Can Generative Artificial Intelligence Outperform Self-Instructional Learning in Computer Programming?: Impact on Motivation and Knowledge Acquisition
Abstract
:1. Introduction
1.1. Background
1.2. Theoretical Framework
1.3. Objectives and Research Questions
- RQ1: What differences in learning exist between students who practice web programming using Microsoft Copilot versus an instructional video?
- RQ2: What differences exist between students who practice web programming using Microsoft Copilot and those using an instructional video regarding cognitive absorption effects: enjoyment, control, focused immersion, temporal dissociation, and curiosity?
- RQ3: What differences in effects exist between students who practice using Microsoft Copilot and those using an instructional video in the dimensions of technology acceptance: ease of use, perceived usefulness, and intention to use?
2. Related Works
2.1. Educational Models, Motivation, and Technology Acceptance
2.2. Computer Programming
2.3. Artificial Intelligence in Education
3. Experimental Design
3.1. Participants
3.2. Curriculum
- LO1: The student analyzes basic PHP elements such as blocks, variables, loops, and decision-making in algorithmic solutions to simple problems.
- LO2: The student correctly handles arrays, superglobal variables, and their concatenation with strings in algorithmic solutions.
- LO3: The student correctly uses the “mysqli_” functions to interact with databases.
3.3. Process
3.4. Instruments
4. Results
4.1. Learning Effects
4.2. HMSAM Effects
5. Discussion
5.1. Learning Effects
5.2. HMSAM Effects
5.2.1. Cognitive Absorption
5.2.2. Dimensions of Technological Acceptance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahroun, Z.; Anane, C.; Ahmed, V.; Zacca, A. Transforming Education: A Comprehensive Review of Generative Artificial Intelligence in Educational Settings through Bibliometric and Content Analysis. Sustainability 2023, 15, 12983. [Google Scholar] [CrossRef]
- Luckin, R.; Holmes, W. Intelligence Unleashed: An Argument for AI in Education; UCL Knowledge Lab: London, UK, 2016; pp. 849–851. [Google Scholar]
- Jackson, V.; Vasilescu, B.; Russo, D.; Ralph, P.; Izadi, M.; Prikladnicki, R.; D’angelo, S.; Inman, S.; Andrade, A.; van der Hoek, A. The Impact of Generative AI on Creativity in Software Development: A Research Agenda. ACM Trans. Softw. Eng. Methodol. 2024; just accepted. [Google Scholar] [CrossRef]
- Agarwal, R.; Karahanna, E. Time Flies When You’re Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage. MIS Q. 2000, 24, 665–694. [Google Scholar] [CrossRef]
- Saadé, R.; Bahli, B. The Impact of Cognitive Absorption on Perceived Usefulness and Perceived Ease of Use in On-Line Learning: An Extension of the Technology Acceptance Model. Inf. Manag. 2005, 42, 317–327. [Google Scholar] [CrossRef]
- Park, T.H.; Wiedenbeck, S. Learning Web Development: Challenges at an Earlier Stage of Computing Education. In Proceedings of the ICER’11: ACM SIGCSE 2011 International Computing Education Research Workshop, Providence, RI, USA, 8–9 August 2011; pp. 125–132. [Google Scholar] [CrossRef]
- Ling, H.C.; Chiang, H. Sen Learning Performance in Adaptive Learning Systems: A Case Study of Web Programming Learning Recommendations. Front. Psychol. 2022, 13, 770637. [Google Scholar] [CrossRef] [PubMed]
- Liu, I.F.; Hung, H.C.; Liang, C.T. A Study of Programming Learning Perceptions and Effectiveness under a Blended Learning Model with Live Streaming: Comparisons between Full-Time and Working Students. Interact. Learn. Environ. 2024, 32, 4396–4410. [Google Scholar] [CrossRef]
- Robins, A.; Rountree, J.; Rountree, N. Learning and Teaching Programming: A Review and Discussion. Comput. Sci. Educ. 2003, 21, 137–172. [Google Scholar] [CrossRef]
- Guo, P.J.; Kim, J.; Rubin, R. How Video Production Affects Student Engagement: An Empirical Study of MOOC Videos. In Proceedings of the L@S 2014—1st ACM Conference on Learning at Scale, Atlanta, GA, USA, 4–5 March 2014; pp. 41–50. [Google Scholar] [CrossRef]
- Guerrero-Quiñonez, A.J.; Bedoya-Flores, M.C.; Mosquera-Quiñonez, E.F.; Mesías-Simisterra, Á.E.; Bautista-Sánchez, J.V. Artificial Intelligence and Its Scope in Latin American Higher Education. Ibero-Am. J. Educ. Soc. Res. 2023, 3, 264–271. [Google Scholar] [CrossRef]
- De La Torre, A.; Baldeon-Calisto, M. Generative Artificial Intelligence in Latin American Higher Education: A Systematic Literature Review. In Proceedings of the 12th International Symposium on Digital Forensics and Security, ISDFS, San Antonio, TX, USA, 29–30 April 2024. [Google Scholar] [CrossRef]
- Hinostroza, J.E.; Isaacs, S.; Bougroum, M. Information and Communications Technologies for Improving Learning Opportunities and Outcomes in Developing Countries. In Learning and Education in Developing Countries; Palgrave Pivot: New York, NY, USA, 2014; pp. 42–57. [Google Scholar] [CrossRef]
- Lahtinen, E.; Ala-Mutka, K.; Järvinen, H.M. A Study of the Difficulties of Novice Programmers. ACM SIGCSE Bull. 2005, 37, 14–18. [Google Scholar] [CrossRef]
- Gosavi, C.S.; Arora, S. Active Learning Strategies for Engaging Students in Higher Education. J. Eng. Educ. Transform. 2022, 36, 1–7. [Google Scholar] [CrossRef]
- Lowry, P.B.; Gaskin, J.; Twyman, N.; Hammer, B.; Roberts, T. Taking “Fun and Games” Seriously: Proposing the Hedonic-Motivation System Adoption Model (HMSAM). J. Assoc. Inf. Syst. 2013, 14, 2. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Jennett, C.; Cox, A.L.; Cairns, P.; Dhoparee, S.; Epps, A.; Tijs, T.; Walton, A. Measuring and Defining the Experience of Immersion in Games. Int. J. Hum. Comput. Stud. 2008, 66, 641–661. [Google Scholar] [CrossRef]
- Ma, J.Y.; Xie, J.F.; Chen, C.C. Exploring the Structural Relationships of Microinteractions in Perception and Behavior by the Hedonic Motivation System Adoption Model. Int. J. Hum. Comput. Interact. 2025, 41, 592–607. [Google Scholar] [CrossRef]
- Qomarul Huda, M.; Aeni Hidayah, N.; Nur Hafizah Hersyaf, T.; Sujoko, I. Asmawi Analysis of Continuance Use of Video on Demand Applications by Using the Hedonic Motivation System Adoption Model. In Proceedings of the 2020 8th International Conference on Cyber and IT Service Management, CITSM, Pangkal, Indonesia, 23–24 October 2020. [Google Scholar] [CrossRef]
- Chakraborty, S. Generative AI in Modern Education Society. arXiv 2024, arXiv:2412.08666. [Google Scholar]
- Hamari, J.; Koivisto, J. Why Do People Use Gamification Services? Int. J. Inf. Manag. 2015, 35, 419–431. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Lai, K.H.; Guo, F.; Li, C. Understanding Gender Differences in M-Health Adoption: A Modified Theory of Reasoned Action Model. Telemed. J. E Health 2014, 20, 39–46. [Google Scholar] [CrossRef]
- Qadhi, S.; Qadhi, S. Knowledge Dynamics: Educational Pathways from Theories to Tangible Outcomes. In From Theory of Knowledge Management to Practice; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Bratianu, C.; Garcia-Perez, A. Knowledge Dynamics and Expert Knowledge Translation: A Case Study. In Proceedings of the 24th European Conference on Knowledge Management 2023, Lisbon, Portugal, 7–8 September 2023; Volume 24, pp. 140–147. [Google Scholar] [CrossRef]
- Bratianu, C.; Bejinaru, R. Knowledge Dynamics: A Thermodynamics Approach. Kybernetes 2020, 49, 6–21. [Google Scholar] [CrossRef]
- Bishop, J.L.; Verleger, M.A. The Flipped Classroom: A Survey of the Research. In Proceedings of the ASEE Annual Conference and Exposition, Atlanta, GA, USA, 23–26 June 2013. [Google Scholar] [CrossRef]
- Sung, Y.T.; Chang, K.E.; Liu, T.C. The Effects of Integrating Mobile Devices with Teaching and Learning on Students’ Learning Performance: A Meta-Analysis and Research Synthesis. Comput. Educ. 2016, 94, 252–275. [Google Scholar] [CrossRef]
- Bernard, R.M.; Abrami, P.C.; Borokhovski, E.; Wade, C.A.; Tamim, R.M.; Surkes, M.A.; Bethel, E.C. A Meta-Analysis of Three Types of Interaction Treatments in Distance Education. Rev. Educ. Res. 2009, 79, 1243–1289. [Google Scholar] [CrossRef]
- Gordillo, A.; Lopez-Fernandez, D.; Tovar, E. Comparing the Effectiveness of Video-Based Learning and Game-Based Learning Using Teacher-Authored Video Games for Online Software Engineering Education. IEEE Trans. Educ. 2022, 65, 524–532. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Intrinsic Motivation and Self-Determination in Human Behavior. In Intrinsic Motivation and Self-Determination in Human Behavior; Springer: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
- Jena, A.K.; Bhattacharjee, S.; Gupta, S.; Das, J.; Debnath, R. Exploring the Effects of Web 2.0 Technology on Individual and Collaborative Learning Performance in Relation to Self-Regulation of Learners. J. Sch. Educ. Technol. 2018, 13, 20–35. [Google Scholar]
- Huang, J.; Mizumoto, A. Examining the Effect of Generative AI on Students’ Motivation and Writing Self-Efficacy. Digit. Appl. Linguist. 2024, 1, 102324. [Google Scholar] [CrossRef]
- Litman, J.A. Curiosity and the Pleasures of Learning: Wanting and Liking New Information. Cogn. Emot. 2005, 19, 793–814. [Google Scholar] [CrossRef]
- Dousay, T.A. Multimedia Design and Situational Interest: A Look at Juxtaposition and Measurement. In Educational Media and Technology Yearbook; Springer: Cham, Switzerland, 2014; pp. 69–82. [Google Scholar] [CrossRef]
- Krouska, A.; Mylonas, P.; Kabassi, K.; Caro, J.; Sgouropoulou, C.; Hmoud, M.; Swaity, H.; Hamad, N.; Karram, O.; Daher, W. Higher Education Students’ Task Motivation in the Generative Artificial Intelligence Context: The Case of ChatGPT. Information 2024, 15, 33. [Google Scholar] [CrossRef]
- Abdelshiheed, M.; Maniktala, M.; Barnes, T.; Chi, M. Assessing Competency Using Metacognition and Motivation: The Role of Time-Awareness in Preparation for Future Learning. arXiv 2023, arXiv:2303.14609. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–339. [Google Scholar] [CrossRef]
- Ghimire, A.; Edwards, J. Generative AI Adoption in Classroom in Context of Technology Acceptance Model (TAM) and the Innovation Diffusion Theory (IDT). arXiv 2024, arXiv:2406.15360. [Google Scholar]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Steinert, S.; Avila, K.E.; Ruzika, S.; Kuhn, J.; Küchemann, S. Harnessing Large Language Models to Enhance Self-Regulated Learning via Formative Feedback. arXiv 2023, arXiv:2311.13984. [Google Scholar]
- Lin, Z.; Ng, Y.L. Unraveling Gratifications, Concerns, and Acceptance of Generative Artificial Intelligence. Int. J. Hum. Comput. Interact. 2024, 1–18. [Google Scholar] [CrossRef]
- Clark, R.C.; Mayer, R.E. E-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Al-Abdullatif, A.M. Modeling Teachers’ Acceptance of Generative Artificial Intelligence Use in Higher Education: The Role of AI Literacy, Intelligent TPACK, and Perceived Trust. Educ. Sci. 2024, 14, 1209. [Google Scholar] [CrossRef]
- Paas, F.G.W.C.; Van Merriënboer, J.J.G. Instructional Control of Cognitive Load in the Training of Complex Cognitive Tasks. Educ. Psychol. Rev. 1994, 6, 351–371. [Google Scholar] [CrossRef]
- Mayer, R.E. Multimedia Learning. In Multimedia Learning, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 1–304. [Google Scholar] [CrossRef]
- Martins, D.S.; Cunha, B.C.R.; Yaguinuma, C.A.; Zaine, I.; Pimentel, M. da G.C. Effects of Interactive Video Annotations on Students’ Browsing Behavior and Perceived Workload. ACM SIGAPP Appl. Comput. Rev. 2019, 19, 44–57. [Google Scholar] [CrossRef]
- Bennedsen, J.; Caspersen, M.E. Failure Rates in Introductory Programming. ACM SIGCSE Bull. 2007, 39, 32–36. [Google Scholar] [CrossRef]
- Suzuki, R.; Kato, J.; Yatani, K. ClassCode: An Interactive Teaching and Learning Environment for Programming Education in Classrooms. arXiv 2020, arXiv:2001.08194. [Google Scholar]
- Yang, C.; Thung, F.; Lo, D. Efficient Search of Live-Coding Screencasts from Online Videos. In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER, Honolulu, HI, USA, 15–18 March 2022; pp. 73–77. [Google Scholar] [CrossRef]
- Khandwala, K.; Guo, P.J. Codemotion: Expanding the Design Space of Learner Interactions with Computer Programming Tutorial Videos. In Proceedings of the 5th Annual ACM Conference on Learning at Scale, New York, NY, USA, 26–28 June 2018. [Google Scholar] [CrossRef]
- Li, W.; Pea, R.; Haber, N.; Subramonyam, H. Tutorly: Turning Programming Videos Into Apprenticeship Learning Environments with LLMs. arXiv 2024, arXiv:2405.12946. [Google Scholar]
- Buffardi, K.; Wang, R. Integrating Videos with Programming Practice. In Proceedings of the Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, Dublin, Ireland, 8–13 July 2022; Volume 1, pp. 241–247. [Google Scholar] [CrossRef]
- McGowan, A.; Anderson, N.; Trombino, G.; Sage, P.; Adhikari, J.; Galway, L. Learning to Code—Investigating the Adoption of Video-Based Lab Solutions for University-Level Novice Programmers. In Proceedings of the ICERI2023 Proceedings, Seville, Spain, 13–15 November 2023; IATED: Valencia, Spain, 2023; p. 1136. [Google Scholar]
- Mellado, R.; Cubillos, C. Gamification Improves Learning: Experience in a Training Activity of Computer Programming in Higher Education. J. Comput. Assist. Learn. 2024, 40, 1959–1973. [Google Scholar] [CrossRef]
- Ferreira, D.J.; da Silva, H.C.; Melo, T.F.N.; Ambrósio, A.P. Investigation of Continuous Assessment of Correctness in Introductory Programming. Educ. Technol. Soc. 2017, 20, 182–194. [Google Scholar]
- Kadar, R.; Mahlan, S.B.; Shamsuddin, M.; Othman, J.; Wahab, N.A. Analysis of Factors Contributing to the Difficulties in Learning Computer Programming among Non-Computer Science Students. In Proceedings of the 2022 12th IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE, Penang, Malaysia, 21–22 May 2022; pp. 89–94. [Google Scholar] [CrossRef]
- Esche, S.; Weihe, K. Choosing a Didactic Basis for an Instructional Video: What Are the Implications for Novice Programmers? In Proceedings of the Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, Turku, Finland, 7–12 July 2023; Volume 1, pp. 450–456. [Google Scholar] [CrossRef]
- Nguyen-Duc, A.; Cabrero-Daniel, B.; Przybylek, A.; Arora, C.; Khanna, D.; Herda, T.; Rafiq, U.; Melegati, J.; Guerra, E.; Kemell, K.-K.; et al. Generative Artificial Intelligence for Software Engineering—A Research Agenda. arXiv 2023, arXiv:2310.18648. [Google Scholar]
- Ebert, C.; Louridas, P. Generative AI for Software Practitioners. IEEE Softw. 2023, 40, 30–38. [Google Scholar] [CrossRef]
- Bilgram, V.; Laarmann, F. Accelerating Innovation With Generative AI: AI-Augmented Digital Prototyping and Innovation Methods. IEEE Eng. Manag. Rev. 2023, 51, 18–25. [Google Scholar] [CrossRef]
- Ulfsnes, R.; Moe, N.B.; Stray, V.; Skarpen, M. Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow. In Generative AI for Effective Software Development; Springer: Cham, Switzerland, 2024; pp. 219–234. [Google Scholar] [CrossRef]
- Calegario, F.; Burégio, V.; Erivaldo, F.; Moraes, D.; Andrade, C.; Felix, K.; Barbosa, N.; Lucas Da, P.; Lucena, S.; França, C. Exploring the Intersection of Generative AI and Software Development. arXiv 2023, arXiv:2312.14262. [Google Scholar]
- Nettur, S.B.; Karpurapu, S.; Nettur, U.; Gajja, L.S. Cypress Copilot: Development of an AI Assistant for Boosting Productivity and Transforming Web Application Testing. IEEE Access 2024, 13, 3215–3229. [Google Scholar] [CrossRef]
- Mahadevappa, P.; Muzammal, S.M.; Tayyab, M.; Mahadevappa, P.; Muzammal, S.M.; Tayyab, M. Introduction to Generative AI in Web Engineering: Concepts and Applications; IGI Global: Hershey, PA, USA, 2025; pp. 297–330. [Google Scholar] [CrossRef]
- Ho, C.L.; Liu, X.Y.; Qiu, Y.W.; Yang, S.Y. Research on Innovative Applications and Impacts of Using Generative AI for User Interface Design in Programming Courses. In Proceedings of the International Conference on Information Technology, Data Science, and Optimization, Taipei, Taiwan, 22–24 May 2024; pp. 68–72. [Google Scholar] [CrossRef]
- Jayachandran, D.; Maldikar, P.; Love, T.S.; Blum, J.J. Leveraging Generative Artificial Intelligence to Broaden Participation in Computer Science. In Proceedings of the 2024 AAAI Spring Symposium Series, Stanford, CA, USA, 25–27 March 2024; Volume 3, pp. 486–492. [Google Scholar] [CrossRef]
- Keuning, H.; Alpizar-Chacon, I.; Lykourentzou, I.; Beehler, L.; Köppe, C.; de Jong, I.; Sosnovsky, S. Students’ Perceptions and Use of Generative AI Tools for Programming Across Different Computing Courses. In Proceedings of the 24th Koli Calling International Conference on Computing Education Research, Koli, Finland, 12–17 November 2024. [Google Scholar]
- Yilmaz, R.; Karaoglan Yilmaz, F.G. The Effect of Generative Artificial Intelligence (AI)-Based Tool Use on Students’ Computational Thinking Skills, Programming Self-Efficacy and Motivation. Comput. Educ. Artif. Intell. 2023, 4, 100147. [Google Scholar] [CrossRef]
- Wilson, S.E.; Nishimoto, M. Assessing Learning of Computer Programing Skills in the Age of Generative Artificial Intelligence. J. Biomech. Eng. 2024, 146, 051003. [Google Scholar] [CrossRef]
- Shanshan, S.; Sen, G. Empowering Learners with AI-Generated Content for Programming Learning and Computational Thinking: The Lens of Extended Effective Use Theory. J. Comput. Assist. Learn. 2024, 40, 1941–1958. [Google Scholar] [CrossRef]
- Sajja, A.; Thakur, D.; Mehra, A.; Sajja, A.; Thakur, D.; Mehra, A. Integrating Generative AI into the Software Development Lifecycle: Impacts on Code Quality and Maintenance. Int. J. Sci. Res. Arch. 2024, 13, 1952–1960. [Google Scholar] [CrossRef]
- Yehia, E. Developments on Generative AI. In AI and Emerging Technologies: Automated Decision-Making, Digital Forensics, and Ethical Considerations; CRC Press: Boca Raton, FL, USA, 2024; pp. 139–160. [Google Scholar] [CrossRef]
- Liu, J.; Li, S. Toward Artificial Intelligence-Human Paired Programming: A Review of the Educational Applications and Research on Artificial Intelligence Code-Generation Tools. J. Educ. Comput. Res. 2024, 65, 1165–1195. [Google Scholar] [CrossRef]
- Boguslawski, S.; Deer, R.; Dawson, M.G. Programming Education and Learner Motivation in the Age of Generative AI: Student and Educator Perspectives. Inf. Learn. Sci. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Cubillos, C.; Mellado, R.; Cabrera-Paniagua, D.; Urra, E. Generative Artificial Intelligence in Computer Programming: Does It Enhance Learning, Motivation, and the Learning Environment? IEEE Access 2025, 13, 40438–40455. [Google Scholar] [CrossRef]
- Groothuijsen, S.; van den Beemt, A.; Remmers, J.C.; van Meeuwen, L.W. AI Chatbots in Programming Education: Students’ Use in a Scientific Computing Course and Consequences for Learning. Comput. Educ. Artif. Intell. 2024, 7, 100290. [Google Scholar] [CrossRef]
- Pesovski, I.; Santos, R.; Henriques, R.; Trajkovik, V. Generative AI for Customizable Learning Experiences. Sustainability 2024, 16, 3034. [Google Scholar] [CrossRef]
- Frankford, E.; Sauerwein, C.; Bassner, P.; Krusche, S.; Breu, R. AI-Tutoring in Software Engineering Education Experiences with Large Language Models in Programming Assessments. In Proceedings of the 46th International Conference on Software Engineering, Lisbon, Portugal, 14–20 April 2024; pp. 309–319. [Google Scholar] [CrossRef]
- Li, H.; Xu, T.; Zhang, C.; Chen, E.; Liang, J.; Fan, X.; Li, H.; Tang, J.; Wen, Q. Bringing Generative AI to Adaptive Learning in Education. arXiv 2024, arXiv:2402.14601. [Google Scholar]
- Maphoto, K.B.; Sevnarayan, K.; Mohale, N.E.; Suliman, Z.; Ntsopi, T.J.; Mokoena, D. Advancing Students’ Academic Excellence in Distance Education: Exploring the Potential of Generative AI Integration to Improve Academic Writing Skills. Open Prax. 2024, 16, 142–159. [Google Scholar] [CrossRef]
- Ko, S.; Chan, S.C.H.; Ko, S.; Chan, S.C.H. A Framework for the Responsible Integration of Generative AI Tools in Learning; IGI Global: Hershey, PA, USA, 2024; pp. 163–194. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 62627. [Google Scholar] [CrossRef] [PubMed]
- Sweller, J. Cognitive Load during Problem Solving: Effects on Learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Du, X.; Liu, M.; Wang, K.; Wang, H.; Liu, J.; Chen, Y.; Feng, J.; Sha, C.; Peng, X.; Lou, Y. Evaluating Large Language Models in Class-Level Code Generation. In Proceedings of the 46th International Conference on Software Engineering, Lisbon, Portugal, 14–20 April 2024; pp. 982–994. [Google Scholar] [CrossRef]
- Vaithilingam, P.; Zhang, T.; Glassman, E.L. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language Models. In Proceedings of the CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022. [Google Scholar] [CrossRef]
- Rheinheimer, D.C.; Penfield, D.A. The Effects of Type I Error Rate and Power of the ANCOVA F-Test and Selected Alternatives under Non-Normality and Variance Heterogeneity. J. Exp. Educ. 1998, 69, 373–391. [Google Scholar] [CrossRef]
- Ch, K.P.; Poremba, K.D.; Rowell, R.K. Testing for Homogeneity of Slopes in Analysis of Covariance: A Tutorial; ERIC Institute of Education Science: Washington, DC, USA, 1997. [Google Scholar]
- Ateş, C.; Kaymaz, Ö.; Tekindal, M.A.; Erdoğan, B.D. Robustness of Analysis of Covariance (Ancova) under the Distributions Assumptions and Variance Homogeneity. Eurasian J. Vet. Sci. 2020, 36, 58–65. [Google Scholar] [CrossRef]
- Huang, Y.M.; Chiu, P.S. The Effectiveness of a Meaningful Learning-Based Evaluation Model for Context-Aware Mobile Learning. Br. J. Educ. Technol. 2015, 46, 437–447. [Google Scholar] [CrossRef]
- Kharrufa, A.; Johnson, I. The Potential and Implications of Generative AI on HCI Education. In Proceedings of the 6th Annual Symposium on HCI Education, New York, NY, USA, 5–7 June 2024. [Google Scholar] [CrossRef]
- Hou, I.; Mettille, S.; Li, Z.; Man, O.; Zastudil, C.; MacNeil, S. The Effects of Generative AI on Computing Students’ Help-Seeking Preferences. In Proceedings of the 26th Australian Computing Education Conference, Sydney, Australia, 29 January 2024; pp. 39–48. [Google Scholar] [CrossRef]
- Chen, E.; Lee, J.E.; Lin, J.; Koedinger, K. GPTutor: Great Personalized Tutor with Large Language Models for Personalized Learning Content Generation. In Proceedings of the L@S 2024—11th ACM Conference on Learning @ Scale, Atlanta, GA, USA, 18–20 July 2024; pp. 539–541. [Google Scholar] [CrossRef]
- Guskey, T.R. Closing Achievement Gaps: Revisiting Benjamin S. Bloom’s “Learning for Mastery”. J. Adv. Acad. 2007, 19, 8–31. [Google Scholar] [CrossRef]
- Conklin, J. Review of A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives Complete Edition. Educ. Horiz. 2005, 83, 154–159. [Google Scholar]
- Bloom, B.S. Learning for Mastery. Instruction and Curriculum. Regional Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints, Number 1. Eval. Comment 1968, 1, n2. [Google Scholar]
Construct | Question |
---|---|
Control (Ctrl) |
|
Curiosity (Cur) |
|
Temporal Dissociation (TD) |
|
Ease of use |
|
Focalized Immersion (FI) |
|
Enjoyment |
|
Behavioral Intention of Use (BIU) |
|
Utility |
|
Group | N | Pre-Test | Post-Test | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
Microsoft Copilot | 35 | 4.46 | 2.42 | 5.69 | 2.32 |
Video | 36 | 4.85 | 2.52 | 8.17 | 1.23 |
Total | 71 | 4.66 | 2.46 | 6.94 | 2.22 |
Construct | Condition | Pre-Test | Post-Test | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
Utility | Copilot | 5.78 | 0.99 | 5.48 | 1.14 |
Video | 5.72 | 0.94 | 5.92 | 0.87 | |
Total | 5.75 | 0.96 | 5.70 | 1.03 | |
Enjoyment (Joy) | Copilot | 4.76 | 1.24 | 4.70 | 1.25 |
Video | 5.19 | 1.25 | 5.26 | 1.22 | |
Total | 4.98 | 1.25 | 4.98 | 1.26 | |
Ease of Use | Copilot | 5.47 | 0.96 | 5.58 | 1.19 |
Video | 5.68 | 0.95 | 5.90 | 1.05 | |
Total | 5.58 | 0.96 | 5.74 | 1.12 | |
Behavioral Intention of Use (BIU) | Copilot | 5.54 | 1.16 | 5.41 | 1.25 |
Video | 5.64 | 1.00 | 5.93 | 1.03 | |
Total | 5.59 | 1.08 | 5.67 | 1.16 | |
Control (Ctrl) | Copilot | 5.24 | 0.93 | 5.11 | 1.05 |
Video | 5.46 | 0.89 | 5.43 | 1.16 | |
Total | 5.35 | 0.91 | 5.27 | 1.11 | |
Focalized Immersion (FI) | Copilot | 5.13 | 1.02 | 5.12 | 1.04 |
Video | 5.41 | 1.13 | 5.54 | 1.22 | |
Total | 5.28 | 1.08 | 5.33 | 1.15 | |
Temporal Dissociation (TD) | Copilot | 4.41 | 1.27 | 4.60 | 1.39 |
Video | 5.01 | 1.32 | 5.00 | 1.52 | |
Total | 4.72 | 1.32 | 4.80 | 1.46 | |
Curiosity (Cur) | Copilot | 4.83 | 1.33 | 4.69 | 1.34 |
Video | 5.17 | 1.33 | 5.35 | 1.26 | |
Total | 5.00 | 1.34 | 5.03 | 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellado, R.; Cubillos, C. Can Generative Artificial Intelligence Outperform Self-Instructional Learning in Computer Programming?: Impact on Motivation and Knowledge Acquisition. Appl. Sci. 2025, 15, 5867. https://doi.org/10.3390/app15115867
Mellado R, Cubillos C. Can Generative Artificial Intelligence Outperform Self-Instructional Learning in Computer Programming?: Impact on Motivation and Knowledge Acquisition. Applied Sciences. 2025; 15(11):5867. https://doi.org/10.3390/app15115867
Chicago/Turabian StyleMellado, Rafael, and Claudio Cubillos. 2025. "Can Generative Artificial Intelligence Outperform Self-Instructional Learning in Computer Programming?: Impact on Motivation and Knowledge Acquisition" Applied Sciences 15, no. 11: 5867. https://doi.org/10.3390/app15115867
APA StyleMellado, R., & Cubillos, C. (2025). Can Generative Artificial Intelligence Outperform Self-Instructional Learning in Computer Programming?: Impact on Motivation and Knowledge Acquisition. Applied Sciences, 15(11), 5867. https://doi.org/10.3390/app15115867