Structural Fingerprinting of Crystalline Materials from XRD Patterns Using Atomic Cluster Expansion Neural Network and Atomic Cluster Expansion
Abstract
:1. Introduction
2. Materials and Method
2.1. Calculation of the Simulated Spectrum
2.2. Datasource
2.3. Crystal Structure Encoder
2.4. Diffraction Pattern Encoder
2.5. Loss Function
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedrich, W.; Knipping, P.; Laue, M. Interferenzerscheinungen bei roentgenstrahlen. Ann. Phys. 1913, 346, 971–988. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Debye, P.; Scherrer, P. Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I. Nachrichten Ges. Wiss. Göttingen Math.-Phys. Kl. 1916, 1916, 1–15. [Google Scholar]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Park, W.B.; Chung, J.; Jung, J.; Sohn, K.; Singh, S.P.; Pyo, M.; Shin, N.; Sohn, K.S. Classification of crystal structure using a convolutional neural network. IUCrJ 2017, 4, 486–494. [Google Scholar] [CrossRef]
- Oviedo, F.; Ren, Z.; Sun, S.; Settens, C.; Liu, Z.; Hartono, N.T.P.; Ramasamy, S.; DeCost, B.L.; Tian, S.I.; Romano, G.; et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. NPJ Comput. Mater. 2019, 5, 60. [Google Scholar] [CrossRef]
- Billinge, S.J.; Levin, I. The problem with determining atomic structure at the nanoscale. Science 2007, 316, 561–565. [Google Scholar] [CrossRef]
- Jenkins, R.; Snyder, R.L. Introduction to X-Ray Powder Diffractometry; Wiley Online Library: Hoboken, NJ, USA, 1996; Volume 138. [Google Scholar]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef]
- Su, T.; Cao, B.; Hu, S.; Li, M.; Zhang, T.Y. CGWGAN: Crystal generative framework based on Wyckoff generative adversarial network. J. Mater. Inform. 2024, 4, 20. [Google Scholar] [CrossRef]
- Davel, C.; Bassiri-Gharb, N.; Correa-Baena, J.P. Machine Learning in X-ray Scattering for Materials Discovery and Characterization. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Prasianakis, N.I. AI-enhanced X-ray diffraction analysis: Towards real-time mineral phase identification and quantification. IUCrJ 2024, 11, 647–648. [Google Scholar] [CrossRef]
- Surdu, V.A.; Győrgy, R. X-ray diffraction data analysis by machine learning methods—A review. Appl. Sci. 2023, 13, 9992. [Google Scholar] [CrossRef]
- Wang, B.; Guan, Z.; Yao, S.; Qin, H.; Nguyen, M.H.; Yager, K.; Yu, D. Deep learning for analysing synchrotron data streams. In Proceedings of the 2016 New York Scientific Data Summit (NYSDS), New York, NY, USA, 14–17 August 2016; pp. 1–5. [Google Scholar]
- Czyzewski, A.; Krawiec, F.; Brzezinski, D.; Porebski, P.J.; Minor, W. Detecting anomalies in X-ray diffraction images using convolutional neural networks. Expert Syst. Appl. 2021, 174, 114740. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sharma, R. See deeper: Identifying crystal structure from x-ray diffraction patterns. In Proceedings of the 2020 International Conference on Cyberworlds (CW), Caen, France, 29 September–1 October 2020; pp. 49–54. [Google Scholar]
- Chakraborty, A.; Sharma, R. A deep crystal structure identification system for X-ray diffraction patterns. Vis. Comput. 2022, 38, 1275–1282. [Google Scholar] [CrossRef]
- Massuyeau, F.; Broux, T.; Coulet, F.; Demessence, A.; Mesbah, A.; Gautier, R. Perovskite or Not Perovskite? A Deep-Learning Approach to Automatically Identify New Hybrid Perovskites from X-ray Diffraction Patterns. Adv. Mater. 2022, 34, 2203879. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Ojima, H.; Mogi, T.; Kajiwara, T.; Sugimoto, T.; Asanuma, H. Characterization of hydrothermal alteration along geothermal wells using unsupervised machine-learning analysis of X-ray powder diffraction data. Earth Sci. Inform. 2022, 15, 73–87. [Google Scholar] [CrossRef]
- Vecsei, P.M.; Choo, K.; Chang, J.; Neupert, T. Neural network based classification of crystal symmetries from x-ray diffraction patterns. Phys. Rev. B 2019, 99, 245120. [Google Scholar] [CrossRef]
- Suzuki, Y.; Hino, H.; Hawai, T.; Saito, K.; Kotsugi, M.; Ono, K. Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach. Sci. Rep. 2020, 10, 21790. [Google Scholar] [CrossRef]
- Venderley, J.; Mallayya, K.; Matty, M.; Krogstad, M.; Ruff, J.; Pleiss, G.; Kishore, V.; Mandrus, D.; Phelan, D.; Poudel, L.; et al. Harnessing interpretable and unsupervised machine learning to address big data from modern X-ray diffraction. Proc. Natl. Acad. Sci. USA 2022, 119, e2109665119. [Google Scholar] [CrossRef] [PubMed]
- Utimula, K.; Hunkao, R.; Yano, M.; Kimoto, H.; Hongo, K.; Kawaguchi, S.; Suwanna, S.; Maezono, R. Machine-Learning Clustering Technique Applied to Powder X-Ray Diffraction Patterns to Distinguish Compositions of ThMn12-Type Alloys. Adv. Theory Simulations 2020, 3, 2000039. [Google Scholar] [CrossRef]
- Utimula, K.; Yano, M.; Kimoto, H.; Hongo, K.; Nakano, K.; Maezono, R. Feature space of XRD patterns constructed by an autoencoder. Adv. Theory Simulations 2023, 6, 2200613. [Google Scholar] [CrossRef]
- Wu, Y.; Su, T.; Du, B.; Hu, S.; Xiong, J.; Pan, D. Kolmogorov–Arnold Network Made Learning Physics Laws Simple. J. Phys. Chem. Lett. 2024, 15, 12393–12400. [Google Scholar] [CrossRef]
- Lai, Q.; Xu, F.; Yao, L.; Gao, Z.; Liu, S.; Wang, H.; Lu, S.; He, D.; Wang, L.; Zhang, L.; et al. End-to-End Crystal Structure Prediction from Powder X-Ray Diffraction. Adv. Sci. 2025, 12, 2410722. [Google Scholar] [CrossRef]
- Guo, G.; Goldfeder, J.; Lan, L.; Ray, A.; Yang, A.H.; Chen, B.; Billinge, S.J.L.; Lipson, H. Towards end-to-end structure determination from X-ray diffraction data using deep learning. NPJ Comput. Mater. 2024, 10, 209. [Google Scholar] [CrossRef]
- Schlesinger, C.; Fitterer, A.; Buchsbaum, C.; Habermehl, S.; Chierotti, M.R.; Nervi, C.; Schmidt, M.U. Ambiguous structure determination from powder data: Four different structural models of 4, 11-difluoroquinacridone with similar X-ray powder patterns, fit to the PDF, SSNMR and DFT-D. IUCrJ 2022, 9, 406–424. [Google Scholar] [CrossRef]
- Parackal, A.S.; Goodall, R.E.; Faber, F.A.; Armiento, R. Identifying crystal structures beyond known prototypes from x-ray powder diffraction spectra. Phys. Rev. Mater. 2024, 8, 103801. [Google Scholar] [CrossRef]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In Proceedings of the International conference on machine learning, Virtual, 18–24 July 2021; pp. 8748–8763. [Google Scholar]
- Du, W.; Zhang, H.; Du, Y.; Meng, Q.; Chen, W.; Zheng, N.; Shao, B.; Liu, T.Y. SE (3) equivariant graph neural networks with complete local frames. In Proceedings of the International Conference on Machine Learning, Baltimore, MA, USA, 17–23 July 2022; pp. 5583–5608. [Google Scholar]
- Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys. Rev. B 2019, 99, 014104. [Google Scholar] [CrossRef]
- Batatia, I.; Kovacs, D.P.; Simm, G.; Ortner, C.; Csányi, G. MACE: Higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 2022, 35, 11423–11436. [Google Scholar]
- Willman, J.T.; Perriot, R.; Ticknor, C. Accurate and efficient parameterization of an atomic cluster expansion (ACE) potential for ammonia under extreme conditions. J. Chem. Phys. 2025, 162, 144316. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Liu, Y.; Yang, L.; Cao, B. Lattice dynamics modeling of thermal transport in solids using machine-learned atomic cluster expansion potentials: A tutorial. J. Appl. Phys. 2025, 137, 081101. [Google Scholar] [CrossRef]
- Rinaldi, M.; Bochkarev, A.; Lysogorskiy, Y.; Drautz, R. Charge-constrained atomic cluster expansion. Phys. Rev. Mater. 2025, 9, 033802. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, E.; Asta, M. Oxygen grain-boundary segregation in HCP Ti—Computational investigations using an atomic cluster expansion potential. Comput. Mater. Sci. 2025, 248, 113577. [Google Scholar]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Fredericks, S.; Parrish, K.; Sayre, D.; Zhu, Q. PyXtal: A Python library for crystal structure generation and symmetry analysis. Comput. Phys. Commun. 2021, 261, 107810. [Google Scholar] [CrossRef]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1263–1272. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International conference on machine learning, Virtual, 13–18 July 2020; pp. 1597–1607. [Google Scholar]
- Su, T.; Cui, Y.; Lian, Z.; Hu, M.; Li, M.; Lu, W.; Ren, W. Physics-Based Feature Makes Machine Learning Cognizing Crystal Properties Simple. J. Phys. Chem. Lett. 2021, 12, 8521–8527. [Google Scholar] [CrossRef]
Model | Top-1 (%) | Top-3 (%) | Top-5 (%) |
---|---|---|---|
EACNN | 95.96 | 99.95 | 99.98 |
Space Group | Frequency | Accuracy |
---|---|---|
225 | 808 | 95.92% |
3, 24, 34, 37, 39 | 1 (each) | 96.00% |
41, 48, 50, 95, 97 | ||
112, 116, 120, 132, 138 | ||
143, 157, 159, 180, 192 | ||
195, 197, 202, 203, 214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, X.; Hu, S. Structural Fingerprinting of Crystalline Materials from XRD Patterns Using Atomic Cluster Expansion Neural Network and Atomic Cluster Expansion. Appl. Sci. 2025, 15, 5851. https://doi.org/10.3390/app15115851
Zhang X, Wang X, Hu S. Structural Fingerprinting of Crystalline Materials from XRD Patterns Using Atomic Cluster Expansion Neural Network and Atomic Cluster Expansion. Applied Sciences. 2025; 15(11):5851. https://doi.org/10.3390/app15115851
Chicago/Turabian StyleZhang, Xiao, Xitao Wang, and Shunbo Hu. 2025. "Structural Fingerprinting of Crystalline Materials from XRD Patterns Using Atomic Cluster Expansion Neural Network and Atomic Cluster Expansion" Applied Sciences 15, no. 11: 5851. https://doi.org/10.3390/app15115851
APA StyleZhang, X., Wang, X., & Hu, S. (2025). Structural Fingerprinting of Crystalline Materials from XRD Patterns Using Atomic Cluster Expansion Neural Network and Atomic Cluster Expansion. Applied Sciences, 15(11), 5851. https://doi.org/10.3390/app15115851