 November 2024).
- EPA. Reference Dose (RfD): Description and Use in Health Risk Assessments. 1993. Available online: https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments (accessed on 18 November 2024).
- US-Environmental Protection Agency. Regional Screening Level (RSL) Summary Table; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- US-EPA. Supplemental Guidance for Assessing; Environmental Protection Agency: Washington, DC, USA, 2001.
- R Version 4.2.1 (2022-06-23), Copyright (C) 2022 The R Foundation for Statistical Computing Platform: Aarch64-apple-darwin21.6.064-bit. Available online: https://www.r-project.org/ (accessed on 12 December 2024).
- Kumar, A.; Sharma, A.; Upadhyaya, K.C. Vegetable oil: Nutritional and industrial perspective. Curr. Genomics 2016, 17, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Mikołajczak, N.; Tanska, M.; Ogrodowska, D. Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends Food Sci. Technol. 2021, 113, 110–138. [Google Scholar] [CrossRef]
- Sampson, G.O. Evaluation of some plant oils quality commonly sold in Ghana. Food Nutr. Sci. 2020, 11, 911–918. [Google Scholar] [CrossRef]
- Zamuz, S.; Pateiro, M.; Conte-Junior, C.A.; Domingues-Valencia, R.; Nawaz, A. Food Lipids: Fat and Fatty Acids; Academic Press: Cambridge, MA, USA, 2022; pp. 155–172. [Google Scholar] [CrossRef]
- Agregán, R.; Popova, T.; López-Pedrouso, M. Chapter12: Fatty acids: In Food Lipids; Academic Press: San Diego, CA, USA, 2022; pp. 257–286. [Google Scholar]
- Chidambaranathan, L. Physicochemical quality and stability of refined and virgin oils. Int. J. Pure Appl. Biosci. 2017, 5, 1182–1191. [Google Scholar] [CrossRef]
- Contoh, B.; Issa, J.; Tabares, I. Codex Stan 21-1999. Standard for named vegetable oils. Codex Alimentarius 44 2011. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/tr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf (accessed on 18 November 2024).
- Nangbes, J.G.; Nvau, J.B.; Buba, W.M.; Zukdimma, A.N. Extraction and characterization of castor (Ricinus Communis) seed oil. Int. J. Eng. Sci. 2013, 2, 105–109. [Google Scholar]
- Nikolova, K.; Perifanova-Nemska, M.; Uzunova, G.; Eftimov, T. Physico-chemical properties of sunflower oil enriched with -3 fatty acids. Bulg. Chem. Commun. 2014, 46, 473–478. [Google Scholar]
- CODEX STAN 210–1999; Codex, Codex Committee on Fats and Oils Request for Comments on the Proposed Draft Amendment to the Standard for Named Vegetable Oils. FAO: Rome, Italy, 2018.
- Tesfaye, B.; Abebaw, A. Physico-chemical characteristics and level of some selected metal in edible oils. Adv. Chem. 2016, 2016, 3480329. [Google Scholar] [CrossRef]
- Wazed, M.A.; Yasmin, S.; Basak, P.; Hossain, A.; Rahman, M.M.; Hasan, M.R.; Khair, M.M.; Khatun, M.N. Evaluation of physicochemical parameters of edible oils at room temperature and after heating at high temperature. Food Res. 2023, 7, 91–100. [Google Scholar] [CrossRef]
- FAO; WHO. CXS 210-1999 Codex Standard for Named Vegetable Oils; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Frazzini, S.; Torresani, M.C.; Roda, G.; Dell’Anno, M.; Ruffo, G.; Rossi, L. Chemical and functional characterization of the main bioactive molecules contained in hulled Cannabis sativa, L. seeds for use as functional ingredients. J. Agric. Food Res. 2024, 16, 101084. [Google Scholar] [CrossRef]
- Rombaut, N.; Savoire, R.; Thomasset, B.; Castello, J.; Van Hecke, E.; Lanoisellé, J.L. Optimization of oil yield and oil total phenolic content during grape seed cold screw pressing. Ind. Crops Prod. 2015, 63, 26–33. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Lupova, E.I.; Pityurina, I.S.; Vinogradov, D.V.; Ushakov, R.N. Comparative characteristics of quality indicators of non traditional vegetable oil types. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 012170. [Google Scholar] [CrossRef]
- Chira, N.; Todaşcă, C.; Nicolescu, A.; Păunescu, G.; Roşca, S. Determination of the technical quality indices of vegetable oils by modern physical techniques. UPB Sci. Bull. Ser. B 2009, 71, 3–12. [Google Scholar]
- Dorobantu, P.I. Analize chimice ale unor uleiuri comerciale tip amestec şi importanţa lor în alimentaţie. Ph.D. Thesis, Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaşi, Iași, Romania, 2008; pp. 391–396. [Google Scholar]
- Hasan, M.S.; Jahan, R.; Alam, M.A.; Khatun, M.; Al-Reza, S. Study on physicochemical properties of edible oils available in Bangladeshi local market. Arch. Curr. Res. Int. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Gharby, S.; Hajib, A.; Ibourki, M.; Sakar, E.H.; Nounah, I.; Moudden, H.; Elibrahimi, M.; Harhar, H. Induced changes in olive oil subjected to various chemical refining steps: A comparative study of quality indices, fatty acids, bioactive minor components, and oxidation stability kinetic parameters. Chem. Data Coll. 2021, 33, 100702. [Google Scholar] [CrossRef]
- Moustakime, Y.; Hazzoumi, Z.; Joutei, K.A. Aromatization of virgin olive oil by seeds of Pimpinella anisum using three different methods: Physico-chemical change and thermal stability of flavored oils. Grain Oil Sci. Technol. 2021, 4, 108–124. [Google Scholar] [CrossRef]
- Emhemmed, A.A.; Ibraheim, J.A.; Hadad, A.S. Effect of heat processing and storage on characteristic and stability of some edible oils. In Proceedings of the 6th Int’l Conference on Agriculture, Environment and Biological Sciences (ICAEBS’16), Kuala Lumpur, Malaysia, 21–22 December 2016. [Google Scholar] [CrossRef]
- Sandulachi, L.; Nadejda Rolinschi, I. Aprecierea indicatorilor fizico-chimici ai uleiului din miez de nucă produs in Republica Moldova, Universitatea Tehnică a Moldovei. Conf. UTM 2011, II, 111–114. [Google Scholar]
- Mirón, C.; Sánchez, R.; Prats, S.; Todolí, J.L. Total polyphenol content and metals determination in Spanish virgin olive oils by means of a dispersive liquid-liquid aerosol phase extraction method and ICP-MS. Anal. Chim. Acta 2020, 1094, 34–46. [Google Scholar] [CrossRef]
- Martinez Gila, D.M.; Cano Marchal, P.; Gámez García, J.; Gómez Ortega, J. On-line system based on hyperspectral information to estimate acidity, moisture and peroxides in olive oil samples. Comput. Electron. Agric. 2015, 116, 1–7. [Google Scholar] [CrossRef]
- Singh, M.K.; Kumar, A.; Kumar, R.; Satheesh Kumar, P.; Selvakumar, P.; Chourasia, A. Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils. Int. J. Res. Appl. Sci. Biotechnol. 2022, 9, 28–31. [Google Scholar] [CrossRef]
- FAO; WHO. Joint FAO/WHO Expert Committee an Food Additives Limit Test for Heavy Metals in Food Additive Specifications; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- EU. Commision Regulation (EU) 2023/915 of 23 April 2023 on Maximum Levels for Certain Contaminants in Food and Reapealing Regulation (EC) no 1881/2006; EU: Brussels, Belgium, 2023. [Google Scholar]
- Food and Agriculture Organization of the United Nations Rome. FAO Information Division; FAO: Rome, Italy, 2002; ISBN 92-5-104762-6. [Google Scholar]
- Llorent-Martinez, E.J.; Ortega-Barrales, P.; Fernandez-de Cordόva, M.L.; Ruiz-Medina, A. Analysis of the legistated metals in different categories of olive and olive-pomace oils. Food Control 2010, 22, 221–225. [Google Scholar] [CrossRef]
- Mohajer, A.; Baghani, A.N.; Sadighara, P.; Ghanati, K.; Nazmara, S. Determination and health risk assessment of heavy metals in imported rice bran oil in Iran. J. Food Compos. Anal. 2020, 86, 103384. [Google Scholar] [CrossRef]
- Haiyan, A.; Stuanes, A.O. Heavy metal pollution in air-water-soil-plant system of Zhuzhou City, Hunan Province, China. Water Air Soil Pollut. 2003, 147, 79–107. [Google Scholar] [CrossRef]
- Zhou, Z.-Y.; Fan, Y.-P.; Wang, M.-J. Heavy metal contamination in vegetables and their control in China. Food Rev. Int. 2000, 16, 239–255. [Google Scholar] [CrossRef]
- Xia, Q.; Du, Z.; Lin, D.; Huo, L.; Qin, L.; Wang, W.; Qiang, L.; Yao, Y.; An, Y. Review on contaminants in edible oil and analytical technologies. Oil Crop Sci. 2021, 6, 23–27. [Google Scholar] [CrossRef]
- Barraza, F.; Maurice, L.; Uzu, G.; Becerra, S.; López, Z.; Ochoa-Herrera, V.; Ruales, j.; Schreck, J. Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities. Sci. Total Environ. 2018, 622–623, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Cilliers, L.; Retief, F. Chapter 14—Lead poisoning and the downfall of Rome. Reality or mith? In Toxicology in Antiquity, 2nd ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 221–229. ISBN 9780128153390. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Tao, H.-C.; Wei, X.-Y.; Lei, T.; Li, J.-B.; Wang, A.-J.; Wu, W.-M. Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere 2012, 89, 1177–1182. [Google Scholar] [CrossRef]
- Bakota, E.; Winkler-Moser, J.; Dunn, R.; Liu, S. Heavy metals screening of rice bran oils and its relation to composition. Eur. J. Lipid Sci. Technol. 2015, 117, 1452–1462. [Google Scholar] [CrossRef]
- Isa, B.K.; Syed, N.T.; Mohammed, A.H.D. A chemometric approach to the distribution and source identification of heavy metals in Tannery contaminated soil. Int. J. Theor. Appl. Sci. 2018, 10, 01–08. [Google Scholar]
- Dunbar, R.C. Metal cation binding the phenol: DFT comparison of the competing sites. J. Phys. Chem. 2002, 106, 7328–7337. [Google Scholar] [CrossRef]
Oil Samples 1 | AI (%Oleic Acid) ± sd | MC (%) ± sd | PV (meqO2/kg) ± sd | RI ± sd | IV (g/100 g) ± sd | SV (mgKOH/g) ± sd | TPC (mgGAE/100 g) ± sd |
---|---|---|---|---|---|---|---|
Sunflower | 0.110 ± 0.098 | 0.141 ± 0.121 | 2.99 ± 0.821 | 1.469 ± 0.011 | 181.4 ± 9.512 | 145.6 ± 10.974 | 19.74 ± 1.544 |
Grapeseed | 0.188 ± 0.111 | 0.020 ± 0.066 | 5.49 ± 0.786 | 1.470 ± 0.001 | 142.5 ± 8.011 | 142.8 ± 9.123 | 15.87 ± 1.498 |
Extra virgin olive | 0.571 ± 0.235 | 0.148 ± 0.074 | 10.1 ± 2.276 | 1.468 ± 0.020 | 115.3 ± 7.338 | 144.48 ± 9.320 | 27.45 ± 1.692 |
Organic extra virgin olive | 0.614 ± 0.591 | 0.057 ± 0.032 | 5.45 ± 0.692 | 1.467 ± 0.076 | 79.1 ± 6.098 | 92.46 ± 6.229 | 29.28 ± 1.762 |
Rapeseed | 0.209 ± 0.165 | 0.022 ± 0.011 | 14.64 ± 2.879 | 1.470 ± 0.033 | 104.0 ± 7.598 | 113.69 ± 7.987 | 43.01 ± 1.911 |
Blend | 0.088 ± 0.077 | 0.116 ± 0.076 | 5.67 ± 0.986 | 1.469 ± 0.087 | 116.3 ± 7.981 | 174.97 ± 10.428 | 38.46 ± 1.720 |
Walnut | 2.080 ± 1.649 | 0.013 ± 0.029 | 9.28 ± 1.098 | 1.471 ± 0.098 | 72.7 ± 5.744 | 166.59 ± 10.208 | 45.39 ± 1.742 |
Rice | 0.328 ± 0.277 | 0.045 ± 0.087 | 5.35 ± 1.562 | 1.471 ± 0.044 | 122.7 ± 9.598 | 170.07 ± 10.728 | 50.62 ± 2.211 |
Oil Samples | Concentrations 1 (mg/Kg) ± sd | ||||||
---|---|---|---|---|---|---|---|
Mn | Cr | Cu | Cd | Pb | Co | Ni | |
Sunflower | 0.023 ± 0.005 | 0.010 ± 0.001 | 0.098 ± 0.010 | 0.010 ± 0.001 | 0.075 ± 0.014 | 0.010 ± 0.000 | 0.006 ± 0.001 |
Grapeseed | 0.035 ± 0.008 | <LD | 0.062 ± 0.006 | 0.004 ± 0.000 | 0.011 ± 0.003 | 0.018 ± 0.005 | 0.013 ± 0.002 |
Extra virgin olive | 0.010 ± 0.002 | 0.033 ± 0.007 | 0.010 ± 0.001 | 0.001 ± 0.000 | 0.026 ± 0.004 | 0.005 ± 0.001 | 0.012 ± 0.001 |
Organic extra virgin olive | 0.027 ± 0.006 | 0.011 ± 0.001 | 0.312 ± 0.023 | 0.007 ± 0.001 | 0.101 ± 0.034 | 0.015 ± 0.002 | 0.015 ± 0.002 |
Rapeseed | 0.083 ± 0.009 | 0.018 ± 0.002 | 0.099 ± 0.026 | 0.005 ± 0.001 | 0.061 ± 0.009 | 0.031 ± 0.005 | 0.007 ± 0.001 |
Blend | 0.023 ± 0.004 | 0.062 ± 0.006 | 0.672 ± 0.045 | 0.004 ± 0.000 | 0.099 ± 0.011 | 0.013 ± 0.001 | 0.006 ± 0.001 |
Walnut | 0.017 ± 0.004 | 0.006 ± 0.000 | 0.085 ± 0.008 | 0.005 ± 0.001 | 0.059 ± 0.006 | 0.009 ± 0.002 | 0.003 ± 0.000 |
Rice | 0.007 ± 0.002 | 0.020 ± 0.002 | 0.029 ± 0.004 | 0.005 ± 0.001 | 0.217 ± 0.051 | 0.003 ± 0.000 | 0.006 ± 0.001 |
Oil Samples | THQ (mg/kg/day) | |||||||
---|---|---|---|---|---|---|---|---|
Mn | Cr | Cu | Cd | Pb | Co | Ni | ||
Sunflower | 3.42 × 10−5 | 1.19 × 10−3 | 8.75 × 10−4 | 3.57 × 10−3 | 7.65 × 10−3 | 1.78 × 10−4 | 1.07 × 10−4 | 0.01360 |
Grapeseed | 5.18 × 10−5 | - | 5.53 × 10−4 | 1.42 × 10−3 | 1.12 × 10−3 | 3.21 × 10−4 | 2.32 × 10−4 | 0.00369 |
Extra virgin olive | 1.48 × 10−5 | 3.92 × 10−3 | 0.89 × 10−4 | 0.35 × 10−3 | 2.65 × 10−3 | 0.89 × 10−4 | 2.14 × 10−4 | 0.01047 |
Organic extra virgin olive | 3.99 × 10−5 | 1.30 × 10−3 | 27.85 × 10−4 | 2.50 × 10−3 | 10.30 × 10−3 | 2.67 × 10−4 | 2.67 × 10−4 | 0.01745 |
Rapeseed | 12.28 × 10−5 | 2.14 × 10−3 | 8.83 × 10−4 | 1.78 × 10−3 | 6.22 × 10−3 | 5.53 × 10−4 | 1.25 × 10−4 | 0.01182 |
Blend | 3.40 × 10−5 | 7.38 × 10−3 | 60.00 × 10−4 | 1.42 × 10−3 | 10.10 × 10−3 | 2.32 × 10−4 | 1.07 × 10−4 | 0.02527 |
Walnut | 2.51 × 10−5 | 0.71 × 10−3 | 7.58 × 10−4 | 1.78 × 10−3 | 6.02 × 10−3 | 1.60 × 10−4 | 0.53 × 10−4 | 0.009506 |
Rice | 1.03 × 10−5 | 2.38 × 10−3 | 2.58 × 10−4 | 1.78 × 10−3 | 22.14 × 10−3 | 0.53 × 10−4 | 1.07 × 10−4 | 0.02672 |
Oil Samples | ILCR (×10−6) | ∑ILCR | |||
---|---|---|---|---|---|
Cr | Cd | Pb | Ni | ×10−6 | |
Sunflower | 1.78 | 1.35 | 2.27 | 1.79 | 7.19 |
Grapeseed | 0.00 | 0.53 | 0.33 | 3.89 | 4.75 |
Extra virgin olive | 5.88 | 0.13 | 0.78 | 3.59 | 10.38 |
Organic extra virgin olive | 1.69 | 0.95 | 3.06 | 4.48 | 10.18 |
Rapeseed | 3.21 | 0.67 | 1.85 | 2.10 | 7.83 |
Blend | 11.07 | 0.53 | 3.00 | 1.79 | 16.39 |
Walnut | 1.06 | 0.67 | 1.79 | 0.89 | 4.41 |
Rice | 3.57 | 0.67 | 6.58 | 1.79 | 12.61 |
Oil Samples | Country | AI (%Oleic Acid) | MC (%) | PV (meqO2/kg) | RI | IV (g/100 g) | SV (mgKOH/g) | TPC (mgGAE/100 g) | References |
---|---|---|---|---|---|---|---|---|---|
Sunflower | Turkey | 0.81 | 4.19 | 102.02 | [45] | ||||
Russia | 1.40 | 3.50 | [46] | ||||||
Romania | 0.10–0.62 | 0.04 | 3.63–10.50 | 122.00–123.00 | 185.00–204.80 | [1,47,48] | |||
India | 10.63 | 1.461 | [56] | ||||||
Grapeseed | Romania | 129.50 | 184.00 | [47] | |||||
Olive | Turkey | 0.82 | 6.39 | 80.03 | [45] | ||||
Bangladesh | 4.20 | 0.47 | 12.43 | 78.38 | 185.80 | [49] | |||
Romania | 0.80 | 0.50 | 89.00 | 191.00 | [1] | ||||
Spain | 0.48 | 0.15 | 5.31 | 20.90 | [54,55] | ||||
Marocco | 1.46–2.40 | 3.50–7.00 | 89.50 | 21.67 | [50,51] | ||||
Libya | 2.19 | 7.81 | 1.4686 | 81.14 | [52] | ||||
Rapeseed | Turkey | 0.65 | 9.46 | 107.51 | [45] | ||||
Russia | 0.80 | 4.50 | [46] | ||||||
Romania | 0.65 | 11.50 | 102.00–113.20 | 182.00–186.20 | [1,47] | ||||
Walnut | Romania | 149.70 | 188.20 | [47] | |||||
Republic of Moldova | 3.44 | 0.10 | 7.70 | 1.473 | 147.70 | 185.77 | [53] | ||
Rice | Bangladesh | 0.09–1.11 | 0.82–3.05 | 1.43–4.33 | 1.465 | 88.07–110.59 | 191.38–203.31 | [41,49] |
AI | MC | PV | RI | IV | SV | TPC | Mn | Cr | Cu | Cd | Pb | Co | Ni | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AI | 1.00 | −0.34 | 0.25 | 0.26 | −0.65 | 0.16 | 0.36 | −0.27 | −0.32 | −0.22 | −0.11 | −0.13 | −0.26 | −0.32 |
MC | 1.00 | −0.28 | −0.34 | 0.43 | 0.16 | −0.29 | −0.40 | 0.57 | 0.25 | 0.04 | −0.02 | −0.44 | 0.02 | |
PV | 1.00 | −0.15 | −0.50 | −0.25 | 0.41 | 0.63 | 0.04 | −0.25 | −0.48 | −0.31 | 0.53 | −0.12 | ||
RI | 1.00 | 0.36 | 0.52 | −0.05 | 0.04 | −0.38 | −0.22 | 0.30 | −0.18 | 0.03 | −0.61 | |||
IV | 1.00 | 0.22 | −0.56 | −0.07 | −0.05 | −0.17 | 0.36 | −0.05 | −0.11 | −0.05 | ||||
SV | 1.00 | 0.32 | −0.54 | 0.39 | 0.11 | −0.24 | 0.25 | −0.58 | −0.66 | |||||
TPC | 1.00 | 0.03 | 0.27 | 0.08 | −0.18 | −0.64 | −0.07 | −0.51 | ||||||
Mn | 1.00 | −0.15 | 0.00 | 0.10 | −0.31 | 0.97 | 0.02 | |||||||
Cr | 1.00 | 0.72 | −0.40 | 0.19 | −0.14 | −0.18 | ||||||||
Cu | 1.00 | 0.04 | 0.13 | 0.12 | −0.04 | |||||||||
Cd | 1.00 | 0.25 | 0.10 | −0.20 | ||||||||||
Pb | 1.00 | −0.38 | −0.32 | |||||||||||
Co | 1.00 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, N.; Birghila, S.; Dobrinas, S.; Soceanu, A.; Popescu, V.; Zaharia, R.-G. Physicochemical Properties, Trace Elements, and Health Risk Assessment of Edible Vegetable Oils Consumed in Romania. Appl. Sci. 2025, 15, 6269. https://doi.org/10.3390/app15116269
Matei N, Birghila S, Dobrinas S, Soceanu A, Popescu V, Zaharia R-G. Physicochemical Properties, Trace Elements, and Health Risk Assessment of Edible Vegetable Oils Consumed in Romania. Applied Sciences. 2025; 15(11):6269. https://doi.org/10.3390/app15116269
Chicago/Turabian StyleMatei, Nicoleta, Semaghiul Birghila, Simona Dobrinas, Alina Soceanu, Viorica Popescu, and Roxana-Georgiana Zaharia (Pricopie). 2025. "Physicochemical Properties, Trace Elements, and Health Risk Assessment of Edible Vegetable Oils Consumed in Romania" Applied Sciences 15, no. 11: 6269. https://doi.org/10.3390/app15116269
APA StyleMatei, N., Birghila, S., Dobrinas, S., Soceanu, A., Popescu, V., & Zaharia, R.-G. (2025). Physicochemical Properties, Trace Elements, and Health Risk Assessment of Edible Vegetable Oils Consumed in Romania. Applied Sciences, 15(11), 6269. https://doi.org/10.3390/app15116269