Grasshopper Algorithmic Modelling: Parametric Design for Product Platform Customisation
Abstract
:1. Introduction
2. Background
3. Methodology
4. Case Studies
4.1. Case Study 1: Perfume Bottle Platform
4.2. Case Study 2: Outdoor Furniture Platform
4.3. Case Study 3: Desk Organiser Platform
5. Results
5.1. Platform 1: Perfume Bottles
5.2. Platform 2: Outdoor Furniture
5.3. Platform 3: Desk Organiser
5.4. Comparative Analysis of Case Studies
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Tyagi, A.K.; Arumugam, S.K. Imagining the Sustainable Future with Industry 6.0: A Smarter Pathway for Modern Society and Manufacturing Industries. In Machine Learning Algorithms Using Scikit and TensorFlow Environments; IGI Global: Hershey, PA, USA, 2024; pp. 318–331. ISBN 9781668485330. [Google Scholar]
- Jevons, H.S. The Second Industrial Revolution. Econ. J. 1931, 41, 1–18. [Google Scholar] [CrossRef]
- Mokyr, J.; Strotz, R.H. The Second Industrial Revolution, 1870–1914; Northwestern University: Evanston, IL, USA, 2000. [Google Scholar]
- Castells, M. The Rise of the Network Society: With a New Preface, Volume I: Second Edition with a New Preface; Wiley-Blackwell: Hoboken, NJ, USA, 2010; ISBN 9781405196864. [Google Scholar]
- Schwab, K. The Fourth Industrial Revolution; Portfolio Penguin: New York, NY, USA, 2017; ISBN 9780241300756. [Google Scholar]
- Coelho, P.; Bessa, C.; Landeck, J.; Silva, C. Industry 5.0: The Arising of a Concept. Procedia Comput. Sci. 2023, 217, 1137–1144. [Google Scholar] [CrossRef]
- Hassan, M.A.; Zardari, S.; Farooq, M.U.; Alansari, M.M.; Nagro, S.A. Systematic Analysis of Risks in Industry 5.0 Architecture. Appl. Sci. 2024, 14, 1466. [Google Scholar] [CrossRef]
- Industry 5.0—European Commission. Available online: https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en (accessed on 21 November 2024).
- Subbiah, P.; Tyagi, A.K.; Mazumdar, B.D. The Future of Manufacturing and Artificial Intelligence Industry 6.0 and Beyond. In Industry 4.0, Smart Manufacturing, and Industrial Engineering; CRC Press: Boca Raton, FL, USA, 2024; pp. 347–362. ISBN 9781040116906. [Google Scholar]
- Simpson, T.W.; Siddique, Z.; Jiao, J. Product Platform and Product Family Design: Methods and Applications; Springer: New York, NY, USA, 2006; ISBN 0387257217. [Google Scholar]
- Simpson, T.W.; Jiao, J.R.; Siddique, Z.; Hölttä-Otto, K. Advances in Product Family and Product Platform Design: Methods & Applications; Springer: New York, NY, USA, 2014; ISBN 9781461479376. [Google Scholar]
- Rhino in Architecture, Engineering, and Construction. Available online: https://www.rhino3d.com/en/for/architecture/ (accessed on 3 December 2024).
- Fusion 360 Introduction to Generative Design. Available online: https://www.autodesk.com/autodesk-university/article/Fusion-360-Introduction-Generative-Design (accessed on 3 December 2024).
- Altair Hyperworks 2024. Available online: https://altair.com/hyperworks-2024 (accessed on 3 December 2024).
- Alcaide-Marzal, J.; Diego-Mas, J.A.; Acosta-Zazueta, G. A 3D Shape Generative Method for Aesthetic Product Design. Des. Stud. 2020, 66, 144–176. [Google Scholar] [CrossRef]
- Krish, S. A Practical Generative Design Method. Comput.-Aided Des. 2011, 43, 88–100. [Google Scholar] [CrossRef]
- Dean, L.; Loy, J. Generative Product Design Futures. Des. J. 2020, 23, 331–349. [Google Scholar] [CrossRef]
- Barbieri, L.; Muzzupappa, M. Form Innovation: Investigating the Use of Generative Design Tools to Encourage Creativity in Product Design. Int. J. Des. Creat. Innov. 2024, 12, 163–182. [Google Scholar] [CrossRef]
- Madrigal, J.; Jeong, S. Personalization Process of 3D Printed Products Using Parametric Design. Arch. Des. Res. 2022, 35, 31–46. [Google Scholar] [CrossRef]
- Mountstephens, J.; Teo, J. Progress and Challenges in Generative Product Design: A Review of Systems. Computers 2020, 9, 80. [Google Scholar] [CrossRef]
- Urquhart, L.; Wodehouse, A.; Loudon, B.; Fingland, C. The Application of Generative Algorithms in Human-Centered Product Development. Appl. Sci. 2022, 12, 3682. [Google Scholar] [CrossRef]
- Lobos, A. Applying Generative Systems to Product Design. In Proceedings of the XXII Generative Art Conference, Rome, Italy, 19–20 December 2019; Soddu, C., Colabella, E., Eds.; Generative Art Conference: Rome, Italy, 2019; pp. 1–11. [Google Scholar]
- Gürel, A.; Şenyapılı Ozcan, B. Cognitive Comparison of Design Methods in the Conceptual Phase. Int. J. Archit. Comput. 2023, 21, 581–601. [Google Scholar] [CrossRef]
- Kielarova, S.W.; Pradujphongphet, P. New Design Algorithm: Interactive-Generative Product Design for Shape Generation and Optimization. In Proceedings of the Advances in Swarm Intelligence, Konstanz, Germany, 9–11 October 2024; Tan, Y., Shi, Y., Eds.; Springer: Singapore, 2024; Volume 14789 LNCS, pp. 353–362. [Google Scholar]
- García-Dominguez, A.; Claver, J.; Sebastián, M.A. Optimization Methodology for Additive Manufacturing of Customized Parts by Fused Deposition Modeling (FDM). Application to a Shoe Heel. Polymers 2020, 12, 2119. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.E.; Shepherd, P. Meta-Parametric Design. Des. Stud. 2017, 52, 73–95. [Google Scholar] [CrossRef]
- Harding, J.; Brandt-Olsen, C. Biomorpher: Interactive Evolution for Parametric Design. Int. J. Archit. Comput. 2018, 16, 144–163. [Google Scholar] [CrossRef]
- Tünger, Ç.; Pektaş, Ş.T. A Comparison of the Cognitive Actions of Designers in Geometry-Based and Parametric Design Environments. Open House Int. 2020, 45, 87–101. [Google Scholar] [CrossRef]
- Novak, J.I. A Boolean Method to Model Knit Geometries with Conditional Logic for Additive Manufacturing. Comput. Aided Des. Appl. 2020, 17, 659–673. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Luh, D.B. Application and Parametric Design of Line Visual Illusion Graphics in Clothing. Fibres Text. East. Eur. 2023, 31, 65–74. [Google Scholar] [CrossRef]
- Lee, K.S.; Song, H.K. Automation of 3D Average Human Body Shape Modeling Using Rhino and Grasshopper Algorithm. Fash. Text. 2021, 8, 23. [Google Scholar] [CrossRef]
- Kielarova, S.W.; Pradujphongphet, P. Collaborative Product Design for Product Customization: An Industrial Case of Fashion Product. In Proceedings of the Cooperative Design, Visualization, and Engineering, Bangkok, Thailand, 25–28 October 2020; Luo, Y., Ed.; Springer: Cham, Switzerland, 2020; Volume 12341 LNCS, pp. 37–46. [Google Scholar]
- Kielarova, S.W.; Pradujphongphet, P. Genetic Algorithm for Product Design Optimization: An Industrial Case Study of Halo Setting for Jewelry Design. In Proceedings of the Advances in Swarm Intelligence, Shenzhen, China, 14–18 July 2023; Yin, T., Shi, Y., Luo, W., Eds.; Springer: Cham, Switzerland, 2023; Volume 13968 LNCS, pp. 219–228. [Google Scholar]
- Wang, X.; Wang, Y.; Bai, X. Research on Interactive Jewelry Customization Design Driven by Intelligent Technology. In Proceedings of the 2nd International Conference on Intelligent Design and Innovative Technology, Chengdu, China, 4–6 August 2023; Appleby, R., Imparato, M., Feng, Y., Wheeb, A.H., Eds.; Atlantis Press: Dordrecht, The Netherlands, 2023; pp. 172–182. [Google Scholar]
- Manavis, A.; Kyratsis, P. A Computational Study on Product Shape Generation to Support Brand Identity. Int. J. Mod. Manuf. Technol. 2021, 13, 115–122. [Google Scholar]
- Manavis, A.; Tzotzis, A.; Tsagaris, A.; Kyratsis, P. A Novel Computational-Based Visual Brand Identity (CbVBI) Product Design Methodology. Machines 2022, 10, 1065. [Google Scholar] [CrossRef]
- Johannesson, H.; Claesson, A. Systematic Product Platform Design: A Combined Function-Means and Parametric Modeling Approach. J. Eng. Des. 2005, 16, 25–43. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Chen, M.; Lin, Y.; Ji, Z.S. A New Method for Platform Design Based on Parametric Technology. Ocean. Eng. 2010, 37, 473–482. [Google Scholar] [CrossRef]
- Simpson, T.W. Product Platform Design and Optimization: Status and Promise. Proc. ASME Des. Eng. Tech. Conf. 2008, 2A, 131–142. [Google Scholar] [CrossRef]
- Zheng, P.; Xu, X.; Yu, S.; Liu, C. Personalized Product Configuration Framework in an Adaptable Open Architecture Product Platform. J. Manuf. Syst. 2017, 43, 422–435. [Google Scholar] [CrossRef]
- Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.H. Engineering Design: A Systematic Approach; Springer: London, UK, 2007; ISBN 1846283183. [Google Scholar]
- Ulrich, K.T.; Eppinger, S.D. Product Design and Development; McGraw-Hill: New York, NY, USA, 1995; ISBN 0-07-065811-0. [Google Scholar]
- Hsu, M.C.; Wang, C.; Herrema, A.J.; Schillinger, D.; Ghoshal, A.; Bazilevs, Y. An Interactive Geometry Modeling and Parametric Design Platform for Isogeometric Analysis. Comput. Math. Appl. 2015, 70, 1481–1500. [Google Scholar] [CrossRef]
- Lopes, R.A.P. Computational Strategies Applied to Product Design. Ph.D. Thesis, Universidade do Lisboa, Lisbon, Portugal, 2018. [Google Scholar]
- Caetano, I.; Santos, L.; Leitão, A. Computational Design in Architecture: Defining Parametric, Generative, and Algorithmic Design. Front. Archit. Res. 2020, 9, 287–300. [Google Scholar] [CrossRef]
- Davis Edge, A. Guidelines for Practical Algorithmic Design for Industrial Designers. Master’s Thesis, Auburn University, Auburn, AL, USA, 2019. [Google Scholar]
- Lee, J.H.; Gu, N.; Williams, A.P. Exploring Design Strategy in Parametric Design to Support Creativity. In Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia, Wellington, New Zealand, 15–18 April 2019; Rudi Stouffs, P., Janssen, S., Roudacski, B.T., Eds.; National University of Singapore: Singapore, 2013; pp. 489–498. [Google Scholar]
- Chien, S.-F.; Yeh, Y.-T. On Creativity and Parametric Design: A Preliminary Study of Designer’s Behaviour When Employing Parametric Design Tools. In Physical Digitality, Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe, Prague, Czech Republic, 12–14 September 2012; Valencia, Spain, 7–9 March 2016, Achten, H., Pavliček, J., Hulín, J., Matějovská, D., Eds.; Brussels: Education in Computer Aided Architectural Design in Europe; České Vysoké Učení Technické v Praze: Prague, Czech Republic, 2012; Volume 2, pp. 245–253. [Google Scholar]
- Yusof, F.M.; Hashim, A.M.; Azizan, H.A.; Wongtanasuporn, P. Exploring Idea Generation of Parametric Concept on Industrial Product Design. Environ.-Behav. Proc. J. 2025, 10 (Suppl. 29), 35–43. [Google Scholar] [CrossRef]
- Bai, X.; Huerta, O.; Unver, E.; Allen, J.; Clayton, J.E. A Parametric Product Design Framework for the Development of Mass Customized Head/Face (Eyewear) Products. Appl. Sci. 2021, 11, 5382. [Google Scholar] [CrossRef]
- Rodrigo Corbaton, C.; Fernández-Vicente, M.; Conejero, A. Design and 3D Printing of Custom-Fit Products with Free Online Software and Low Cost Technologies. A Study of Viability for Product Design Student Projects. In Proceedings of the 10th International Technology, Education and Development Conference, Valencia, Spain, 7–9 March 2016; Chova, L.G., López Martínez, A., Candel Torres, I., Eds.; International Association of Technology, Education and Development: Valencia, Spain, 2016; Volume 1, pp. 3906–3910. [Google Scholar]
- Tian, Y.; Ball, R. Parametric Design for Custom-Fit Eyewear Frames. Heliyon 2023, 9, e19946. [Google Scholar] [CrossRef]
- Jiao, Y.; Jung, H.; Lozano Robledo, A.; O’Kane, B. UX Design Approach to Guide Parametric Product Customization: A Case for Eyeglass Frame Design. In Proceedings of the International Association of Societies of Design Research Congress 2023: Life-Changing Design, Milan, Italy, 9–13 October 2023; De Sainz Molestina, D., Galluzzo, L., Rizzo, F., Spallazzo, D., Eds.; Design Research Society: London, UK, 2023; pp. 1–13. [Google Scholar]
- Tian, Y.; Miao, Y.; Yu, Y.; Zhang, Z. Parametric Design of Grasshopper Based on Moulding Characteristics of Longitudinal Profile of Shoe Last. J. Phys. Conf. Ser. 2019, 1267, 012045. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Lu, G.; Liu, Z. Rapid parametric design methods for shoe-last customization. Int. J. Adv. Manuf. Technol. 2011, 54, 173–186. [Google Scholar] [CrossRef]
- Verbiscer, A.J.; Helfenstein, P.; Zhang, Y.; Wei, H.; Lv, Y.; Tian, Y.; Miao, Y.; Yu, Y.; Zhang, Z. Parametric Design Method Based on Grasshopper and Shoe Last Bottom Pattern Moulding Characteristics. IOP Conf. Ser. Mater. Sci. Eng. 2019, 520, 012017. [Google Scholar] [CrossRef]
- Firtikiadis, L.; Manavis, A.; Kyratsis, P.; Efkolidis, N. Product Design Trends within the Footwear Industry: A Review. Designs 2024, 8, 49. [Google Scholar] [CrossRef]
- Manavis, A.; Minaoglou, P.; Efkolidis, N.; Kyratsis, P. Digital Customization for Product Design and Manufacturing: A Case Study within the Furniture Industry. Electronics 2024, 13, 2483. [Google Scholar] [CrossRef]
- Felek, S.Ö. Parametric Modelling in Furniture Design A Case Study: Two Door Wardrope. Eur. J. Res. Dev. 2022, 2, 62–74. [Google Scholar] [CrossRef]
- Higa, P.; Jia, Y.; Mitani, J. 3D Printing of Flat-Folded Bistable Origami-Like Structures-All Databases. J. Geom. Graph. 2024, 28, 103–116. [Google Scholar]
- Novak, J.I. A Parametric Method to Customize Surfboard and Stand up Paddle Board Fins for Additive Manufacturing. Comput. Aided Des. Appl. 2021, 18, 297–308. [Google Scholar] [CrossRef]
- Tsuchiya, S. A Study of a Design Support Method for Generating Revolved Mesh Shapes Using Grasshopper. In Proceedings of the 21st International Conference on Geometry and Graphics, Fukuoka, Japan, 5–9 August 2024; Takenouchi, K., Ed.; Springer: Cham, Switzerland, 2024; pp. 311–320. [Google Scholar]
- Chang, H.-C.; Chang, H.-C. Parametric Design Techniques Applied to Creative Hollow out Product Design with 3D Voronoi Patterns. J. Comput. Commun. 2021, 9, 32–47. [Google Scholar] [CrossRef]
- Li, W.; Abidin, S.Z.; Mokhtar, S. Parametric Technology is Used for the Design of Weaving Products. In Proceedings of the Second International Conference on Digital Society and Intelligent Systems, Chendgu, China, 2–4 December 2022; Hu, J., Yang, X., Eds.; SPIE: Bellingham, WA, USA, 2023; Volume 12599, pp. 295–302. [Google Scholar]
- Huang, Y. A Generative Bottle Design System Based on Users’ Touch Feelings. In Proceedings of the 26th HCI International Conference: Human Interface and the Management of Information, Washington, DC, USA, 29 June–4 July 2024; Mori, H., Asahi, Y., Eds.; Springer: Cham, Switzerland, 2024; Volume 14689 LNCS, pp. 142–161. [Google Scholar]
- Jiang, Y.; Zhou, M.; Liu, Q.; Xia, B. Parametric Design Experiment of Cultural and Creative Patterns Based on Grasshopper Plug-In. In Proceedings of the Seventh International Conference on Mechatronics and Intelligent Robotics, Kunming, China, 19–21 May 2023; Patnaik, S., Shen, T., Eds.; SPIE: Bellingham, WA, USA, 2023; Volume 12779, p. 127792K. [Google Scholar]
- Zeng, S.; Qiu, S. Parametric Design for Industrial Products—Taking Ergonomic Seat Design as an Example. In Proceedings of the 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia, Hong Kong, China, 29 March–1 April 2021; Globa, A., Van Ameijide, L., Fingrut, A., Kim, N., Sky Lo, T., Eds.; CAADRIA: Bunkyo-ku, Japan, 2021; Volume 1, pp. 121–130. [Google Scholar]
- Yin, R.K. Case Study Research and Applications: Design and Methods; SAGE Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- ISO 9241-11:2018; Ergonomics of Human-System Interaction—Part 11: Usability: Definitions and Concepts. ISO: Geneva, Switzerland, 2018.
- CEN TC 122 EN 1005-1:2001+A1:2008; Safety of Machinery—Human Physical Performance—Part 1: Terms and Definitions. CEN: Brussels, Belgium, 2001.
- CEN TC 122 EN 1005-2:2003+A1:2008; Safety of Machinery—Human Physical Performance—Part 2: Manual Handling of Machinery and Component Parts of Machinery. CEN: Brussels, Belgium, 2003.
- CEN TC 122 EN 1005-3:2002+A1:2008; Safety of Machinery—Human Physical Performance—Part 3: Recommended Force Limits for Machinery Operation. CEN: Brussels, Belgium, 2002.
- CEN TC 122 EN 1005-4:2005+A1:2008; Safety of Machinery—Human Physical Performance—Part 4: Evaluation of Working Postures and Movements in Relation to Machinery. CEN: Brussels, Belgium, 2001.
- ISO 15534-2:2000; Ergonomic Design for the Safety of Machinery—Part 2: Principles for Determining the Dimensions Required for Access Openings. ISO: Geneva, Switzerland, 2000.
- ISO 15534-1:2000; Ergonomic Design for the Safety of Machinery—Part 1: Principles for Determining the Dimensions Required for Openings for Whole-Body Access into Machinery. ISO: Geneva, Switzerland, 2000.
- ISO 15534-3:2000; Ergonomic Design for the Safety of Machinery—Part 3: Anthropometric Data. ISO: Geneva, Switzerland, 2000.
- Borrero Comino, S.; Martín-Mariscal, A.; Peralta, E. Algorithmic Design of Perfume Bottle Family. Bachelor’s Thesis, Universidad de Sevilla, Seville, Spain, 2023, unpublished. [Google Scholar]
- Villa-Álvarez de Toledo, C.; Martín-Mariscal, A. Design and Development of a Family of Seats by Algorithmic Design. Bachelor’s Thesis, Universidad de Sevilla, Seville, Spain, 2023, unpublished. [Google Scholar]
- Castillo Pérez, Á.; Martín-Mariscal, A. Algorithmic Design of a Desk Organiser. Bachelor’s Thesis, Universidad de Sevilla, Seville, Spain, 2023, unpublished. [Google Scholar]
- Djokikj, J.; Angeleska, E.; Rizov, T.; Kandikjan, T. Parametric Design as an Approach for Designing Personalized Products. In Proceedings of the 8th International Scientific Conference on Geometry and Graphics, Belgrade, Serbia, 10–12. September 2021; Jeli, Z., Ed.; SUGIG: Belgrade, Serbia, 2021; pp. 19–24. [Google Scholar]
- Han, X.; Li, R.; Wang, J.; Ding, G.; Qin, S. A Systematic Literature Review of Product Platform Design under Uncertainty. J. Eng. Des. 2020, 31, 266–296. [Google Scholar] [CrossRef]
- Dy, B.; Stouffs, R. Combining Geometries and Descriptions A Shape Grammar Plug-in for Grasshopper. In Proceedings of the 36th International Conference on Education and Research in Computer Aided Architectural Design in Europe: Computing for a Better Tomorrow, Lodz, Poland, 19–21 September 2018; Kępczyńska-Walczak, A., Białkowski, S., Eds.; eCAADe: Brussels, Belgium, 2018; Volume 2, pp. 499–508. [Google Scholar]
- Costa, E.C.E.; Jorge, J.; Duarte, J. Comparing Digital Tools for Implementing a Generative System for the Design of Customized Tableware. Comput. Aided Des. Appl. 2019, 16, 803–821. [Google Scholar] [CrossRef]
- Refalian, G.; Coloma, E.; Moya, J.N. Formal Grammar Methodology for Digital Visualization of Islamic Geometric Patterns. Int. J. Archit. Comput. 2022, 20, 297–315. [Google Scholar] [CrossRef]
Parameter Group | Design Parameter | Definition | Customisation Scope |
---|---|---|---|
GROUP 1. Product Design Parameters (PRi) | Dimensions | Length, width, and height of the product. | Defines product scale. Functional and spatial constraints. |
Proportions | Ratio between the dimensional attributes that define the volumetric balance of the product. | Visual harmony and perceived ergonomics. User acceptance and integration with other components. | |
Colour | Hue, value, and saturation used in the surface appearance. | Aesthetic perception, user preference, and contextual fit (visibility, branding, culture). | |
Shape | Geometric or organic configuration of the overall form of the product. | Visual identity and usability; emotional connection and recognition. | |
Rounding | Degree of curvature at edges and corners to improve tactile and visual quality. | Improves safety, comfort, and tactile interaction. | |
Materials | Type, texture and surface finish of the materials applied to each element. | Durability, aesthetics, sustainability, sensory interaction, and satisfaction. | |
Pattern | Repetition or arrangement of graphical or structural motifs across the product surface. | Aesthetics; allows differentiation of product variants and cultural adaptation. | |
GROUP 2. Platform Design Parameters (PLj) | Scalability | Ability of the platform to generate versions of the product in different sizes or performance levels. | Adaptation to different market segments or user needs. |
Modularity | Ability to configure the product by combining or replacing standardised modules. | Supports variation, repairability, and manufacturing (economies of scale); mass customisation. | |
Usability | Effectiveness, efficiency, and satisfaction of the user, in accordance with ISO 9241-11:2018 [69]. | Intuitive and satisfactory use in different setups. | |
Ergonomics | Adaptation of the product to physical characteristics of users, following EN 1005 series [70,71,72,73] and ISO 15534 series [74,75,76]. | Comfort and physical fit; safety, performance, and ergonomic compliance. | |
Context of Use | Characteristics that allow the product to be adapted to specific environmental conditions. | Adaptation to environmental factors (indoor/outdoor, temperature, humidity, space). |
Classification Levels | ||||
---|---|---|---|---|
Low (1) | Medium (2) | High (3) | ||
Criteria | (i) Number of configurable parameters | <5 parameters | 6–10 parameters | >10 parameters |
(ii) Impact on product customisation | Aesthetic variations | Aesthetic and functional variations | Aesthetic, functional, and structural variations | |
(iii) Time required for configuration | <1 min | 1–5 min | >5 min |
Platform Parameters | ||||||
---|---|---|---|---|---|---|
Scalability | Modularity | Usability | Ergonomics | Context of Use | ||
Product Parameters | Dimensions | 3 | 0 | 1 | 1 | 2 |
Proportions | 0 | 0 | 0 | 0 | 0 | |
Colour | 1 | 0 | 0 | 0 | 1 | |
Shape | 0 | 0 | 0 | 0 | 0 | |
Rounding | 0 | 0 | 1 | 0 | 0 | |
Materials | 0 | 0 | 0 | 0 | 1 | |
Pattern | 0 | 0 | 0 | 0 | 0 |
Platform Parameters | ||||||
---|---|---|---|---|---|---|
Scalability | Modularity | Usability | Ergonomics | Context of Use | ||
Product Parameters | Dimensions | 3 | 0 | 3 | 3 | 2 |
Proportions | 3 | 0 | 2 | 1 | 1 | |
Colour | 3 | 0 | 0 | 2 | 2 | |
Shape | 0 | 0 | 0 | 0 | 0 | |
Rounding | 2 | 0 | 3 | 3 | 1 | |
Materials | 2 | 0 | 2 | 0 | 3 | |
Pattern | 1 | 0 | 0 | 0 | 3 |
Platform Parameters | ||||||
---|---|---|---|---|---|---|
Scalability | Modularity | Usability | Ergonomics | Context of Use | ||
Product Parameters | Dimensions | 3 | 3 | 3 | 3 | 3 |
Proportions | 3 | 2 | 2 | 2 | 3 | |
Colour | 3 | 3 | 3 | 1 | 3 | |
Shape | 0 | 2 | 3 | 2 | 3 | |
Rounding | 1 | 0 | 1 | 1 | 1 | |
Materials | 0 | 3 | 2 | 2 | 3 | |
Pattern | 0 | 3 | 3 | 0 | 3 |
Platform Parameters | ||||||
---|---|---|---|---|---|---|
Scalability | Modularity | Usability | Ergonomics | Context of Use | ||
Product Parameters | Dimensions | |||||
Proportions | ||||||
Colour | ||||||
Shape | ||||||
Rounding | _ | |||||
Materials | ||||||
Pattern | _ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Mariscal, A.; Fernández-Rodríguez, J.F.; Picardo, A.; Peralta, E. Grasshopper Algorithmic Modelling: Parametric Design for Product Platform Customisation. Appl. Sci. 2025, 15, 6243. https://doi.org/10.3390/app15116243
Martín-Mariscal A, Fernández-Rodríguez JF, Picardo A, Peralta E. Grasshopper Algorithmic Modelling: Parametric Design for Product Platform Customisation. Applied Sciences. 2025; 15(11):6243. https://doi.org/10.3390/app15116243
Chicago/Turabian StyleMartín-Mariscal, Amanda, Juan Francisco Fernández-Rodríguez, Alberto Picardo, and Estela Peralta. 2025. "Grasshopper Algorithmic Modelling: Parametric Design for Product Platform Customisation" Applied Sciences 15, no. 11: 6243. https://doi.org/10.3390/app15116243
APA StyleMartín-Mariscal, A., Fernández-Rodríguez, J. F., Picardo, A., & Peralta, E. (2025). Grasshopper Algorithmic Modelling: Parametric Design for Product Platform Customisation. Applied Sciences, 15(11), 6243. https://doi.org/10.3390/app15116243