Next Article in Journal
Development and Validation of the Multi-Residue Method for Identification and Quantitation of Six Macrolide Antiparasitic Drugs
Previous Article in Journal
Reducing Defense Vulnerabilities in Federated Learning: A Neuron-Centric Approach
Previous Article in Special Issue
Analysis of Gamma-Irradiation Effect on Radicals Formation and on Antiradical Capacity of Horse Chestnut (Aesculus hippocastanum L.) Seeds
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Special Issue on Advances in Environmental Applied Physics—2nd Edition

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
Appl. Sci. 2025, 15(11), 6011; https://doi.org/10.3390/app15116011
Submission received: 14 May 2025 / Accepted: 26 May 2025 / Published: 27 May 2025
(This article belongs to the Special Issue Advances in Environmental Applied Physics—2nd Edition)
This Special Issue, titled “Advances in Environmental Applied Physics—2nd Edition”, compiles original contributions from prominent researchers addressing environmental pollutants and their implications for human health, notably the potential link to increased cancer rates. A diverse set of analytical tools is utilized in the detection and assessment of both physical and chemical contaminants in environmental matrices. These techniques include
  • Alpha and gamma spectrometry, essential for measuring the specific activities of radionuclides emitting alpha and gamma radiation;
  • Inductively Coupled Plasma Mass Spectrometry (ICP-MS), employed for determining trace metal concentrations;
  • Liquid Scintillation Counting (LSC), used to measure activity levels of radionuclides such as tritium and radon and to perform gross alpha and beta analyses;
  • The thick-source method, applied to assess overall alpha/beta activity in samples;
  • Emanometry, often conducted in aqueous environments, to estimate radon gas activity.
One article, “Analysis of Gamma-Irradiation Effect on Radicals Formation and on Antiradical Capacity of Horse Chestnut (Aesculus hippocastanum L.) Seeds”, focuses on using Electron Paramagnetic Resonance (EPR) spectroscopy to explore free radical generation in irradiated seeds and to quantify their free radical scavenging ability (FRSA) through DPPH radical assays. High-Performance Liquid Chromatography (HPLC) was also used to characterize changes in polyphenolic profiles in seeds subjected to gamma irradiation at doses of 1, 5, and 10 kGy. EPR results showed persistent radical signals—up to 45 days for 1 kGy and up to 250 days for 5 and 10 kGy. Interestingly, FRSA increased in shell extracts but declined in peeled seeds, with effects varying by dose and correlating with phenolic content. Additionally, gamma irradiation induced the degradation of some polyphenols and the synthesis of new ones, with the 5 kGy dose most positively impacting antioxidant potential [1,2,3,4,5,6,7,8,9,10,11].
Another study, “Towards the Sustainable Removal of Heavy Metals from Wastewater Using Arthrospira platensis: A Laboratory-Scale Approach in the Context of a Green Circular Economy”, investigates the microalga’s efficiency in treating multi-metal-contaminated systems. Cultures of Arthrospira platensis were exposed to individual and combined solutions of Cu, Cd, Ni, Pb, and Zn. Atomic Absorption Spectroscopy (AAS) was used to determine metal uptake. Supplementary analyses included FTIR, NIR, UV-Vis spectrophotometry, optical microscopy, as well as pH and electrical conductivity (EC) measurements. Results indicated that the alga maintains effective remediation in multi-metal scenarios, with enhanced removal of Cu, Cd, Pb, and Zn, suggesting synergistic effects. Conversely, Ni removal declined under multi-metal stress, hinting at antagonistic interactions. The study confirms A. platensis as a strong candidate for bioremediation in complex pollution scenarios [12,13,14,15,16,17,18,19,20,21,22].
The study titled “Determination of Lichens’ Bioaccumulation Capacity for Radioactive Isotopes Under Laboratory Conditions as a Basis for Their Application as Biomonitors” assesses Cladonia uncialis as a biomonitor for radionuclide contamination. Under laboratory-simulated fallout conditions using gamma-emitting isotopes, lichens were exposed to varying concentrations across three aquariums. The uptake of isotopes including 54Mn, 57Co, 60Co, 65Zn, 137Cs, and 241Am was rapid, primarily within the initial days. Analysis of both washed and unwashed samples showed intracellular retention, confirming efficient bioaccumulation. Aggregated Transfer Coefficients (Tag) ranged from 0.34 to 0.64, and absorption efficiency followed the trend: 54Mn < 57Co < 60Co ≤ 65Zn < 241Am < 137Cs. Especially for 137Cs and 241Am, absorption reached about 50%, highlighting the lichen’s utility in radioactive monitoring [23,24,25,26,27,28,29,30,31,32,33].
The paper “Ecological and Health Risks from Trace Elements Contamination in Soils at the Rutile Bearing Area of Akonolinga, Cameroon” focuses on the analysis of trace elements in soils near a rutile deposit. Using Flame Atomic Absorption Spectrometry (FAAS) on 25 samples, the study found that concentrations followed the order: Fe, Ti, Zr, Mn, Cr, V, Ba, Zn, Nb, Ni, Pb, Ga, Cu, Co, Y, Br, and Sn. Moderate correlations between Fe and several elements point to a shared geogenic source. Enrichment Factors (EFs) revealed notable accumulation of Zr, Nb, and Ti, with localized spikes in Cr and Co. Although the Geo-Accumulation Index (Igeo) suggests low overall contamination, the Contamination Factor (CF) indicates significant levels for Cr, Nb, Ti, and Zr. The health risk assessment identified a moderate carcinogenic risk and high non-carcinogenic risks, particularly for children, emphasizing the need for further monitoring and mitigation strategies [34,35,36,37,38,39,40,41,42,43].
The case study titled “Radon-Specific Activity in Drinking Water and Radiological Health Risk Assessment: A Case Study” evaluates 222Rn concentrations in groundwater from the Calabria region, Italy. Measurements were conducted using a PerkinElmer Tri-Carb 4910 TR liquid scintillation counter, and results were compared to the national threshold of 100 Bq/L set by D.Lgs. 28/2016 and EU Directive 2013/51/Euratom. Where values exceeded limits, the annual effective dose from ingestion and inhalation was calculated. The findings provide essential baseline data for assessing regional exposure to radon through drinking water and help inform long-term public health policy [44,45,46,47,48,49,50,51,52,53].
Lastly, the paper “Systematic Review of Exposure Studies to Radiofrequency Electromagnetic Fields: Spot Measurements and Mixed Methodologies” synthesizes 86 studies published between 1998 and 2023. It follows PRISMA guidelines, along with PECO criteria and the CASPe assessment tool. Of these, 61 used spot measurement techniques, and 25 used mixed methods. Notably, 43% of spot studies relied on spectrum analyzers, especially the Narda SRM-3006 and SRM-3000, reflecting the increased use of sensors in RF-EMF research. Reported exposure levels varied widely, from 0.0600 µW/m2 in Palestine to 200,000 µW/m2 in Norway. Across all settings, RF-EMF levels were found to be well below the thresholds recommended by the ICNIRP guidelines, indicating low exposure risks [54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72].

Funding

This research received no external funding.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
  2. Torrisi, L.; Visco, A.M.; Campo, N.; Caridi, F. Pulsed laser treatments of polyethylene films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 67. [Google Scholar] [CrossRef]
  3. Mihai, D.P.; Seremet, O.C.; Nitulescu, G.; Ivopol, M.; Sevastre, A.-S.; Negres, S.; Ivopol, G.; Nitulescu, G.M.; Olaru, O.T. Evaluation of Natural Extracts in Animal Models of Pain and Inflammation for a Potential Therapy of Hemorrhoidal Disease. Sci. Pharm. 2019, 87, 14. [Google Scholar] [CrossRef]
  4. Baraldi, C.; Bodecchi, L.M.; Cocchi, M.; Durante, C.; Ferrari, G.; Foca, G.; Grandi, M.; Marchetti, A.; Tassi, L.; Ulrici, A. Chemical composition and characterisation of seeds from two varieties (pure and hybrid) of Aesculus hippocastanum. Food Chem. 2007, 104, 229–236. [Google Scholar] [CrossRef]
  5. Bielarska, A.M.; Jasek, J.W.; Kazimierczak, R.; Hallmann, E. Red Horse Chestnut and Horse Chestnut Flowers and Leaves: A Potential and Powerful Source of Polyphenols with High Antioxidant Capacity. Molecules 2022, 27, 2279. [Google Scholar] [CrossRef] [PubMed]
  6. Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhé, R.; Camp, J. Van Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem. 2008, 108, 649–656. [Google Scholar] [CrossRef]
  7. Zeng, C.; Luo, S.; Feng, S.; Chen, T.; Zhou, L.; Yuan, M.; Huang, Y.; Liao, J.; Ding, C. Phenolic Composition, Antioxidant and Anticancer Potentials of Extracts from Rosa banksiae Ait. Flowers. Molecules 2020, 25, 3068. [Google Scholar] [CrossRef]
  8. Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
  9. Marathe, S.A.; Deshpande, R.; Khamesra, A.; Ibrahim, G.; Jamdar, S.N. Effect of radiation processing on nutritional, functional, sensory and antioxidant properties of red kidney beans. Radiat. Phys. Chem. 2016, 125, 1–8. [Google Scholar] [CrossRef]
  10. Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
  11. Torrisi, L.; Caridi, F.; Giuffrida, L.; Torrisi, A.; Mondio, G.; Serafino, T.; Caltabiano, M.; Castrizio, E.D.; Paniz, E.; Salici, A. LAMQS analysis applied to ancient Egyptian bronze coins. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1657–1664. [Google Scholar] [CrossRef]
  12. Mezzasalma, A.M.; Mondio, G.; Serafino, T.; Caridi, F.; Torrisi, L. Electronic properties of thin films of laser-ablated Al2O3. Appl. Surf. Sci. 2009, 255, 4123–4128. [Google Scholar] [CrossRef]
  13. Caridi, F.; Torrisi, L.; Mezzasalma, A.M.; Mondio, G.; Borrielli, A. Al2O3 plasma production during pulsed laser deposition. Eur. Phys. J. D 2009, 54, 467–472. [Google Scholar] [CrossRef]
  14. Xiao, X.; Li, W.; Jin, M.; Zhang, L.; Qin, L.; Geng, W. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Mar. Environ. Res. 2023, 183, 105805. [Google Scholar] [CrossRef] [PubMed]
  15. Soto-Ramírez, R.; Lobos, M.-G.; Córdova, O.; Poirrier, P.; Chamy, R. Effect of growth conditions on cell wall composition and cadmium adsorption in Chlorella vulgaris: A new approach to biosorption research. J. Hazard. Mater. 2021, 411, 125059. [Google Scholar] [CrossRef]
  16. Edris, G.; Alhamed, Y.; Alzahrani, A. Biosorption of Cadmium and Lead from Aqueous Solutions by Chlorella vulgaris Biomass: Equilibrium and Kinetic Study. Arab. J. Sci. Eng. 2014, 39, 87–93. [Google Scholar] [CrossRef]
  17. Kiran Marella, T.; Saxena, A.; Tiwari, A. Diatom mediated heavy metal remediation: A review. Bioresour. Technol. 2020, 305, 123068. [Google Scholar] [CrossRef]
  18. Diaconu, M.; Soreanu, G.; Balan, C.D.; Buciscanu, I.I.; Maier, V.; Cretescu, I. Study of Spirulina platensis (Arthrospira) Development under the Heavy Metals Influence, as a Potential Promoter of Wastewater Remediation. Water 2023, 15, 3962. [Google Scholar] [CrossRef]
  19. Hussain, M.K.; Khatoon, S.; Nizami, G.; Fatma, U.K.; Ali, M.; Singh, B.; Quraishi, A.; Assiri, M.A.; Ahamad, S.; Saquib, M. Unleashing the power of bio-adsorbents: Efficient heavy metal removal for sustainable water purification. J. Water Process Eng. 2024, 64, 105705. [Google Scholar] [CrossRef]
  20. Baldev, E.; MubarakAli, D.; Sivasubramanian, V.; Pugazhendhi, A.; Thajuddin, N. Unveiling the induced lipid production in Chlorella vulgaris under pulsed magnetic field treatment. Chemosphere 2021, 279, 130673. [Google Scholar] [CrossRef]
  21. Saavedra, R.; Muñoz, R.; Taboada, M.E.; Vega, M.; Bolado, S. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour. Technol. 2018, 263, 49–57. [Google Scholar] [CrossRef]
  22. Margarone, D.; Torrisi, L.; Borrielli, A.; Caridi, F. Silver plasma by pulsed laser ablation. Plasma Sources Sci. Technol. 2008, 17, 3. [Google Scholar] [CrossRef]
  23. Caridi, F.; Torrisi, L.; Margarone, D.; Borrielli, A. Investigations on low temperature laser-generated plasmas. Laser Part. Beams 2008, 26, 265–271. [Google Scholar] [CrossRef]
  24. Torrisi, L.; Margarone, D.; Borrielli, A.; Caridi, F. Ion and photon emission from laser-generated titanium-plasma. Appl. Surf. Sci. 2008, 254, 4007–4012. [Google Scholar] [CrossRef]
  25. Basile, A.; Sorbo, S.; Aprile, G.; Conte, B.; Castaldo Cobianchi, R. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ. Pollut. 2008, 151, 401–407. [Google Scholar] [CrossRef]
  26. Saniewski, M.; Wietrzyk-Pełka, P.; Zalewska, T.; Olech, M.; Węgrzyn, M.H. Bryophytes and lichens as fallout originated radionuclide indicators in the Svalbard archipelago (High Arctic). Polar Sci. 2020, 25, 100536. [Google Scholar] [CrossRef]
  27. Koivurova, M.; Leppänen, A.-P.; Kallio, A. Transfer factors and effective half-lives of 134Cs and 137Cs in different environmental sample types obtained from Northern Finland: Case Fukushima accident. J. Environ. Radioact. 2015, 146, 73–79. [Google Scholar] [CrossRef] [PubMed]
  28. Liu, N.; Yang, Y.; Luo, S.; Zhang, T.; Jin, J.; Liao, J.; Hua, X. Biosorption of 241Am by Rhizopus arrihizus: Preliminary investigation and evaluation. Appl. Radiat. Isot. 2002, 57, 139–143. [Google Scholar] [CrossRef]
  29. Golmakani, S.; Moghaddam, M.V.; Hosseini, T. Factors affecting the transfer of radionuclides from the environment to plants. Radiat. Prot. Dosim. 2008, 130, 368–375. [Google Scholar] [CrossRef]
  30. Pawlik-Skowrońska, B.; Purvis, O.W.; Pirszel, J.; Skowroński, T. Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. Lichenologist 2006, 38, 267–275. [Google Scholar] [CrossRef]
  31. Sarret, G.; Manceau, A.; Cuny, D.; Van Haluwyn, C.; Déruelle, S.; Hazemann, J.-L.; Soldo, Y.; Eybert-Bérard, L.; Menthonnex, J.-J. Mechanisms of Lichen Resistance to Metallic Pollution. Environ. Sci. Technol. 1998, 32, 3325–3330. [Google Scholar] [CrossRef]
  32. Van Assche, F.; Clijsters, H. Effects of metals on enzyme activity in plants. Plant. Cell Environ. 1990, 13, 195–206. [Google Scholar] [CrossRef]
  33. Torrisi, L.; Caridi, F.; Picciotto, A.; Margarone, D.; Borrielli, A. Particle emission from tantalum plasma produced by 532 nm laser pulse ablation. J. Appl. Phys. 2006, 100, 093306. [Google Scholar] [CrossRef]
  34. Vainio, R.; Desorgher, L.; Heynderickx, D.; Storini, M.; Flückiger, E.; Horne, R.B.; Kovaltsov, G.A.; Kudela, K.; Laurenza, M.; McKenna-Lawlor, S.; et al. Dynamics of the Earth’s Particle Radiation Environment. Space Sci. Rev. 2009, 147, 187–231. [Google Scholar] [CrossRef]
  35. Makrantoni, P.; Tezari, A.; Stassinakis, A.N.; Paschalis, P.; Gerontidou, M.; Karaiskos, P.; Georgakilas, A.G.; Mavromichalaki, H.; Usoskin, I.G.; Crosby, N.; et al. Estimation of Cosmic-Ray-Induced Atmospheric Ionization and Radiation at Commercial Aviation Flight Altitudes. Appl. Sci. 2022, 12. [Google Scholar] [CrossRef]
  36. Ding, M.; Li, J.; Qi, L.; Ellervik, C.; Zhang, X.; Manson, J.E.; Stampfer, M.; Chavarro, J.E.; Rexrode, K.M.; Kraft, P.; et al. Associations of dairy intake with risk of mortality in women and men: Three prospective cohort studies. BMJ 2019, 367, 1–10. [Google Scholar] [CrossRef]
  37. Loredo, J.; Ordóñez, A.; Álvarez, R. Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). J. Hazard. Mater. 2006, 136, 455–467. [Google Scholar] [CrossRef]
  38. Golia, E.E.; Emmanouil, C.; Charizani, A.; Koropouli, A.; Kungolos, A. Assessment of Cu and Zn contamination and associated human health risks in urban soils from public green spaces in the city of Thessaloniki, Northern Greece. Euro-Mediterr. J. Environ. Integr. 2023, 8, 517–525. [Google Scholar] [CrossRef]
  39. Balls, P.W.; Hull, S.; Miller, B.S.; Pirie, J.M.; Proctor, W. Trace metal in Scottish estuarine and coastal sediments. Mar. Pollut. Bull. 1997, 34, 42–50. [Google Scholar] [CrossRef]
  40. Modabberi, S.; Tashakor, M.; Sharifi Soltani, N.; Hursthouse, A.S. Potentially toxic elements in urban soils: Source apportionment and contamination assessment. Environ. Monit. Assess. 2018, 190, 715. [Google Scholar] [CrossRef]
  41. Kamunda, C.; Mathuthu, M.; Madhuku, M. An Assessment of Radiological Hazards from Gold Mine Tailings in the Province of Gauteng in South Africa. Int. J. Environ. Res. Public Health 2016, 13, 138. [Google Scholar] [CrossRef] [PubMed]
  42. Javed, T.; Ahmad, N.; Mashiatullah, A. Heavy Metals Contamination and Ecological Risk Assessment in Surface Sediments of Namal Lake, Pakistan. Pol. J. Environ. Stud. 2018, 27, 675–688. [Google Scholar] [CrossRef]
  43. Seilkop, S.K.; Oller, A.R. Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef] [PubMed]
  44. Picciotto, A.; Krása, J.; Láska, L.; Rohlena, K.; Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Caridi, F. Plasma temperature and ion current analysis of gold ablation at different laser power rates. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 247, 261–267. [Google Scholar] [CrossRef]
  45. Torrisi, L.; Caridi, F.; Margarone, D.; Giuffrida, L. Nickel plasma produced by 532-nm and 1064-nm pulsed laser ablation. Plasma Phys. Rep. 2008, 34, 547–554. [Google Scholar] [CrossRef]
  46. Caridi, F.; Messina, M.; Faggio, G.; Santangelo, S.; Messina, G.; Belmusto, G. Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, Southern Italy. Eur. Phys. J. Plus 2018, 133, 65. [Google Scholar] [CrossRef]
  47. Baeza, A.; Salas, A.; Legarda, F. Determining factors in the elimination of uranium and radium from groundwaters during a standard potabilization process. Sci. Total Environ. 2008, 406, 24–34. [Google Scholar] [CrossRef]
  48. Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B.; Senthilkumar, G.; Eswaran, P.; Rajalakshmi, A. Natural radioactivity in soil samples of Yelagiri Hills, Tamil Nadu, India and the associated radiation hazards. Radiat. Phys. Chem. 2012, 81, 1789–1795. [Google Scholar] [CrossRef]
  49. Todorovic, N.; Nikolov, J.; Forkapic, S.; Bikit, I.; Mrdja, D.; Krmar, M.; Veskovic, M. Public exposure to radon in drinking water in Serbia. Appl. Radiat. Isot. Incl. Data Instrum. Methods Use Agric. Ind. Med. 2012, 70, 543–549. [Google Scholar] [CrossRef]
  50. Abdullah, G.; Azeez, H.; Mustafa, H.; Ismaeel, A. A study of radon concentration and physicochemical parameters in spring water of Erbil city, Iraqi Kurdistan Region. J. Radioanal. Nucl. Chem. 2023, 332, 775–784. [Google Scholar] [CrossRef]
  51. Matsumoto, M.; Yasuoka, Y.; Takakaze, Y.; Hosoda, M.; Tokonami, S.; Iwaoka, K.; Mukai, T. Evaluation of radon concentration measurements in water using the radon degassing method. J. Radioanal. Nucl. Chem. 2023, 332, 167–172. [Google Scholar] [CrossRef]
  52. Love, S.K. Natural Radioactivity of Water. Ind. Eng. Chem. 1951, 43, 1541–1544. [Google Scholar] [CrossRef]
  53. Faanu, A.; Adukpo, O.K.; Tettey-Larbi, L.; Lawluvi, H.; Kpeglo, D.O.; Darko, E.O.; Emi-Reynolds, G.; Awudu, R.A.; Kansaana, C.; Amoah, P.A.; et al. Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana. Springerplus 2016, 5, 98. [Google Scholar] [CrossRef] [PubMed]
  54. Fernández, M.; Guerra, D.; Gil, U.; Trigo, I.; Peña, I.; Arrinda, A. Measurements and analysis of temporal and spatial variability of WiFi exposure levels in the 2.4 GHz frequency band. Measurement 2020, 149, 106970. [Google Scholar] [CrossRef]
  55. Ramirez-Vazquez, R.; Escobar, I.; Martinez-Plaza, A.; Arribas, E. Comparison of personal exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a Spanish university over three years. Sci. Total Environ. 2023, 858, 160008. [Google Scholar] [CrossRef]
  56. Thielens, A.; Vanveerdeghem, P.; Van Torre, P.; Gängler, S.; Röösli, M.; Rogier, H.; Martens, L.; Joseph, W. A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application. Sensors 2016, 16. [Google Scholar] [CrossRef]
  57. Sagar, S.; Struchen, B.; Finta, V.; Eeftens, M.; Röösli, M. Use of portable exposimeters to monitor radiofrequency electromagnetic field exposure in the everyday environment. Environ. Res. 2016, 150, 289–298. [Google Scholar] [CrossRef] [PubMed]
  58. Iyare, R.N.; Volskiy, V.; Vandenbosch, G.A.E. Comparison of peak electromagnetic exposures from mobile phones operational in either data mode or voice mode. Environ. Res. 2021, 197, 110902. [Google Scholar] [CrossRef] [PubMed]
  59. Ramirez-Vazquez, R.; Escobar, I.; Vandenbosch, G.A.E.; Arribas, E. Personal exposure to radiofrequency electromagnetic fields: A comparative analysis of international, national, and regional guidelines. Environ. Res. 2024, 246, 118124. [Google Scholar] [CrossRef]
  60. Ramirez-Vazquez, R.; Gonzalez-Rubio, J.; Escobar, I.; Suarez Rodriguez, C.D.; Arribas, E. Personal Exposure Assessment to Wi-Fi Radiofrequency Electromagnetic Fields in Mexican Microenvironments. Int. J. Environ. Res. Public Health 2021, 18, 1857. [Google Scholar] [CrossRef]
  61. Ramirez-Vazquez, R.; Gonzalez-Rubio, J.; Arribas, E.; Najera, A. Characterisation of personal exposure to environmental radiofrequency electromagnetic fields in Albacete (Spain) and assessment of risk perception. Environ. Res. 2019, 172, 109–116. [Google Scholar] [CrossRef] [PubMed]
  62. Röösli, M.; Frei, P.; Bolte, J.; Neubauer, G.; Cardis, E.; Feychting, M.; Gajsek, P.; Heinrich, S.; Joseph, W.; Mann, S.; et al. Conduct of a personal radiofrequency electromagnetic field measurement study: Proposed study protocol. Environ. Heal. 2010, 9, 23. [Google Scholar] [CrossRef]
  63. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
  64. Tetzlaff, J.; Page, M.; Moher, D. PNS154 the prisma 2020 statement: Development of and key changes in an updated guideline for reporting systematic reviews and meta-analyses. Value Health 2020, 23, S312–S313. [Google Scholar] [CrossRef]
  65. Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schünemann, H.J. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ. Int. 2018, 121, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
  66. Keow, M.A.; Radiman, S. Assessment of radiofrequency/microwave radiation emitted by the antennas of rooftop-mounted mobile phone base stations. Radiat. Prot. Dosim. 2006, 121, 122–127. [Google Scholar] [CrossRef] [PubMed]
  67. Foster, K.R. Radiofrequency exposure from wireless lans utilizing Wi-Fi technology. Health Phys. 2007, 92, 280–289. [Google Scholar] [CrossRef]
  68. Bürgi, A.; Theis, G.; Siegenthaler, A.; Röösli, M. Exposure modeling of high-frequency electromagnetic fields. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 183–191. [Google Scholar] [CrossRef]
  69. Gotsis, A.; Papanikolaou, N.; Komnakos, D.; Yalofas, A.; Constantinou, P. Non-ionizing electromagnetic radiation monitoring in Greece. Ann. Telecommun. Ann. Télécommunications 2008, 63, 109–123. [Google Scholar] [CrossRef]
  70. Tomitsch, J.; Dechant, E.; Frank, W. Survey of electromagnetic field exposure in bedrooms of residences in lower Austria. Bioelectromagnetics 2010, 31, 200–208. [Google Scholar] [CrossRef]
  71. Vermeeren, G.; Markakis, I.; Goeminne, F.; Samaras, T.; Martens, L.; Joseph, W. Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece. Prog. Biophys. Mol. Biol. 2013, 113, 254–263. [Google Scholar] [CrossRef] [PubMed]
  72. Moulder, J.; Foster, K.; Erdreich, L.; McNamee, J. Mobile phones, mobile phone base stations and cancer: A review. Int. J. Radiat. Biol. 2005, 81, 189–203. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Caridi, F. Special Issue on Advances in Environmental Applied Physics—2nd Edition. Appl. Sci. 2025, 15, 6011. https://doi.org/10.3390/app15116011

AMA Style

Caridi F. Special Issue on Advances in Environmental Applied Physics—2nd Edition. Applied Sciences. 2025; 15(11):6011. https://doi.org/10.3390/app15116011

Chicago/Turabian Style

Caridi, Francesco. 2025. "Special Issue on Advances in Environmental Applied Physics—2nd Edition" Applied Sciences 15, no. 11: 6011. https://doi.org/10.3390/app15116011

APA Style

Caridi, F. (2025). Special Issue on Advances in Environmental Applied Physics—2nd Edition. Applied Sciences, 15(11), 6011. https://doi.org/10.3390/app15116011

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop