Soy Isoflavones and PCOS: Role in Hormonal and Metabolic Mechanisms
Abstract
1. Introduction
2. Materials and Methods
3. Biochemistry of Soy Isoflavones
3.1. Genistein
3.2. Daidzein and Equol
4. Polycystic Ovary Syndrome and Soy Isoflavones
4.1. Endocrine Mechanisms
4.1.1. Hyperandrogenism
4.1.2. Hypothalamic–Pituitary–Ovarian Axis
4.1.3. Aromatase and Oestrogens
Authors, Year | Study Design, Duration | Characteristics of the Study Group | Intervention/Aim of the Study | Main Results | Conclusions |
---|---|---|---|---|---|
Romualdi et al., 2008 [16] | Pilot prospective study, 6 months | 12 caucasian with obesity, hyperinsulinemic, and dyslipidemic; women with PCOS (Rotterdam criteria); patients received 36 mg/d of genistein. | To investigate the effect of treatment with a standardised dose of soy isoflavone (genistein) on hormonal and metabolic disorders (see Table 3) in a group with obesity, hyperinsulinemic, and dyslipidemic patients with PCOS. | No statistically significant differences were observed in the hormone panel and menstrual cycle. | The possible benefits of the therapeutic use of phytooestrogens in PCOS appear to be limited to improving lipid metabolism. |
Khani et al., 2011 [15] | Quasi-randomised trial, 3 months | 137 subjects with PCOS (Rotterdam criteria), aged 18–35; completed the study; study group: 69 women, 18 mg genistein twice a day orally; control group: 68 women—placebo, cellulose pills | To investigate the effect of soy phytoestrogens on reproductive hormones and lipid profiles (see Table 3) in women with PCOS. | No statistically significant differences in the hormonal profile between the study group and the placebo group. Significantly ↓ LH, ↓ DHEAS, ↓ T after genistein supplementation compared to hormone levels before intervention in the study group. | Genistein supplementation improved the hormonal profile in women with PCOS compared to the results before the use of soy isoflavones. No statistically significant differences were observed between the study group and the control group. |
Forouhari et al., 2013 [132] | Crossover randomised controlled trial, 2 months | 42 women, aged 18–35; suffered from PCOS (Rotterdam criteria); (1) experimental group: soy bread (75 g of soy flour, 40 g of wheat flour) (2) control group: wheat bread and their common diet without foods that contained high amounts of soya | To investigate the effects of balanced soy flour bread on some sex hormones in premenopausal women with PCOS. | After consumption of soy bread: a slight ↓ total T, ↓ FSH, ↓ oestradiol concentrations; however not statistically significant. | Long-term consumption of soy bread in women with PCOS may show potential benefits in improving hormonal parameters. |
Jamilian and Asemi, 2016 [14] | Randomised, double-blinded, placebo-controlled trial, 12 weeks | 70 women diagnosed with PCOS, aged 18–40 years; study group: 36 women, 50 mg/d soy isoflavones (containing 37.5 mg genistein, 10 mg daidzein, and 2.5 mg glycitein); control group: 35 women, placebo | The aim of the present study was to evaluate the effects of soy isoflavone supplementation on metabolic status and hormonal panel in women with PCOS. | ↓ FAI, ↓ free T, ↓ total T, ↓ DHEAS, ↑ SHBG, After adjusting biochemical markers, age, and baseline BMI to baseline values, there were no significant changes in hormone panel results. | Supplementation with soy isoflavones resulted in significant reductions in free androgen index and other metabolic indicators (see Table 3). |
Authors, Year | Study Design, Duration | Characteristics of the Study Group | Intervention/Aim of the Study | Main Results | Conclusions |
---|---|---|---|---|---|
Rajan et al., 2017 [133] | Experimental animal study; 14-day treatment after 21-day PCOS induction | 24 female Sprague-Dawley rats, including 18 rats with letrozole-induced PCOS (1 mg/kg letrozole, p.o. once daily for 21 consecutive days), treatment 14-day, rats divided into 4 groups (n = 6/each); (1) control received 0.3% w/v CMC, p.o.; (2) served as PCOS control group and received vehicle, p.o.; (3) treated with soy isoflavones 50 mg/kg, p.o.,; (4) PCOS rats treated with soy isoflavones 100 mg/kg, p.o. Soy isoflavones (a mix of genistin, genistein, daidzin, and daidzein, in amounts of 59.91%, 12.05%, 23.53%, and 4.49%, respectively). | To investigate the effect of soy isoflavones on a rat model of PCOS induced by letrozole. | 100 mg/kg soy isoflavones treatment: ↓ body weight gain, ↓ diestrus phase %, ↓ testosterone, ↓ 3β-HSD and 17β-HSD enzyme activity, and improved ovarian histology with healthy antral follicles and granulosa cells. No statistically significant differences in 17β-oestradiol concentrations in study groups after soy isoflavone treatment. | Treatment with soy isoflavones may have a positive effect on rats with PCOS. This effect is attributed to the ability of soy isoflavones to modulate aromatase enzyme activity and reduce testosterone levels in peripheral blood. |
Alivandi Farkhad and Khazali, 2019 [134] | Experimental animal study, post-induction SISAF treatment for 21 days, after 60-day EV-induction of PCOS | 32 female Wistar rats, including 24 rats with EV-induced; divided into 4 groups (n = 8/each): (1): CON, only received the vehicle, (2) rats with EV-induced PCOS, (3) a treatment group receiving SISAF 50 mg/kg by gavage for 21 days, (4) a treatment group receiving SISAF 100 mg/kg by gavage for 21 days Major compounds in the SISAF were genistein, daidzein, and glycitein. | To investigate the effect of SISAF on oxidative stress markers, inflammatory cytokines, and ovarian histology in rats with EV-induced PCOS. | SISAF treatment: ↓ number of cystic follicles, ↓ thickness of the theca layer, ↑ number of corpus luteum cells, and ↑ granulosa cells in rats with PCOS. Soy isoflavones improved inflammation indicators (see Table 4). | SISAF extract had an impact on ovarian histology in rats with EV-induced PCOS, by reducing oxidative stress markers and increasing TAC in rats with PCOS. |
Rajaei et al., 2019 [135] | Experimental animal study; post-induction genistein treatment, 14-day treatment after 60-day PCOS EV-induction | 20 female Wistar rats, including 15 rats with EV-induced PCOS; divided into 4 groups (n = 4/each): (1) control group, no intervention; (2) EV-induced PCOS (60 days); (3) rats without PCOS, treated with genistein (14 days); (4): EV-induced PCOS rats (60 days), treated with genistein (14 days) | To evaluate the antioxidant effect of genistein on ovarian tissue morphology and oxidative stress markers (see Table 4) in PCOS rats | Genistein improved follicular morphology comparable to controls, by ↓ ovarian and plasma MDA levels; and other metabolic and inflammatory markers (see Table 4). | Genistein treatment maintained follicle quality by increasing antioxidant activity and scavenging levels of oxidants in PCOS rats. |
Amanat et al., 2021 [136] | Experimental animal study; 42-day treatment | 40 female Sprague-Dawley rats, including 30 rats with letrozole-induced PCOS, divided into 4 groups (n = 10/each): (1) control group, healthy rats; (2) PCOS-induced rats that received normal saline by gavage; (3) PCOS-induced rats treated with 150 mg/kg of metformin dissolved in normal saline by gavage; (4) PCOS-induced rats supplemented with 20 mg/kg of genistein dissolved in 1% methylcellulose solution | To evaluate the effects of genistein (20 mg/kg) vs metformin on ovarian histology, oxidative stress, and other metabolic panel parameters. | Genistein improved ovarian histology (↑luteinization, ↓cystic follicles) and other metabolic and inflammatory markers (see Table 4). | Genistein supplementation in rats with PCOS induced significant remission of oxidative, inflammatory and histopathological parameters. |
Ma et al., 2021 [137] | Experimental animal study; 28-day treatment after 21-day PCOS induction | 20 female Sprague-Dawley rats, including 15 rats with letrozole-induced PCOS (1 mg/kg letrozole); divided into 4 groups ((n = 5/each); (1) normal control group, (2) PCOS group (1 mL saline p.o.), (3) MET group (1 mL saline dissolved with 500 mg/kg metformin p.o.), (4) SI group (1 mL saline dissolved with 100 mg/kg soy isoflavones p.o.) | Investigation of the therapeutic effect and molecular activity of soy isoflavones in rats with PCOS. | Soy isoflavones: ↓ body weight, ↓ ovarian weight, ↓ LH, and ↓ testosterone; ↑ FSH, ↑ oestradiol; improved ovarian morphology and estrous cycle; ↓ inflammatory markers (see Table 4). | Soy isoflavones improved ovarian structure, and hormone levels, and reduced inflammation (see Table 4) in PCOS rats. |
Xiao et al., 2024 [138] | Experimental (two-way randomisation) animal study; 8 weeks | 156 weanling female Sprague-Dawley rats; divided into 6 groups (n = 26/each): (1) control fed diets containing 0 g ISF/kg diet; (2) control fed 0.5 g ISF/kg diet, (3) control fed diets containing 1 g ISF/kg diet; (4) DHT-induced PCOS fed diets containing 0 g ISF/kg diet; (5) DHT-induced PCOS fed diets containing 0.5 g ISF/kg diet; (6) DHT-induced PCOS fed diets containing 1 g ISF/kg diet | To investigate whether ISF alleviates metabolic disorders associated with PCOS in a rat model and the quality of their ovaries. | ISF in both doses reduced DHT-induced changes: normalised ovarian follicle development (↑ primary, ↓ primordial follicles) | The ISF soy diet alleviated DHT-induced inhibition of ovarian follicle development. |
4.2. Metabolic Mechanisms
4.2.1. Central Obesity and Adipocyte Dysfunction in PCOS
4.2.2. Insulin Resistance and Hyperinsulinaemia
4.2.3. Lipid Profile and Cardiovascular Risk
Authors, Year | Study Design, Duration | Characteristics of the Study Group | Intervention/Aim of the Study | Main Results | Conclusions |
---|---|---|---|---|---|
Romualdi et al., 2008 [16] | Pilot prospective study, 6 months | 12 caucasian with obesity, hyperinsulinemic, and dyslipidemic; women with PCOS (Rotterdam criteria); patients received 36 mg/d of genistein | To investigate the effect of treatment with a standardised dose of soy isoflavone (genistein) on hormonal (see Table 1) and metabolic disorders in a group with obesity, hyperinsulinemic, and dyslipidemia. | ↓ Total cholesterol, ↓ LDL, ↓ LDL/HDL ratio, and HDL did not increase significantly. No effect on IR and glycemia. | Genistein improved lipid profile. The lack of effect on glucose–insulin metabolism and hormonal profile suggests that genistein acts mainly through metabolic mechanisms. |
Khani et al., 2011 [15] | Quasi-randomised trial, 3 months | 137 subjects with PCOS (Rotterdam criteria), aged 18–35; completed the study; study group: 69 women, 18 mg genistein twice a day orally; control group: 68 women—placebo, cellulose pills. | To investigate the effect of soy phytoestrogens on reproductive hormones (see Table 2) and lipid profiles in women with PCOS. | ↓ LDL, ↓ TG; no effect on HDL. | Genistein supplementation was associated with improvements in lipid parameters, suggesting a potential role in mitigating CVD risk in women with PCOS. |
Jamilian and Asemi, 2016 [14] | Randomised, double-blind, placebo-controlled study; 12 weeks | 70 women diagnosed with PCOS, aged 18–40 years; study group: 35 women, 50 mg/d soy isoflavones (containing 37.5 mg genistein, 10 mg daidzein, and 2.5 mg glycitein); control group: 35 women, placebo. | To assess the effects of 50 mg/day soy isoflavones for 12 weeks on metabolic, endocrine, inflammatory, and oxidative stress markers in women with PCOS. | ↓ Insulin, ↓ HOMA-IR, ↑ QUICKI, ↓ TG, ↑ total glutathione, ↓ MDA. No significant changes in other lipids or inflammation markers. | Soy isoflavones improved IR, triglycerides, and oxidative stress in women with PCOS. |
Authors, Year | Study Design, Duration | Characteristics of the Study Group | Intervention/Aim of the Study | Main Results | Conclusions |
---|---|---|---|---|---|
Rajan et al., 2017 [133] | Experimental animal study; 14-day treatment after 21-day PCOS induction. | 24 female Sprague-Dawley rats; including 18 rats with letrozole-induced PCOS (1 mg/kg letrozole, p.o. once daily for 21 consecutive days), treatment 14-day, rats divided into 4 groups (n = 6/each); (1) control received 0.3% w/v CMC, p.o.; (2) served as PCOS control group and received vehicle, p.o.; (3) treated with soy isoflavones 50 mg/kg, p.o.; (4) PCOS rats treated with soy isoflavones 100 mg/kg, p.o. | To evaluate the effect of soy isoflavones (50 and 100 mg/kg) on physical, metabolic, hormonal, and histological parameters in a rat PCOS model. | 100 mg/kg soy isoflavones ↓ body weight gain, ↓ 3β-HSD and 17β-HSD enzyme activity, ↓ oxidative stress. | Soy isoflavones improved metabolic abnormalities, anti-inflammatory markers, and hormonal panel (see Table 2) in letrozole-induced PCOS rats, likely via anti-androgenic effects and aromatase activity modulation. |
Rajaei et al., 2019 [135] | Experimental animal study; 60-day PCOS induction with oestradiol valerate, followed by 14-day genistein treatment. | 20 female Wistar rats, including 15 rats with EV-induced PCOS; divided into 4 groups (n = 4/each): (1) control group, no intervention; (2) EV-induced PCOS (60 days); (3) rats without PCOS, treated with genistein (14 days); (4): EV-induced PCOS rats (60 days), treated with genistein (14 days). | To evaluate the antioxidant effect of genistein on ovarian tissue morphology and oxidative stress markers (MDA, TAC, GPx, SOD) in PCOS rats. | Genistein: ↓MDA (plasma and ovary), ↑ TAC, ↑ GPx, ↑ SOD; improved follicular morphology comparable to controls. | Genistein protected ovarian tissue by enhancing antioxidant defences and reducing oxidative stress, contributing to improved follicular quality in PCOS rats. |
Alivandi Farkhad and Khazali et al., 2019 [134] | Experimental animal study, post-induction SISAF treatment for 21 days, after 60-day EV-induction of PCOS. | 32 female Wistar rats, including 24 rats with EV-induced; divided into 4 groups (n = 8/each): (1): CON, only received the vehicle, (2) rats with EV-induced PCOS, (3) a treatment group receiving SISAF 50 mg/kg by gavage for 21 days, (4) a treatment group receiving SISAF 100 mg/kg by gavage for 21 days | To assess the effect of soybean isoflavone–aglycone fraction (SISAF; 50 and 100 mg/kg) on inflammation, oxidative stress, and ovarian histology in PCOS rats. | SISAF treatment significantly: ↓ IL-6, ↓ TNF-a levels in ovarian tissue, and ↑ overall oxidative–antioxidant status compared to the PCOS group. Rats in (2) group significantly ↑ TOS in ovarian tissue compared to the (1) group. Rats treated with SISAF significantly ↓ TOS compared to the (2) group. Significant ↓TAC was observed in the (2) group compared to the (1) group. Rats in groups (3) and (4) treated with SISAF at doses of 50 and 100 mg/kg body weight had mean TAC values comparable to those in the CON group. | Soy isoflavone-aglycones reduced inflammatory and oxidative stress markers in PCOS rats, supporting their therapeutic potential. |
Ma et al., 2021 [137] | Experimental animal study; 28-day treatment (after 21-day PCOS induction). | 20 female Sprague-Dawley rats, including 15 rats with letrozole-induced PCOS (1 mg/kg letrozole); divided into 4 groups (n = 5/each); (1) normal control group, (2) PCOS group (1 mL saline p.o.), (3) MET group (1 mL saline dissolved with 500 mg/kg metformin p.o.), (4) SI group (1 mL saline dissolved with 100 mg/kg soy isoflavones p.o.) | To assess the therapeutic effect and mechanism of soy isoflavones (100 mg/kg) vs metformin (500 mg/kg) in improving ovarian morphology and hormonal imbalance via NF-κB signalling. | Soy isoflavones ↓ body and ovarian weight, ↓ oxidative stress and inflammation; inhibited NF-κB p65 phosphorylation and ↑ IκBα expression. There was also an improvement in hormonal parameters (see Table 2). | Soy isoflavones reduced inflammation and improved ovarian structure and hormone levels (see Table 2) in PCOS rats by inhibiting NF-κB signalling and enhancing antioxidant defence. |
Amanat et al., 2021 [136] | Experimental animal study; 42-day treatment. | 40 female Sprague-Dawley rats, including 30 rats with letrozole-induced PCOS; divided into 4 groups (n = 10/each): (1) control group, healthy rats; (2) PCOS-induced rats that received normal saline by gavage; (3) PCOS-induced rats treated with 150 mg/kg of metformin dissolved in normal saline by gavage; (4) PCOS-induced rats supplemented with 20 mg/kg of genistein dissolved in 1% methylcellulose solution. | To evaluate the effects of genistein (20 mg/kg) vs metformin on IR, inflammation, oxidative stress, lipid profile, and ovarian histology. | Genistein ↓ fasting insulin, ↓ HOMA-IR, ↓ MDA, ↓ TNF-α; ↑ SOD activity; improved ovarian histology (see Table 2). | Genistein improved metabolic, inflammatory, and histopathological markers in PCOS rats, suggesting beneficial effects comparable to metformin. |
Watanabe et al., 2023 [180] | In vitro (3T3-L1 adipocytes) and in vivo (ICR mice, 14-day feeding trial with 0.2% genistein); 14 days. | Eight-week-old male ICR mice; fed a standard AIN-93M diet supplemented with 0.2% genistein for 14 days; cultured murine 3T3-L1 preadipocytes differentiated into adipocytes and treated with genistein (10 μM) for 7 days. | To investigate whether genistein promotes NAD⁺ biosynthesis and improves insulin sensitivity by regulating NAMPT expression and PPARγ activity. | Genistein ↑ NAMPT expression, ↑ NAD⁺ levels, ↑ adiponectin, ↓ phosphorylated PPARγ (Ser273), ↑ C/EBPβ stability via ERK–PHB1 pathway; effects abolished by PHB1 or NAMPT knockdown. | Genistein improves adipocyte metabolic function and insulin sensitivity through the PHB1–NAMPT–PPARγ signalling axis; supports nutraceutical role in metabolic disorders. |
Xiao et al., 2024, [138] | Experimental (two-way randomisation) animal study; 8 weeks. | 156 weanling female Sprague-Dawley rats; divided into 6 groups (n = 26/each); (1) control fed diets containing 0 g ISF/kg diet; (2) control fed 0.5 g ISF/kg diet, (3) control fed diets containing 1 g ISF/kg diet; (4) DHT-induced PCOS fed diets containing 0 g ISF/kg diet; (5) DHT-induced PCOS fed diets containing 0.5 g ISF/kg diet; (6) DHT-induced PCOS fed diets containing 1 g ISF/kg diet. | To evaluate whether dietary soy isoflavones (0, 0.5, or 1 g/kg diet) can mitigate metabolic and reproductive disorders associated with DHT-induced PCOS in rats. | Soya isoflavones at 1 g/kg reduced body weight gain, serum total and free cholesterol, NEFA, leptin, and hepatic TAG; improved insulin sensitivity; decreased liver lipid droplet accumulation; normalised ovarian functions (see Table 2). | Soy isoflavones alleviated metabolic disorders related to PCOS, including IR and fatty liver; they may offer therapeutic potential for managing PCOS-related conditions. |
4.3. Gut Microbiota
5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations From the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2023, 108, 2447–2469. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 2006, 91, 4237–4245. [Google Scholar] [CrossRef]
- Bozdag, G.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2016, 31, 2841–2855. [Google Scholar] [CrossRef]
- March, W.; Moore, V.; Willson, K.; Phillips, D.I.; Norman, R.J.; Davies, M.J. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 2010, 25, 544–551. [Google Scholar] [CrossRef]
- Fletcher, R.J. Food sources of phyto-oestrogens and their precursors in Europe. Br. J. Nutr. 2003, 89, S39–S43. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Ekena, K.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Determinants of ligand specificity of estrogen receptor-alpha: Estrogen versus androgen discrimination. J. Biol. Chem. 1998, 273, 693–699. [Google Scholar] [CrossRef]
- Gustafsson, J.A. Therapeutic potential of selective estrogen receptor modulators. Curr. Opin. Chem. Biol. 1998, 2, 508–511. [Google Scholar] [CrossRef]
- Wang, L.Q. Mammalian phytoestrogens: Enterodiol and enterolactone. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 777, 289–309. [Google Scholar] [CrossRef]
- Ye, L.; Chan, M.Y.; Leung, L.K. The soy isoflavone genistein induces estrogen synthesis in an extragonadal pathway. Mol. Cell Endocrinol. 2009, 302, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, S.A.; Cross, J.E.; Burden, C.; Lacey, M. Acute and chronic effects of genistein, tyrphostin and lavendustin A on steroid synthesis in luteinized human granulosa cells. Hum. Reprod. 2002, 17, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.C.; Zhou, C.; Sherman, M.; Laughton, C.A.; Chen, S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect. 1998, 106, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, M.; Asemi, Z. The Effects of Soy Isoflavones on Metabolic Status of Patients With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2016, 101, 3386–3394. [Google Scholar] [CrossRef]
- Khani, B.; Mehrabian, F.; Khalesi, E.; Eshraghi, A. Effect of soy phytoestrogen on metabolic and hormonal disturbance of women with polycystic ovary syndrome. J. Res. Med. Sci. 2011, 16, 297–302. [Google Scholar]
- Romualdi, D.; Costantini, B.; Campagna, G.; Lanzone, A.; Guido, M. Is there a role for soy isoflavones in the therapeutic approach to polycystic ovary syndrome? Results from a pilot study. Fertil. Steril. 2008, 90, 1826–1833. [Google Scholar] [CrossRef]
- Haudum, C.; Lindheim, L.; Ascani, A.; Trummer, C.; Horvath, A.; Münzker, J.; Obermayer-Pietsch, B. Impact of Short-Term Isoflavone Intervention in Polycystic Ovary Syndrome (PCOS) Patients on Microbiota Composition and Metagenomics. Nutrients 2020, 12, 1622. [Google Scholar] [CrossRef]
- Nachvak, S.M.; Moradi, S.; Anjom-Shoae, J.; Rahmani, J.; Nasiri, M.; Maleki, V.; Sadeghi, O. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. J. Acad. Nutr. Diet. 2019, 119, 1483–1500.e17. [Google Scholar] [CrossRef]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Zhao, R.; Yi, M.; Wan, Q.; Du, L.; Zhou, Y. Soy and isoflavone consumption and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials in humans. Mol. Nutr. Food Res. 2020, 64, e1900751. [Google Scholar] [CrossRef]
- Mosallanezhad, Z.; Mahmoodi, M.; Ranjbar, S.; Hosseini, R.; Clark, C.C.T.; Carson-Chahhoud, K.; Norouzi, Z.; Abbasian, A.; Sohrabi, Z.; Jalali, M. Soy intake is associated with lowering blood pressure in adults: A systematic review and meta-analysis of randomized double-blind placebo-controlled trials. Complement. Ther. Med. 2021, 59, 102692. [Google Scholar] [CrossRef]
- Liu, X.X.; Li, S.H.; Chen, J.Z.; Sun, K.; Wang, X.J.; Wang, X.G.; Hui, R.T. Effect of soy isoflavones on blood pressure: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Pan, A.; Manson, J.E.; Willett, W.C.; Malik, V.; Rosner, B.; Giovannucci, E.; Hu, F.B.; Sun, Q. Consumption of soy foods and isoflavones and risk of type 2 diabetes: A pooled analysis of three US cohorts. Eur. J. Clin. Nutr. 2016, 70, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G. The Antioxidant Role of Soy and Soy Foods in Human Health. Antioxidants 2020, 9, 635. [Google Scholar] [CrossRef]
- Kumari, N.; Kumari, R.; Dua, A.; Singh, M.; Kumar, R.; Singh, P.; Duyar-Ayerdi, S.; Pradeep, S.; Ojesina, A.I.; Kumar, R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol. Nutr. Food Res. 2024, 68, e2300688. [Google Scholar] [CrossRef]
- Wang, B.; Hu, L.; Dong, P. Meta-analysis of gut microbiota biodiversity in patients with polycystic ovary syndrome based on medical images. SLAS Technol. 2024, 29, 100178. [Google Scholar] [CrossRef]
- Lindheim, L.; Bashir, M.; Munzker, J.; Trummer, C.; Zachhuber, V.; Leber, B.; Horvath, A.; Pieber, T.R.; Gorkiewicz, G.; Stadlbauer, V.; et al. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLoS ONE 2017, 12, e0168390. [Google Scholar] [CrossRef]
- He, F.; Li, Y. The gut microbial composition in polycystic ovary syndrome with insulin resistance: Findings from a normal-weight population. J. Ovarian Res. 2021, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef]
- Mei, J.; Chen, X.; Liu, J.; Yi, Y.; Zhang, Y.; Ying, G. A biotransformation process for production of genistein from sophoricoside by a strain of Rhizopus oryza. Sci. Rep. 2019, 9, 6564. [Google Scholar] [CrossRef]
- Liggins, J.; Bluck, L.J.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and genistein content of fruits and nuts. J. Nutr. Biochem. 2000, 11, 326–331. [Google Scholar] [CrossRef]
- Swathi Krishna, S.; Kuriakose, B.B.; Lakshmi, P.K. Effects of phytoestrogens on reproductive organ health. Arch. Pharm. Res. 2022, 45, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Fukutake, F.; Takahashi, M.; Ishida, K.; Kawamura, H.; Sugimura, T.; Wakabayashi, K. Quantification of genistein and genistin in soybeans and soybean products. Food Chem. Toxicol. 1996, 34, 457–461. [Google Scholar] [CrossRef]
- Walsh, K.R.; Haak, S.J.; Bohn, T.; Tian, Q.; Schwartz, S.J.; Failla, M.L. Isoflavonoid glucosides are deconjugated and absorbed in the small intestine of human subjects with ileostomies. Am. J. Clin. Nutr. 2007, 85, 1050–1056. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wang, Z.; Wu, D.; Zhao, Y.; Gong, X.; Jiang, Q.; Xia, C. Study on biotransformation and absorption of genistin based on fecal microbiota and Caco-2 cell. Front. Pharmacol. 2024, 15, 1437020. [Google Scholar] [CrossRef]
- Haron, H.; Ismail, A.; Azlan, A.; Shahar, S.; Peng, L.S. Daidzein and genestein contents in tempeh and selected soy products. Food Chem. 2009, 115, 1350–1356. [Google Scholar] [CrossRef]
- Garbiec, E.; Cielecka-Piontek, J.; Kowalówka, M.; Hołubiec, M.; Zalewski, P. Genistein—Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022, 27, 815. [Google Scholar] [CrossRef]
- Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anticancer. Agents Med. Chem. 2012, 12, 1264–1280. [Google Scholar] [CrossRef]
- Yu, L.; Rios, E.; Castro, L.; Liu, J.; Yan, Y.; Dixon, D. Genistein: Dual Role in Women’s Health. Nutrients 2021, 13, 3048. [Google Scholar] [CrossRef]
- Wu, J.G.; Ge, J.; Zhang, Y.P.; Yu, Y.; Zhang, X.Y. Solubility of Genistein in Water, Methanol, Ethanol, Pro-pan-2-ol, 1-Butanol, and Ethyl Acetate from (280 to 333) K. J. Chem. Eng. Data 2010, 55, 5286–5288. [Google Scholar] [CrossRef]
- Kobayashi, S.; Shinohara, M.; Nagai, T.; Konishi, Y. Transport mechanisms of soy isoflavones and their microbial metabolites dihydrogenistein and dihydrodaidzein across monolayers and membranes. Pharm. Anal. Acta 2013, 77, 2210–2217. [Google Scholar] [CrossRef]
- Braune, A.; Blaut, M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016, 7, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Nakagawa, H.; Ohnishi-Kameyama, M.; Tsushida, T. Dihydrogenistein-producing bacterium TM-40 isolated from human feces. Food Sci. Technol. Res. 2007, 13, 129–132. [Google Scholar] [CrossRef]
- Doerge, D.R.; Chang, H.C.; Churchwell, M.I.; Holder, C.L. Analysis of Soy Isoflavone Conjugation In Vitro and in Human Blood Using Liquid Chromatography-Mass Spectrometry. Drug Metab. Dispos. 2000, 28, 298. [Google Scholar] [CrossRef] [PubMed]
- Hüser, S.; Guth, S.; Joost, H.G.; Soukup, S.T.; Köhrle, J.; Kreienbrock, L.; Diel, P.; Lachenmeier, D.W.; Eisenbrand, G.; Vollmer, G.; et al. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: A comprehensive safety evaluation. Arch. Toxicol. 2018, 92, 2703–2748. [Google Scholar] [CrossRef]
- Pfitscher, A.; Reiter, E.; Jungbauer, A. Receptor binding and transactivation activities of red clover isoflavones and their metabolites. J. Steroid. Biochem. Mol. Biol. 2008, 112, 87–94. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Murphy, P.; Cook, L.; Hendrich, S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr. 1994, 124, 825–832. [Google Scholar] [CrossRef]
- Guelfi, G.; Pasquariello, R.; Anipchenko, P.; Capaccia, C.; Pennarossa, G.; Brevini, T.A.L.; Gandolfi, F.; Zerani, M.; Maranesi, M. The Role of Genistein in Mammalian Reproduction. Molecules 2023, 28, 7436. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Carlsson, B.; Grandien, K.; Enmark, E.; Haggblad, J.; Nilsson, S.; Gustafsson, J.A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997, 138, 863–870. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Pintova, S.; Dharmupari, S.; Moshier, E.; Zubizarreta, N.; Ang, C.; Holcombe, R.F. Genistein Combined with FOLFOX or FOLFOX–Bevacizumab for the Treatment of Metastatic Colorectal Cancer: Phase I/II Pilot Study. Cancer Chemother. Pharmacol. 2019, 84, 591–598. [Google Scholar] [CrossRef]
- Koenig, A.; Buskiewicz, I.; Huber, S.A. Age-Associated changes in estrogen receptor ratios correlate with increased female susceptibility to Coxsackievirus B3-Induced myocarditis. Front. Immunol. 2017, 8, 1585. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Lin, Z.; Cheng, Y.H.; Huang, C.C.; Marsh, E.; Yin, P.; Milad, M.P.; Confino, E.; Reierstad, S.; Innes, J.; et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol. Reprod. 2007, 77, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S. Estrogen Receptor-Beta Gene Polymorphism in women with Breast Cancer at the Imam Khomeini Hospital Complex, Iran. BMC Med. Genet. 2010, 11, 109. [Google Scholar] [CrossRef]
- Evans, B.A.; Griffiths, K.; Morton, M.S. Inhibition of 5 alpha-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J. Endocrinol. 1995, 147, 295–302. [Google Scholar] [CrossRef]
- Sobhy, M.M.K.; Mahmoud, S.S.; El-Sayed, S.H.; Rizk, E.M.A.; Raafat, A.; Negm, M.S.I. Impact of treatment with a Protein Tyrosine Kinase Inhibitor (Genistein) on acute and chronic experimental Schistosoma mansoni infection. Exp. Parasitol. 2018, 185, 115–123. [Google Scholar] [CrossRef]
- Valli, V.; Heilmann, K.; Danesi, F.; Bordoni, A.; Gerhäuser, C. Modulation of Adipocyte Differentiation and Proadipogenic Gene Expression by Sulforaphane, Genistein, and Docosahexaenoic Acid as a First Step to Counteract Obesity. Oxid. Med. Cell Longev. 2018, 2018, 1617202. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Xing, K.; Li, G.; Liu, D.; Guo, Y. Dietary Genistein Alleviates Lipid Metabolism Disorder and Inflammatory Response in Laying Hens with Fatty Liver Syndrome. Front. Physiol. 2018, 9, 1493. [Google Scholar] [CrossRef]
- Bazuine, M.; van den Broek, P.J.; Maassen, J.A. Genistein directly inhibits GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2005, 326, 511–514. [Google Scholar] [CrossRef]
- Vera, J.C.; Reyes, A.M.; Cárcamo, J.G.; Velásquez, F.V.; Rivas, C.I.; Zhang, R.H.; Strobel, P.; Iribarren, R.; Scher, H.I.; Slebe, J.C. Genistein Is a Natural Inhibitor of Hexose and Dehydroascorbic Acid Transport through the Glucose Transporter, GLUT1. J. Biol. Chem. 1996, 271, 8719–8724. [Google Scholar] [CrossRef]
- Johnson, A.; Roberts, R.L.; Elkins, G. Complementary and alternative medicine for menopause. J. Evid. Based Integr. Med. 2019, 24, 2515690X19829380. [Google Scholar] [CrossRef]
- Laddha, A.P.; Kulkarni, Y.A. Pharmacokinetics, pharmacodynamics, toxicity, and formulations of daidzein: An important isoflavone. Phytother. Res. 2023, 37, 2578–2604. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.; Hayowitz, D.B.; Holden, J.M. USDA Database for the Isoflavone Content of Selected Foods, Release 2.0; US Department of Agriculture: Washington, DC, USA, 2008.
- Singh, S.; Grewal, S.; Sharma, N.; Behl, T.; Gupta, S.; Anwer, M.K.; Vargas-De-La-Cruz, C.; Mohan, S.; Bungau, S.G.; Bumbu, A. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules 2023, 28, 1765. [Google Scholar] [CrossRef] [PubMed]
- Foti, P.; Erba, D.; Spadafranca, A.; Ciappellano, S.; Bresciani, J.; Testolin, G. Daidzein is absorbed by passive transport in isolated small intestine of rats. Nutr. Res. 2006, 26, 284–288. [Google Scholar] [CrossRef]
- Day, A.J.; Dupont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.C.; Morgan, M.R.A.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett. 1998, 436, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Alwasel, S.H.; Harrath, A.H. The Influence of Plant Isoflavones Daidzein and Equol on Female Reproductive Processes. Pharmaceuticals 2021, 14, 373. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef]
- Langa, S.; Curiel, J.A.; de la Bastida, A.R.; Peirotén, Á.; Álvarez, I.; Landete, J.M. Production of equol, dehydroequol, 5-hydroxy-equol and 5-hydroxy-dehydroequol in soy beverages by the action of dihydrodaidzein reductase in Limosilactobacillus fermentum strains. Food Chem. 2025, 464 Pt 2, 141707. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, G.H. The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells. Mol. Med. Rep. 2014, 9, 328–332. [Google Scholar] [CrossRef]
- Muthyala, R.S.; Ju, Y.H.; Sheng, S.; Williams, L.D.; Doerge, D.R.; Katzenellenbogen, B.S.; Helferich, W.G.; Katzenellenbogen, J.A. Equol, a natural estrogenic metabolite from soy isoflavones: Convenient preparation and resolution of R-and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg. Med. Chem. 2004, 12, 1559–1567. [Google Scholar] [CrossRef]
- Song, K.B.; Atkinson, C.; Frankenfeld, C.L.; Jokela, T.; Wähälä, K.; Thomas, W.K.; Lampe, J.W. Prevalence of daidzein-metabolizing phenotypes differs between Caucasian and Korean American women and girls. J. Nutr. 2006, 136, 1347–1351. [Google Scholar] [CrossRef]
- Setchell, K.D.R.; Cole, S.J. Method of defining equol-producer status and its frequency among vegetarians. J. Nutr. 2006, 136, 2188–2193. [Google Scholar] [CrossRef]
- Setchell, K.D.; Brown, N.M.; Summer, S.; King, E.C.; Heubi, J.E.; Cole, S.; Guy, T.; Hokin, B. Dietary factors influence production of the soy isoflavone metabolite S-(-)equol in healthy adults. J. Nutr. 2013, 143, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, A.; Ihara, M.; Lopez, O.; Kakuta, C.; Lopresti, B.; Higashiyama, A.; Aizenstein, H.; Chang, Y.-F.; Mathis, C.; Miyamoto, Y.; et al. Effect of S-equol and Soy Isoflavones on Heart and Brain. Curr. Cardiol. Rev. 2019, 15, 114–135. [Google Scholar] [CrossRef]
- Lehmann, L.; Esch, H.L.; Wagner, J.; Rohnstock, L.; Metzler, M. Estrogenic and genotoxic potential of equol and two hydroxylated metabolites of daidzein in cultured human Ishikawa cells. Toxicol. Lett. 2005, 158, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-L.; Deng, S.-L.; Lian, Z.-X.; Yu, K. Estrogen Receptors in Polycystic Ovary Syndrome. Cells 2021, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Rietjens, I.M.; Sotoca, A.M.; Vervoort, J.; Louisse, J. Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol. Nutr. Food Res. 2013, 57, 100–113. [Google Scholar] [CrossRef]
- Hu, W.S.; Lin, Y.M.; Kuo, W.W.; Pan, L.F.; Yeh, Y.L.; Li, Y.H.; Kuo, C.H.; Chen, R.J.; Padma, V.V.; Chen, T.S.; et al. Suppression of isoproterenol-induced apoptosis in H9c2 cardiomyoblast cells by daidzein through activation of Akt. Chin. J. Physiol. 2016, 59, 323–330. [Google Scholar] [CrossRef]
- Hilakivi-Clarke, L.; Andrade, J.E.; Helferich, W. Is soy consumption good or bad for the breast? J. Nutr. 2010, 140, 2326S–2334S. [Google Scholar] [CrossRef]
- Boomsma, C.; Eijkemans, M.; Hughes, E.; Visser, G.; Fauser, B.C.; Macklon, N.S. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum. Reprod. Update 2006, 12, 673–683. [Google Scholar] [CrossRef]
- Legro, R.; Kunselman, A.; Dodson, W.; Dunaif, A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: A prospective, controlled study in 254 affected women. J. Clin. Endocrinol. Metab. 1999, 84, 165–168. [Google Scholar] [CrossRef]
- Berni, T.R.; Morgan, C.L.; Rees, D.A. Women with Polycystic Ovary Syndrome Have an Increased Risk of Major Cardiovascular Events: A Population Study. J. Clin. Endocrinol. Metab. 2021, 106, e3369–e3380. [Google Scholar] [CrossRef] [PubMed]
- Apridonidze, T.; Essah, P.; Luorno, M.; Nestler, J. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 1929–1935. [Google Scholar] [CrossRef]
- Moran, L.; Gibson-Helm, M.; Teede, H.; Deeks, A. Polycystic ovary syndrome: A biopsychosocial understanding in young women to improve knowledge and treatment options. J. Psychosom. Obstet. Gynaecol. 2010, 31, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Deeks, A.; Gibson-Helm, M.; Teede, H. Is having polycystic ovary syndrome (PCOS) a predictor of poor psychological function including depression and anxiety. Hum. Reprod. 2011, 26, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef]
- Lee, A.T.; Zane, L.T. Dermatologic manifestations of polycystic ovary syndrome. Am. J. Clin. Dermatol. 2007, 8, 201–219. [Google Scholar] [CrossRef]
- Housman, E.; Reynolds, R.V. Polycystic ovary syndrome: A review for dermatologists: Part I. Diagnosis and manifestations. J. Am. Acad. Dermatol. 2014, 71, 847–857. [Google Scholar] [CrossRef]
- Chang, S.; Dunaif, A. Diagnosis of Polycystic Ovary Syndrome: Which Criteria to Use and When? Endocrinol. Metab. Clin. N. Am. 2021, 50, 11–23. [Google Scholar] [CrossRef]
- Conway, G.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Franks, S.; Gambineri, A.; Kelestimur, F.; Macut, D.; Micic, D.; Pasquali, R.; et al. ESE PCOS Special Interest Group. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology. Eur. J. Endocrinol. 2014, 171, P1–P29. [Google Scholar] [CrossRef]
- Welt, C.K.; Carmina, E. Lifecycle of Polycystic Ovary Syndrome (PCOS): From In Utero to Menopause. J. Clin. Endocrinol. Metab. 2013, 98, 4629–4638. [Google Scholar] [CrossRef]
- Pasquali, R.; Gambineri, A. Polycystic ovary syndrome: A multifaceted disease from adolescence to adult age. Ann. N. Y. Acad. Sci. 2006, 1092, 158–174. [Google Scholar] [CrossRef]
- Wang, Z.; Van Faassen, M.; Groen, H.; Cantineau, A.E.P.; Van Oers, A.; Van der Veen, A.; Hawley, J.M.; Keevil, B.G.; Kema, I.P.; Hoek, A. Resumption of ovulation in anovulatory women with PCOS and obesity is associated with reduction of 11β-hydroxyandrostenedione concentrations. Hum. Reprod. 2024, 39, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Maan, P.; Jyoti, A.; Kumar, A. The Role of Lifestyle Interventions in PCOS Management: A Systematic Review. Nutrients 2025, 17, 310. [Google Scholar] [CrossRef]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Xu, Q.; Liu, W.; Wang, P.; Yao, J.; Zhao, A.; Chen, Y.; Wang, W. Higher dietary inflammation potential and certain dietary patterns are associated with polycystic ovary syndrome risk in China: A case-control study. Nutr. Res. 2022, 100, 1–18. [Google Scholar] [CrossRef]
- Zeber-Lubecka, N.; Ciebiera, M.; Hennig, E.E. Polycystic Ovary Syndrome and Oxidative Stress-From Bench to Bedside. Int. J. Mol. Sci. 2023, 24, 14126. [Google Scholar] [CrossRef]
- Zuo, T.; Zhu, M.; Xu, W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxid. Med. Cell Longev. 2016, 2016, 8589318. [Google Scholar] [CrossRef]
- Sharifi, M.; Saber, A.; Moludi, J.; Salimi, Y.; Jahan-Mihan, A. The effects of portfolio moderate-carbohydrate and ketogenic diets on anthropometric indices, metabolic status, and hormonal levels in overweight or obese women with polycystic ovary syndrome: A randomized controlled trial. Nutr. J. 2024, 23, 152. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 226. [Google Scholar] [CrossRef]
- Tsilchorozidou, T.; Overton, C.; Conway, G.S. The pathophysiology of polycystic ovary syndrome. Clin. Endocrinol. 2004, 60, 1–17. [Google Scholar] [CrossRef]
- Kirschner, M.A.; Bardin, C.W. Androgen production and metabolism in normal and virilized women. Metabolism 1972, 21, 667–688. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Dalkin, A.C.; Haisenleder, D.J.; Paul, S.J. Gonadotropin-releasing hormone pulses: Regulators of gonadotropin synthesis and ovulatory cycles. Recent. Prog. Horm. Res. 1991, 47, 155–189. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Li, S.; Zhou, W.; Ye, L.; Wang, L.; Tao, T.; Gu, J.; Yang, Z.; Zhao, D.; et al. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome. Sci. Rep. 2017, 7, 14156. [Google Scholar] [CrossRef]
- Jakimiuk, A.J.; Weitsman, S.R.; Navab, A.; Magoffin, D.A. Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overexpressed in thecal and granulosa cells from polycystic ovaries. J. Clin. Endocrinol. Metab. 2001, 86, 1318–1323. [Google Scholar] [CrossRef]
- Nelson, V.L.; Legro, R.S.; Strauss, J.F.; McAllister, J.M. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol. Endocrinol. 1999, 13, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Ciaraldi, T.P.; Aroda, V.; Mudaliar, S.; Chang, R.J.; Henry, R.R. Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J. Clin. Endocrinol. Metab. 2009, 94, 157–163. [Google Scholar] [CrossRef]
- Ehrmann, D.A.; Barnes, R.B.; Rosenfeld, R.L. Policystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endoc. Rev. 1995, 16, 322–353. [Google Scholar] [CrossRef]
- White, D.; Leigh, A.; Wilson, C.; Donaldson, A.; Franks, S. Gonadotropin and gonadal steroid response to a single dose of a long-acting agonist of gonadotrophin-releasing hormone in ovulatory and anovulatory women with polycystic ovary syndrome. Clin. Endocrinol. 1995, 42, 475–481. [Google Scholar] [CrossRef]
- Pugeat, M.; Crave, J.C.; Elmidani, M.; Nicolas, M.H.; Garoscio-Cholet, M.; Lejeune, H.; Déchaud, H.; Tourniaire, J. Pathophysiology of sex hormone binding globulin (SHBG): Relation to insulin. J. Steroid Biochem. Mol. Biol. 1991, 40, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Poretsky, L.; Cataldo, N.A.; Rosenwaks, Z.; Giudice, L.C. The insulin related ovarian regulatory system in health and disease. Endocr. Rev. 1999, 20, 535–582. [Google Scholar] [CrossRef]
- Kumar, A.; Woods, K.S.; Bartolucci, A.A.; Azziz, R. Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin. Endocrinol. 2005, 62, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.L. Evidence that idiopathic functional adrenal hyperandrogenism is caused by dysregulation of adrenal steroidogenesis and that hyperinsulinemia may be involved. J. Clin. Endocrinol. Metab. 1996, 81, 878–880. [Google Scholar] [CrossRef] [PubMed]
- Clarke, I.J.; Cummins, J.T. GnRH pulse frequency determines LH pulse amplitude by altering the amount of releasable LH in the pituitary glands of ewes. J. Reprod. Fertil. 1985, 73, 425–431. [Google Scholar] [CrossRef]
- Su, P.; Chen, C.; Sun, Y. Physiopathology of polycystic ovary syndrome in endocrinology, metabolism and inflammation. J. Ovarian Res. 2025, 18, 34. [Google Scholar] [CrossRef]
- Liao, B.; Qiao, J.; Pang, Y. Central regulation of PCOS: Abnormal neuronal-reproductive-metabolic circuits in PCOS pathophysiology. Front. Endocrinol. 2021, 12, 667422. [Google Scholar] [CrossRef]
- McArthur, J.W.; Ingersoll, F.M.; Worcester, J. The urinary excretion of interstitial-cell and follicle-stimulating hormone activity by women with diseases of the reproductive system. J. Clin. Endocrinol. Metab. 1958, 18, 1202–1215. [Google Scholar] [CrossRef]
- Yen, S.S.; Vela, P.; Rankin, J. Inappropriate secretion of follicle-stimulating hormone and luteinizing hormone in polycystic ovarian disease. J. Clin. Endocrinol. Metab. 1970, 30, 435–442. [Google Scholar] [CrossRef]
- Tang, R.; Ding, X.; Zhu, J. Kisspeptin and polycystic ovary syndrome. Front. Endocrinol. 2019, 10, 298. [Google Scholar] [CrossRef]
- Ohtaki, T.; Shintani, Y.; Honda, S.; Matsumoto, H.; Hori, A.; Kanehashi, K.; Terao, Y.; Kumano, S.; Takatsu, Y.; Masuda, Y.; et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001, 411, 613–617. [Google Scholar] [CrossRef]
- Ruddenklau, A.; Campbell, R.E. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology 2019, 160, 2230–2242. [Google Scholar] [CrossRef]
- Payne, A.H.; Hales, D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 2004, 25, 947–970. [Google Scholar] [CrossRef] [PubMed]
- DeVane, G.W.; Czekala, N.M.; Judd, H.L.; Yen, S.S. Circulating gonadotropins, estrogens, and androgens in polycystic ovarian disease. Am. J. Obstet. Gynecol. 1975, 121, 496–500. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Sun, C.X.; Liu, Y.K.; Li, Y.; Wang, L.; Zhang, W. Promoter methylation of CYP19A1 gene in Chinese polycystic ovary syndrome patients. Gynecol. Obstet. Investig. 2013, 76, 209–213. [Google Scholar] [CrossRef]
- Kim, N.; Chun, S. Association between the serum estrone-to-estradiol ratio and parameters related to glucose metabolism and insulin resistance in women with polycystic ovary syndrome. Clin. Exp. Reprod. Med. 2021, 48, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Liu, L.; He, D.; Wang, Y.; Sheng, M. Integrated analysis of DNA methylation and transcriptome profling of polycystic ovary syndrome. Mol. Med. Rep. 2020, 21, 2138–2150. [Google Scholar] [CrossRef]
- Piltonen, T.T.; Giacobini, P.; Edvinsson, Å.; Hustad, S.; Lager, S.; Morin-Papunen, L.; Tapanainen, J.S.; Sundström-Poromaa, I.; Arffman, R.K. Circulating antimüllerian hormone and steroid hormone levels remain high in pregnant women with polycystic ovary syndrome at term. Fertil. Steril. 2019, 111, 588–596.e1. [Google Scholar] [CrossRef] [PubMed]
- Tata, B.; Mimouni, N.E.H.; Barbotin, A.L.; Malone, S.A.; Loyens, A.; Pigny, P.; Dewailly, D.; Catteau-Jonard, S.; Sundström-Poromaa, I.; Piltonen, T.T.; et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat. Med. 2018, 24, 834–846. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E. Polycystic ovarian syndrome: Pathophysiology, molecular aspects and clinical implications. Expert Rev. Mol. Med. 2008, 10, e3. [Google Scholar] [CrossRef]
- Homburg, R.; Ray, A.; Bhide, P.; Gudi, A.; Shah, A.; Timms, P.; Grayson, K. The relationship of serum anti-mullerian hormone with polycystic ovarian morphology and polycystic ovary syndrome: A prospective cohort study. Hum. Reprod. 2013, 28, 1077–1083. [Google Scholar] [CrossRef]
- Forouhari, S.; Heidari, Z.; Tavana, Z.; Salehi, M.; Sayadi, M. The effect of soya on some hormone levels in women with polycystic ovary syndrome (balance diet): A cross over randomized clinical trial. Bull. Environ. Pharmacol. Life Sci. 2013, 3, 246–250. [Google Scholar] [CrossRef]
- Rajan, R.K.; Kumar, M.S.S.; Balaji, B. Soy isoflavones exert beneficial effects on letrozole-induced rat polycystic ovary syndrome (PCOS) model through anti-androgenic mechanism. Pharm. Biol. 2017, 55, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Alivandi Farkhad, S.; Khazali, H. Therapeutic effects of isoflavone-aglycone fraction from soybean (Glycine max L. Merrill) in rats with estradiol valerate-induced polycystic ovary syndrome as an inflammatory state. Gynecol. Endocrinol. 2019, 35, 1078–1083. [Google Scholar] [CrossRef]
- Rajaei, S.; Alihemmati, A.; Abedelahi, A. Antioxidant effect of genistein on ovarian tissue morphology, oxidant and antioxidant activity in rats with induced polycystic ovary syndrome. Int. J. Reprod. Biomed. 2019, 17, 11–22. [Google Scholar] [CrossRef]
- Amanat, S.; Ashkar, F.; Eftekhari, M.H.; Tanideh, N.; Doaei, S.; Gholamalizadeh, M.; Koohpeyma, F.; Mokhtari, M. The effect of genistein on insulin resistance, inflammatory factors, lipid profile, and histopathologic indices in rats with polycystic ovary syndrome. Clin. Exp. Reprod. Med. 2021, 48, 236–244. [Google Scholar] [CrossRef]
- Ma, X.; Li, X.; Ma, L.; Chen, Y.; He, S. Soy isoflavones alleviate polycystic ovary syndrome in rats by regulating NF-κB signaling pathway. Bioengineered 2021, 12, 7215–7223. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.W.; Carbonel, A.A.; Lima, P.D.A.; Hendry, A.; Tsang, B.K. Consumption of soya isoflavones improved polycystic ovary syndrome-associated metabolic disorders in a rat model. Br. J. Nutr. 2024, 132, 1–9. [Google Scholar] [CrossRef]
- Wan, Z.; Zhao, J.; Ye, Y.; Sun, Z.; Li, K.; Chen, Y.; Fang, Y.; Zhang, Y.; Lin, J.; Sun, P.; et al. Risk and incidence of cardiovascular disease associated with polycystic ovary syndrome. Eur. J. Prev. Cardiol. 2024, 31, 1560–1570. [Google Scholar] [CrossRef]
- Lim, S.S.; Norman, R.J.; Davies, M.J.; Moran, L.J. The effect of obesity on polycystic ovary syndrome: A systematic review and meta-analysis. Obes Rev. 2013, 14, 95–109. [Google Scholar] [CrossRef]
- Cassar, S.; Misso, M.L.; Hopkins, W.G.; Shaw, C.S.; Teede, H.J.; Stepto, N.K. Insulin resistance in polycystic ovary syndrome: A systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum. Reprod. 2016, 31, 2619–2631. [Google Scholar] [CrossRef]
- Satyaraddi, A.; Cherian, K.E.; Kapoor, N.; Kunjummen, A.T.; Kamath, M.S.; Thomas, N.; Paul, T.V. Body Composition, Metabolic Characteristics, and Insulin Resistance in Obese and Nonobese Women with Polycystic Ovary Syndrome. J. Hum. Reprod. Sci. 2019, 12, 78–84. [Google Scholar] [CrossRef]
- Mu, L.; Zhao, Y.; Li, R.; Lai, Y.; Qiao, J. Metabolic characteristics of normal weight central obesity phenotype polycystic ovary syndrome women: A large-scale national epidemiological survey. Reprod. Biomed. Online 2018, 37, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Repaci, A.; Gambineri, A.; Pasquali, R. The role of low-grade inflammation in the polycystic ovary syndrome. Mol. Cell Endocrinol. 2011, 335, 30–41. [Google Scholar] [CrossRef]
- Aboeldalyl, S.; James, C.; Seyam, E.; Ibrahim, E.M.; Shawki, H.E.; Amer, S. The Role of Chronic Inflammation in Polycystic Ovarian Syndrome—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021, 22, 2734. [Google Scholar] [CrossRef]
- Chen, J.; Shen, S.; Tan, Y.; Xia, D.; Xia, Y.; Cao, Y.; Wang, W.; Wu, X.; Wang, H.; Yi, L.; et al. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. J. Ovarian Res. 2015, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Uçkan, K.; Demir, H.; Turan, K.; Sarıkaya, E.; Demir, C. Role of Oxidative Stress in Obese and Nonobese PCOS Patients. Int. J. Clin. Pract. 2022, 2022, 4579831. [Google Scholar] [CrossRef]
- Murri, M.; Luque-Ramírez, M.; Insenser, M.; Ojeda-Ojeda, M.; Escobar-Morreale, H.F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): A systematic review and meta-analysis. Hum. Reprod. Update 2013, 19, 268–288. [Google Scholar] [CrossRef]
- Shin, S. Regulation of Adipose Tissue Biology by Long-Chain Fatty Acids: Metabolic Effects and Molecular Mechanisms. J. Obes. Metab. Syndr. 2022, 31, 147–160. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, W.; Zhou, P.; Shi, L.; Chen, Z.; Yang, Y.; Lu, Y.; Zhou, L.; Zhang, H.; Cheng, M.; et al. Obesity is associated with SHBG levels rather than blood lipid profiles in PCOS patients with insulin resistance. BMC Endocr. Disord. 2024, 24, 254. [Google Scholar] [CrossRef]
- Lonardo, M.S.; Cacciapuoti, N.; Guida, B.; Di Lorenzo, M.; Chiurazzi, M.; Damiano, S.; Menale, C. Hypothalamic-Ovarian axis and Adiposity Relationship in Polycystic Ovary Syndrome: Physiopathology and Therapeutic Options for the Management of Metabolic and Inflammatory Aspects. Curr. Obes. Rep. 2024, 13, 51–70. [Google Scholar] [CrossRef]
- Akhlaghi, M.; Zare, M.; Nouripour, F. Effect of Soy and Soy Isoflavones on Obesity-Related Anthropometric Measures: A Systematic Review and Meta-analysis of Randomized Controlled Clinical Trials. Adv. Nutr. 2017, 8, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Corbould, A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J. Endocrinol. 2007, 192, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Paulukinas, R.D.; Mesaros, C.A.; Penning, T.M. Conversion of Classical and 11-Oxygenated Androgens by Insulin-Induced AKR1C3 in a Model of Human PCOS Adipocytes. Endocrinology 2022, 163, bqac068. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.W.; Kempegowda, P.; Walsh, M.; Taylor, A.E.; Manolopoulos, K.N.; Allwood, J.W.; Semple, R.K.; Hebenstreit, D.; Dunn, W.B.; Tomlinson, J.W.; et al. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 3327–3339. [Google Scholar] [CrossRef]
- Rajkhowa, M.; Brett, S.; Cuthbertson, D.J.; Lipina, C.; Ruiz-Alcaraz, A.J.; Thomas, G.E.; Logie, L.; Petrie, J.R.; Sutherland, C. Insulin resistance in polycystic ovary syndrome is associated with defective regulation of ERK1/2 by insulin in skeletal muscle in vivo. Biochem. J. 2009, 418, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Corbould, A.; Zhao, H.; Mirzoeva, S.; Aird, F.; Dunaif, A. Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome. Diabetes 2006, 55, 751–759. [Google Scholar] [CrossRef]
- Poretsky, L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr. Rev. 1991, 12, 3–13. [Google Scholar] [CrossRef]
- Baillargeon, J.P.; Carpentier, A. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity. Fertil. Steril. 2007, 88, 886–893. [Google Scholar] [CrossRef]
- Nestler, J.E.; Powers, L.P.; Matt, D.W.; Steingold, K.A.; Plymate, S.R.; Rittmaster, R.S.; Clore, J.N.; Blackard, W.G. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1991, 72, 83–89. [Google Scholar] [CrossRef]
- Patil, S.; Veerabhadra Goud, G.K.; Shivashankar, R.N.; Anusuya, S.K.; Ganesh, V. Association of adiponectin levels with polycystic ovary syndrome among Indian women. Bioinformation 2022, 18, 864–869. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, H.; Song, J.; Feng, D.; Na, Z.; Jiang, H.; Meng, Y.; Shi, B.; Li, D. Elevated Serum Leptin Levels as a Predictive Marker for Polycystic Ovary Syndrome. Front. Endocrinol. 2022, 13, 845165. [Google Scholar] [CrossRef] [PubMed]
- Psilopatis, I.; Vrettou, K.; Nousiopoulou, E.; Palamaris, K.; Theocharis, S. The Role of Peroxisome Proliferator-Activated Receptors in Polycystic Ovary Syndrome. J. Clin. Med. 2023, 12, 2912. [Google Scholar] [CrossRef]
- Komar, C.M. Peroxisome proliferator-activated receptors (PPARs) and ovarian function--implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reprod. Biol. Endocrinol. 2005, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Sirisha, P.; Neelaveni, K.; Anuradha, K.; Sudhakar, G.; Reddy, B.M. Polymorphisms in the IRS-1 and PPAR-γ genes and their association with polycystic ovary syndrome among South Indian women. Gene 2012, 503, 140–146. [Google Scholar] [CrossRef]
- Yao, K.; Zheng, H.; Peng, H. Association between polycystic ovary syndrome and risk of non-alcoholic fatty liver disease: A meta-analysis. Endokrynol. Pol. 2023, 74, 520–527. [Google Scholar] [CrossRef]
- Hong, X.; Guo, Z.; Yu, Q. Hepatic steatosis in women with polycystic ovary syndrome. BMC Endocr. Disord. 2023, 23, 207. [Google Scholar] [CrossRef]
- Legro, R.S.; Kunselman, A.R.; Dunaif, A. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am. J. Med. 2001, 111, 607–613. [Google Scholar] [CrossRef]
- Kim, J.J.; Choi, Y.M. Dyslipidemia in women with polycystic ovary syndrome. Obstet. Gynecol. Sci. 2013, 56, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Wekker, V.; van Dammen, L.; Koning, A.; Heida, K.Y.; Painter, R.C.; Limpens, J.; Laven, J.S.E.; Roeters van Lennep, J.E.; Roseboom, T.J.; Hoek, A. Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis. Hum. Reprod. Update 2020, 26, 942–960. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, B.; Jiang, X.; Li, Z.; Zhao, S.; Cui, L.; Chen, Z.J. Metabolic disturbances in non-obese women with polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2019, 111, 168–177. [Google Scholar] [CrossRef]
- Maranon, R.; Lima, R.; Spradley, F.T.; do Carmo, J.M.; Zhang, H.; Smith, A.D.; Bui, E.; Thomas, R.L.; Moulana, M.; Hall, J.E.; et al. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R708–R713. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Schwartzman, M.L. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat. 2011, 96, 45–53. [Google Scholar] [CrossRef]
- Dalmasso, C.; Maranon, R.; Patil, C.; Moulana, M.; Romero, D.G.; Reckelhoff, J.F. 20-HETE and CYP4A2 ω-hydroxylase contribute to the elevated blood pressure in hyperandrogenemic female rats. Am. J. Physiol. Renal Physiol. 2016, 311, F71–F77. [Google Scholar] [CrossRef]
- Lei, L.; Hui, S.; Chen, Y.; Yan, H.; Yang, J.; Tong, S. Effect of soy isoflavone supplementation on blood pressure: A meta-analysis of randomized controlled trials. Nutr. J. 2024, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Ho, S.C. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am. J. Clin. Nutr. 2005, 81, 397–408. [Google Scholar] [CrossRef]
- Squadrito, F.; Altavilla, D.; Squadrito, G.; Saitta, A.; Cucinotta, D.; Minutoli, L.; Deodato, B.; Ferlito, M.; Campo, G.M.; Bova, A.; et al. Genistein supplementation and estrogen replacement therapy improve endothelial dysfunction induced by ovariectomy in rats. Cardiovasc. Res. 2000, 45, 454–462. [Google Scholar] [CrossRef]
- Honoré, E.K.; Williams, J.K.; Anthony, M.S.; Clarkson, T.B. Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Fertil. Steril. 1997, 67, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Birru, R.L.; Ahuja, V.; Vishnu, A.; Evans, R.W.; Miyamoto, Y.; Miura, K.; Usui, T.; Sekikawa, A. The impact of equol-producing status in modifying the effect of soya isoflavones on risk factors for CHD: A systematic review of randomised controlled trials. J. Nutr. Sci. 2016, 5, e30. [Google Scholar] [CrossRef]
- Watanabe, S.; Haruyama, R.; Umezawa, K.; Tomioka, I.; Nakamura, S.; Katayama, S.; Mitani, T. Genistein enhances NAD+ biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes. J. Nutr. Biochem. 2023, 121, 109433. [Google Scholar] [CrossRef]
- Li, P.; Shuai, P.; Shen, S.; Zheng, H.; Sun, P.; Zhang, R.; Lan, S.; Lan, Z.; Jayawardana, T.; Yang, Y. Perturbations in gut microbiota composition in patients with polycystic ovary syndrome: A systematic review and meta-analysis. BMC Med. 2023, 21, 302. [Google Scholar] [CrossRef]
- Li, C.; Cheng, D.; Ren, H.; Zhang, T. Unraveling the gut microbiota’s role in PCOS: A new frontier in metabolic health. Front. Endocrinol. 2025, 16, 1529703. [Google Scholar] [CrossRef] [PubMed]
- Tremellen, K.; Pearce, K. Dysbiosis of Gut Microbiota (DOGMA)—A novel theory for the development of Polycystic Ovarian Syndrome. Med. Hypotheses 2012, 79, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, G.S.G.; Inoue, R.; Fujitani, M.; Ishijima, T.; Shibutani, T.; Abe, K.; Kishida, T.; Okada, S. Effects of Soy Isoflavones, Resistant Starch and Antibiotics on Polycystic Ovary Syndrome (PCOS)-Like Features in Letrozole-Treated Rats. Nutrients 2021, 13, 3759. [Google Scholar] [CrossRef]
- Bulsara, J.; Soni, A.; Patil, P.; Halpati, K.; Desai, S.; Acharya, S. Bio-enhancement of Soy Isoflavones (Genistein & Daidzein) Using Bacillus coagulans in Letrozole Induced Polycystic Ovarian Syndrome by Regulating Endocrine Hormones in Rats. Probiotics Antimicrob. Proteins 2022, 14, 560–572. [Google Scholar] [CrossRef]
- Chen, P.; Sun, J.; Liang, Z.; Xu, H.; Du, P.; Li, A.; Meng, Y.; Reshetnik, E.I.; Liu, L.; Li, C. The bioavailability of soy isoflavones in vitro and their effects on gut microbiota in the simulator of the human intestinal microbial ecosystem. Food Res. Int. 2022, 152, 110868. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Tavella, V.J.; Luo, X.M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 2018, 9, 757. [Google Scholar] [CrossRef]
- Mukne, A.P.; Viswanathan, V.; Phadatare, A.G. Structure pre-requisites for isoflavones as effective antibacterial agents. Pharmacogn. Rev. 2011, 5, 13. [Google Scholar] [CrossRef]
- Xiong, R.-G.; Zhou, D.-D.; Wu, S.-X.; Huang, S.-Y.; Saimaiti, A.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022, 11, 2863. [Google Scholar] [CrossRef]
- Yoshikata, R.; Myint, K.Z.; Ohta, H.; Ishigaki, Y. Inter-relationship between diet, lifestyle habits, gut microflora, and the equol-producer phenotype: Baseline findings from a placebo-controlled intervention trial. Menopause 2019, 26, 273–285. [Google Scholar] [CrossRef]
- Ghimire, S.; Cady, N.M.; Lehman, P.; Peterson, S.R.; Shahi, S.K.; Rashid, F.; Giri, S.; Mangalam, A.K. Dietary Isoflavones Alter Gut Microbiota and Lipopolysaccharide Biosynthesis to Reduce Inflammation. Gut Microbes 2022, 14, 2127446. [Google Scholar] [CrossRef]
- Bolca, S.; Verstraete, W. Microbial equol production attenuates colonic methanogenesis and sulphidogenesis in vitro. Anaerobe 2010, 16, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Decroos, K.; Vanhemmens, S.; Cattoir, S.; Boon, N.; Verstraete, W. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch. Microbiol. 2004, 183, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, T.E.; Maroni, P.D.; Ferucci, P.G.; Dayton, R.; Barnes, S.; Jones, K.; Moore, R.; Ogden, L.G.; Wähälä, K.; Sackett, H.M.; et al. Long-term dietary habits affect soy isoflavone metabolism and accumulation in prostatic fluid in caucasian men. J. Nutr. 2005, 135, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
Authors, Year | Study Design, Duration | Characteristics of the Study Group | Intervention/Aim of the Study | Main Results | Conclusions |
---|---|---|---|---|---|
Haudum et al., 2020 [17] | Interventional study; 3 days. | 44 women, aged 22–47; 24 in PCOS group (Rotterdam criteria), 20 in control group. | To assess the impact of 50 mg/day soy isoflavone intake on gut microbiota and metabolic–hormonal profile in women with PCOS. | ↓ Glucose, ↓ insulin, ↓ HOMA-IR; ↑ alpha diversity of gut microbiota (similar to control group); higher equol production in both groups associated with ↓ androgen levels. | Soy isoflavone supplementation may improve metabolic and hormonal parameters and modulate gut microbiota in women with PCOS; equol production may influence pathways related to carbohydrate digestion and absorption, potentially modulating clinical symptoms of PCOS. |
Authors, Year | Study Design, Duration | Characteristics of the Study Group | Intervention/Aim of the Study | Main Results | Conclusions |
---|---|---|---|---|---|
Liyanage et al., 2021 [184] | Experimental animal study, 21-day treatment after 21-day PCOS induction. | 56 female Sprague Dawley rats divided into 7 groups (n = 8/each): (1) Control group; (2) Letrozole group (L); (3) L + soy isoflavones (LS); (4) L + resistant starch (LR; (5) L + soy isoflavones + resistant starch (LSR); (6) L + antibiotics (LA); (7) L + soy isoflavones + antibiotics (LSA). | To evaluate the effects of soy isoflavones (0.05%), resistant starch (11%), and antibiotics on PCOS-like symptoms, gut microbiota, and metabolism in letrozole-induced PCOS model in rats. | LSR group showed the most improvement: ↑ equol production, ↑ gut butyrate levels, ↑ occludin expression, improved estrous cycle and ovarian morphology. LR group also showed symptom improvement. Both LR and LSR groups showed increased abundance of gut bacteria: Blautia, Dorea, Lactococcus, Parabacteroides, Clostridium, Ruminococcus. LS group showed high daidzein but low equol levels, no significant improvement. LA and LSA groups showed disrupted microbiota and no improvement. | Both dietary interventions and gut microbiota modulation may serve as effective strategies to alleviate reproductive manifestations of PCOS. |
Bulsara et al., 2022 [185] | Experimental animal study, 14-day treatment after 21-day PCOS induction. | 36 female Sprague Dawley rats divided into 6 groups (n = 6/each): (1) Control group (2) Letrozole (1 mg/kg) (3) Letrozole + soy isoflavones (100 mg/kg) (4) Letrozole + soy isoflavones + B. coagulans (0.65 mg/kg) (5) Letrozole + soy isoflavones + B. coagulans (3.25 mg/kg) (6) Letrozole + soy isoflavones + B. coagulans (6.5 mg/kg). | To evaluate the effect of Bacillus coagulans on the bioavailability and bioactivity of soy isoflavones (genistein and daidzein) and their therapeutic potential in treating PCOS induced by letrozole in rats. | Co-administration of soy isoflavones and B. coagulans improved hormonal balance (↓ LH, ↓ testosterone, ↑ FSH, ↑ progesterone), reduced oxidative stress (↓ MDA), and improved ovarian morphology and estrous cycle regularity. Additionally: ↓ BMI, ↓ fasting glucose, ↓ total cholesterol, ↓ triglycerides, ↓ LDL, and ↑ HDL. The highest dose (6.5 mg/kg) of B. coagulans showed the most pronounced effects. | Bacillus coagulans enhanced the bioavailability and efficacy of soy isoflavones in the treatment of PCOS in rats. Combined therapy improved hormonal balance, metabolic parameters (glucose and lipid profile), and ovarian function, suggesting potential for use in managing PCOS-related symptoms and metabolic disturbances. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dereń, K.; Michońska, I.; Dymek, A.; Zielińska, M.; Łuszczki, E. Soy Isoflavones and PCOS: Role in Hormonal and Metabolic Mechanisms. Appl. Sci. 2025, 15, 6198. https://doi.org/10.3390/app15116198
Dereń K, Michońska I, Dymek A, Zielińska M, Łuszczki E. Soy Isoflavones and PCOS: Role in Hormonal and Metabolic Mechanisms. Applied Sciences. 2025; 15(11):6198. https://doi.org/10.3390/app15116198
Chicago/Turabian StyleDereń, Katarzyna, Izabela Michońska, Agnieszka Dymek, Magdalena Zielińska, and Edyta Łuszczki. 2025. "Soy Isoflavones and PCOS: Role in Hormonal and Metabolic Mechanisms" Applied Sciences 15, no. 11: 6198. https://doi.org/10.3390/app15116198
APA StyleDereń, K., Michońska, I., Dymek, A., Zielińska, M., & Łuszczki, E. (2025). Soy Isoflavones and PCOS: Role in Hormonal and Metabolic Mechanisms. Applied Sciences, 15(11), 6198. https://doi.org/10.3390/app15116198