Walking-Age Estimator Based on Gait Parameters Using Kernel Regression
Abstract
:1. Introduction
2. Methods
2.1. Gait Data
2.2. Parameters to Estimate Chronological Age
2.3. Kernel Regression Analysis
2.4. Variable Selection Based on Sensitivity Analysis
3. Results
3.1. Results of Multiple Regression Analysis
3.2. Results of Kernel Regression Model Including All the Explanatory Variables
3.3. Results of Kernel Regression Model with Selected Variables
3.4. Results of Kernel Regression Model Without Height and Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ko, S.; Hausdorff, J.M.; Ferrucci, L. Age-associated differences in the gait pattern changes of older adults during fast-speed and fatigue conditions: Results from the Baltimore longitudinal study of ageing. Age Ageing 2010, 39, 668–694. [Google Scholar] [CrossRef] [PubMed]
- DeVita, P.; Hortobagyi, T. Age causes a redistribution of joint torques and powers during gait. J. Appl. Physiol. 2000, 88, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Aboutorabi, A.; Arazpour, M.; Bahramizadeh, M.; Hutchins, S.W.; Fadayevatan, R. The effect of aging on gait parameters in able-bodied older subjects: A literature review. Aging Clin. Exp. Res. 2016, 28, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef]
- Beauchet, O.; Allali, G.; Annweiler, C.; Bridenbaugh, S.; Assal, F.; Kressig, R.W.; Herrmann, F.R. Gait variability among healthy adults: Low and high stride-to-stride variability are both a reflection of gait stability. Gerontology 2009, 55, 702–706. [Google Scholar] [CrossRef]
- Dean, J.C.; Alexander, N.B.; Kuo, A.D. The effect of lateral stabilization on walking in young and old ddults. IEEE Trans. Biomed. Eng. 2007, 54, 1919–1926. [Google Scholar] [CrossRef]
- Samson, M.; Crowe, A.; Vreede, P.; Dessens, J.; Duursma, S.; Verhaar, H. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging 2001, 13, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-related differences in walking stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef]
- Ko, S.U.; Ling, S.; Winters, J.; Ferrucci, L. Age-related mechanical work expenditure during normal walking: The Baltimore longitudinal study of aging. J. Biomech. 2009, 42, 1834–1839. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R.; Sparrow, W.; Taylor, S. A comparison of treadmill and overground walking effects on step cycle asymmetry in young and older individuals. J. Appl. Biomech. 2013, 29, 188–193. [Google Scholar] [CrossRef]
- Lockhart, T.; Woldstad, J.; Smith, J. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 2003, 46, 1136–1160. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Masani, K. Effects of age on dynamic balance measures and their correlation during walking across the adult lifespan. Sci. Rep. 2022, 12, 14301. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, T.; Okamoto, S.; Akiyama, Y. Anterior and mediolateral dynamic gait stabilities attributed to different gait parameters in different age groups. J. Biomech. Sci. Eng. 2023, 19, 23-00183. [Google Scholar] [CrossRef]
- Antonelli, M.; Caselli, E.; Gastaldi, L. Comparison of gait smoothness metrics in healthy elderly and young people. Appl. Sci. 2024, 14, 911. [Google Scholar] [CrossRef]
- Watanabe, H.; Okamoto, S.; Kuroda, T.; Akiyama, Y. Manipulability analysis of anterior and mediolateral dynamic gait stability of young and elderly individuals. J. Robot. Mechatron. 2024, 36, 1568–1576. [Google Scholar] [CrossRef]
- Davoudi, M.; Salami, F.; Putz, C.; Wolf, S.I. Establishing reference data for electromyographic activity in gait: Age and gender variations. Appl. Sci. 2025, 15, 3472. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Jiang, X.; Liang, M.; Li, S.; Ugbolue, U.C.; Baker, J.S.; Gusztav, F.; Ma, X.; et al. A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis. Gait Posture 2024, 107, 293–305. [Google Scholar] [CrossRef]
- Kim, M.J.; Han, J.H.; Shin, W.C.; Hong, Y.S. Gait pattern identification using gait features. Electronics 2024, 13, 1956. [Google Scholar] [CrossRef]
- Slemenšek, J.; Fister, I.; Geršak, J.; Bratina, B.; van Midden, V.M.; Pirtošek, Z.; Šafarič, R. Human gait activity recognition machine learning methods. Sensors 2023, 23, 745. [Google Scholar] [CrossRef]
- Ejaz, N.; Khan, S.J.; Azim, F.; Asif, M.; Teuțan, E.; Pleșa, A.; Păcurar, R.; Stan, S.D. Automatic gait classification model empowered by machine learning for people with and without osteoporosis using smart walker. Appl. Sci. 2024, 14, 3874. [Google Scholar] [CrossRef]
- Mavrogiannis, C.; Baldini, F.; Wang, A.; Zhao, D.; Trautman, P.; Steinfeld, A.; Oh, J. Core challenges of social robot navigation: A survey. ACM Trans. Hum. Robot Interact. 2023, 12, 1–39. [Google Scholar] [CrossRef]
- Singamaneni, P.T.; Bachiller-Burgos, P.; Manso, L.J.; Garrell, A.; Sanfeliu, A.; Spalanzani, A.; Alami, R. A survey on socially aware robot navigation: Taxonomy and future challenges. Int. J. Robot. Res. 2024, 43, 1533–1572. [Google Scholar] [CrossRef]
- Begg, R.K.; Palaniswami, M.; Owen, B. Support vector machines for automated gait classification. IEEE Trans. Biomed. Eng. 2005, 52, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Nabila, M.; Mohammed, A.; Yousra, B. Gait-based human age classification using a silhouette model. IET Biom. 2018, 7, 116–124. [Google Scholar] [CrossRef]
- Davis, J.W. Visual categorization of children and adult walking styles. In Proceedings of the Audio- and Video-Based Biometric Person Authentication: 4th International Conference, AVBPA 2003, Guildford, UK, 9–11 June 2003; Springer: Berlin/Heidelberg, Germany, 2001; pp. 295–300. [Google Scholar]
- Zhang, D.; Wang, Y.; Bhanu, B. Age classification base on gait using HMM. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3834–3837. [Google Scholar] [CrossRef]
- Chuen, B.K.Y.; Tee, C.; Ong, T.S.; Ong, M.G.K. A preliminary study of gait-based age estimation techniques. In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, 16–19 December 2015; pp. 800–806. [Google Scholar]
- Urvashi; Kumar, D.; Malhotra, A. Age estimation from gait patterns using a Convolutional Neural Network and Support Vector Machine hybrid model. In Proceedings of the 2024 International Conference on Cybernation and Computation (CYBERCOM), Dehradun, India, 15–16 November 2024; pp. 531–534. [Google Scholar] [CrossRef]
- Makihara, Y.; Okumura, M.; Iwama, H.; Yagi, Y. Gait-based age estimation using a whole-generation gait database. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–6. [Google Scholar]
- Li, X.; Makihara, Y.; Xu, C.; Yagi, Y.; Ren, M. Gait-based human age estimation using age group-dependent manifold learning and regression. Multimed. Tools Appl. 2018, 77, 28333–28354. [Google Scholar] [CrossRef]
- Sakata, A.; Takemura, N.; Yagi, Y. Gait-based age estimation using multi-stage convolutional neural network. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 4. [Google Scholar] [CrossRef]
- Ahad, M.; Ngo, T.; Antar, A.; Ahmed, M.; Hossain, T.; Muramatsu, D.; Makihara, Y.; Inoue, S.; Yagi, Y. Wearable sensor-based gait analysis for age and gender estimation. Sensors 2020, 20, 2424. [Google Scholar] [CrossRef]
- Kuroda, T.; Okamoto, S.; Akiyama, Y. Walking-age estimator based on gait parameters. In Proceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 10–13 October 2023; pp. 345–347. [Google Scholar]
- Takano, W. Annotation generation from IMU-based human whole-body motions in daily life behavior. IEEE Trans. Hum. Mach. Syst. 2020, 50, 13–21. [Google Scholar] [CrossRef]
- Yang, D.; Huang, J.; Tu, X.; Ding, G.; Shen, T.; Xiao, X. A wearable activity recognition device using air-pressure and IMU sensors. IEEE Access 2019, 7, 6611–6621. [Google Scholar] [CrossRef]
- Kaichi, T.; Maruyama, T.; Tada, M.; Saito, H. Learning sensor interdependencies for IMU-to-segment assignment. IEEE Access 2021, 9, 116440–116452. [Google Scholar] [CrossRef]
- Ksibi, A.; Alluhaidan, A.S.D.; Salhi, A.; El-Rahman, S.A. Overview of Lifelogging: Current Challenges and Advances. IEEE Access 2021, 9, 62630–62641. [Google Scholar] [CrossRef]
- Huang, M.; Garcia, A. Dataset and system design for orthopedic walker fall detection and activity logging using motion classification. Appl. Sci. 2023, 13, 11379. [Google Scholar] [CrossRef]
- Oh, H.; Yoo, J. Real-time detection of at-risk movements using smartwatch IMU sensors. Appl. Sci. 2025, 15, 1842. [Google Scholar] [CrossRef]
- Kim, Y.K.; Joo, J.Y.; Jeong, S.H.; Jeon, J.H.; Jung, D.Y. Effects of walking speed and age on the directional stride regularity and gait variability in treadmill walking. J. Mech. Sci. Technol. 2016, 30, 2899–2906. [Google Scholar] [CrossRef]
- Schwesig, R.; Leuchte, S.; Fischer, D.; Ullmann, R.; Kluttig, A. Inertial sensor based reference gait data for healthy subjects. Gait Posture 2011, 33, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Teufl, W.; Lorenz, M.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Towards inertial sensor based mobile gait analysis: Event-detection and spatio-temporal parameters. Sensors 2019, 19, 38. [Google Scholar] [CrossRef]
- Tanabe, K.; Suzuki, T. Verification of the effectiveness of sensitivity analysis as a variable selection in support vector regression—analysis of factors affecting prefectural all-cause mortality rates. Proc. Inst. Stat. Math. 2020, 68, 175–192. [Google Scholar]
- Kobayashi, Y.; Hida, N.; Nakajima, K.; Fujimoto, M.; Mochimaru, M. AIST Gait Database 2019. 2019. Available online: https://unit.aist.go.jp/harc/ExPART/GDB2019.html (accessed on 1 February 2025).
- Kobayashi, Y.; Hobara, H.; Heldoorn, T.A.; Kouchi, M.; Mochimaru, M. Age-independent and age-dependent sex differences in gait pattern determined by principal component analysis. Gait Posture 2016, 46, 11–17. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Al Bochi, A.; Delfi, G.; Dutta, T. A scoping review on minimum foot clearance: An exploration of level-ground clearance in individuals with abnormal gait. Int. J. Environ. Res. Public Health 2021, 18, 10289. [Google Scholar] [CrossRef]
- Santhiranayagam, B.K.; Lai, D.T.H.; Sparrow, W.A.; Begg, R.K. Minimum toe clearance events in divided attention treadmill walking in older and young adults: A cross-sectional study. J. Neuroeng. Rehabil. 2015, 12, 58. [Google Scholar] [CrossRef]
- Sato, K. Factors affecting minimum foot flearance in the elderly walking: A multiple regression analysis. Open J. Ther. Rehabil. 2015, 3, 109–115. [Google Scholar] [CrossRef]
- Carter, S.; Saghafi, A. An exploration of the effects of gait speed and joint movements on minimum toe clearance across the lifespan: A cross-sectional study. J. Appl. Biomech. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Schrager, M.A.; Kelly, V.E.; Price, R.; Ferrucci, L.; Shumway-Cook, A. The effects of age on medio-lateral stability during normal and narrow base walking. Gait Posture 2008, 28, 466–471. [Google Scholar] [CrossRef]
- Barrett, R.; Mills, P.; Begg, R. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture 2010, 32, 429–435. [Google Scholar] [CrossRef]
- Inai, T.; Kobayashi, Y.; Huang, C.; Fujita, K.; Fujimoto, M.; Nihey, F.; Yamamoto, A.; Nakajima, K.; Nakahara, K.; Kutsuzawa, G.; et al. Identification of characteristics of foot position and angle during swing phase in fallers using principal component analysis. Front. Bioeng. Biotechnol. 2023, 11, 1117884. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Kakihana, W.; Kimura, T. Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration. J. Neuroeng. Rehabil. 2014, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Park, J.; Yun Kwon, O. Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clin. Biomech. 2004, 19, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Hediyeh, H.; Sayed, T.; Zaki, M.; Mori, G. Pedestrian gait analysis using automated computer vision techniques. Transp. A Transp. Sci. 2014, 10, 214–232. [Google Scholar] [CrossRef]
- Saxe, R.C.; Kappagoda, S.; Mordecai, D.K.A. Classification of pathological and normal gait: A survey. arXiv 2020, arXiv:2012.14465. [Google Scholar] [CrossRef]
- Zhao, A.; Li, J.; Dong, J.; Qi, L.; Zhang, Q.; Li, N.; Wang, X.; Zhou, H. Multimodal gait recognition for neurodegenerative diseases. IEEE Trans. Cybern. 2022, 52, 9439–9453. [Google Scholar] [CrossRef] [PubMed]
- Kiss, R.M. Effect of severity of knee osteoarthritis on the variability of gait parameters. J. Electromyogr. Kinesiol. 2011, 21, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Alkjaer, T.; Raffalt, P.C.; Dalsgaard, H.; Simonsen, E.B.; Petersen, N.C.; Bliddal, H.; Henriksen, M. Gait variability and motor control in people with knee osteoarthritis. Gait Posture 2015, 42, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bohara, R.; Rahman, A.; Indoria, R. Effect of different types of footwear on gait pattern—A scoping review. Int. J. Mod. Dev. Eng. Sci. 2024, 2, 16–19. [Google Scholar] [CrossRef]
- Riglet, L.; Nicol, F.; Leonard, A.; Eby, N.; Claquesin, L.; Orliac, B.; Ornetti, P.; Laroche, D.; Gueugnon, M. The use of embedded IMU insoles to assess gait parameters: A validation and test-retest reliability study. Sensors 2023, 23, 8155. [Google Scholar] [CrossRef]
- Napier, C.; Willy, R.W.; Hannigan, B.C.; McCann, R.; Menon, C. The effect of footwear, running speed, and location on the validity of two commercially available inertial measurement units during running. Front. Sport. Act. Living 2021, 3, 643385. [Google Scholar] [CrossRef]
Parameters | Means ± S.D. |
---|---|
Height (cm) | |
Weight (kg) | |
Minimum foot clearance (m) | |
Maximal mediolateral CoM speed (m/s) | |
Maximal anterior CoM speed (m/s) | |
Step width (m) | |
Stride length (m) | |
Cadence (steps/min) | |
Swing duration (%) |
Method | Correlation Coefficient Mean ± S.D. | Absolute Error (Year) Mean ± S.D. |
---|---|---|
Multiple regression analysis | ||
Kernel regression analysis (before variable selection) | ||
Kernel regression analysis (after variable selection) | ||
Kernel regression analysis (without height and weight) |
Explanatory Variables | Height | Weight | Maximum Mediolateral Velocity of CoM | Step Width | Stride Length | Intercept |
---|---|---|---|---|---|---|
Coefficient | 44.36 | |||||
t-value | 25.10 | |||||
p-value | < | < | < | < | < | < |
Parameters | Weight | Minimum Foot Clearance | Anterior Velocity of CoM | Step Width | Stride Length |
---|---|---|---|---|---|
Sensitivity |
Model | Explanatory Variables |
---|---|
Kernel regression analysis (before variable selection) | Height |
Weight | |
Minimum foot clearance | |
Mediolateral velocity of CoM | |
Anterior velocity of CoM | |
Step width | |
Stride length | |
Cadence | |
Swing duration | |
Kernel regression analysis (after variable selection) | Weight |
Minimum foot clearance | |
Anterior velocity of CoM | |
Step width | |
Stride length | |
Multiple regression analysis | Height |
Weight | |
Mediolateral velocity of CoM | |
Step width | |
Stride length | |
Kernel regression analysis (excluding weight and height) | Minimum foot clearance |
Mediolateral velocity of CoM | |
Anterior velocity of CoM | |
Step width | |
Stride length | |
Swing duration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuroda, T.; Okamoto, S.; Akiyama, Y. Walking-Age Estimator Based on Gait Parameters Using Kernel Regression. Appl. Sci. 2025, 15, 5825. https://doi.org/10.3390/app15115825
Kuroda T, Okamoto S, Akiyama Y. Walking-Age Estimator Based on Gait Parameters Using Kernel Regression. Applied Sciences. 2025; 15(11):5825. https://doi.org/10.3390/app15115825
Chicago/Turabian StyleKuroda, Tomohito, Shogo Okamoto, and Yasuhiro Akiyama. 2025. "Walking-Age Estimator Based on Gait Parameters Using Kernel Regression" Applied Sciences 15, no. 11: 5825. https://doi.org/10.3390/app15115825
APA StyleKuroda, T., Okamoto, S., & Akiyama, Y. (2025). Walking-Age Estimator Based on Gait Parameters Using Kernel Regression. Applied Sciences, 15(11), 5825. https://doi.org/10.3390/app15115825