Anthropometric Measurements from a 3D Photogrammetry-Based Digital Avatar: A Non-Experimental Cross-Sectional Study to Assess Reliability and Agreement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Anthropometric Measurements
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klipstein-Grobusch, K.; Georg, T.; Boeing, H. Interviewer variability in anthropometric measurements and estimates of body composition. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S174–S180. [Google Scholar] [CrossRef] [PubMed]
- Sebo, P.; Haller, D.; Pechère-Bertschi, A.; Bovier, P.; Herrmann, F. Accuracy of doctors’ anthropometric measurements in general practice. Swiss Med. Wkly. 2015, 145, w14115. [Google Scholar] [CrossRef] [PubMed]
- Hoover-Fong, J.; Semler, O.; Barron, B.; Collett-Solberg, P.F.; Fung, E.; Irving, M.; Kitaoka, T.; Koerner, C.; Okada, K.; Palm, K.; et al. Considerations for Anthropometry Specific to People with Disproportionate Short Stature. Adv. Ther. 2025, 42, 1291–1311. [Google Scholar] [CrossRef] [PubMed]
- Medina-Inojosa, J.; Somers, V.K.; Ngwa, T.; Hinshaw, L.; Lopez-Jimenez, F. Reliability of a 3D Body Scanner for Anthropometric Measurements of Central Obesity. Obes. Open Access 2016, 2. [Google Scholar] [CrossRef]
- Robinette, K.M.; Vannier, M.W.; Rioux, M.; Jones, P.R.M.; Working Group 20 of the Aerospace Medical Panel of AGARD (Advisory Group for Aerospace Research & Development). REPORT 329—3-D Surface Anthropometry: Review of Technologies; North Atlantic Treaty Organization (NATO): Paris, France, 1997. [Google Scholar]
- Koepke, N.; Zwahlen, M.; Wells, J.C.; Bender, N.; Henneberg, M.; Rühli, F.J.; Staub, K. Comparison of 3D laser-based photonic scans and manual anthropometric measurements of body size and shape in a validation study of 123 young Swiss men. PeerJ 2017, 5, e2980. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, S.; Immins, T.; Wainwright, T.W. Volumetric assessment of lower limb oedema using 3D laser scanning technique: A systematic review. J. Med. Eng. Technol. 2022, 46, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Mocini, E.; Cammarota, C.; Frigerio, F.; Muzzioli, L.; Piciocchi, C.; Lacalaprice, D.; Buccolini, F.; Donini, L.M.; Pinto, A. Digital Anthropometry: A Systematic Review on Precision, Reliability and Accuracy of Most Popular Existing Technologies. Nutrients 2023, 15, 302. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Paraskevopoulos, I.T.; Sala, M.; Tarabini, M.; Galli, M. The smart body concept as a demonstration of the overarching utility and benefits of 3D avatars in retail, health and wellbeing: An accuracy study of body measures from 3D reconstruction. Multimed. Tools Appl. 2023, 82, 11079–11098. [Google Scholar] [CrossRef] [PubMed]
- Chokphukhiao, C.; Pattaranit, P.; Tun, W.; Masa, S.; Leemananil, R.; Natteerapong, N.; Phetcharaburanin, J.; Boonlue, S.; Sunat, K.; Patramanon, R. Improving health awareness with real-time monitoring through a three-dimensional visualized digital health avatar. Smart Health 2024, 34, 100522. [Google Scholar] [CrossRef]
- Kottner, J.; Audigé, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J. Clin. Epidemiol. 2011, 64, 96–106. [Google Scholar] [CrossRef] [PubMed]
- ISO 7250-1:2017; Basic Human Body Measurements for Technological Design. Part 1: Body Measurement Definitions and Landmarks. ISO: Geneva, Switzerland, 2017.
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.R.; Freeland-Graves, J.H.; Yu, W.; Stanforth, P.R.; Xu, B. Evaluation of a rotary laser body scanner for body volume and fat assessment. J. Test. Eval. 2010, 39, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Moore, M.L.; Dellinger, J.R.; Adamson, B.T.; Benavides, M.L. Digital anthropometry via three-dimensional optical scanning: Evaluation of four commercially available systems. Eur. J. Clin. Nutr. 2020, 74, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Ashby, N.; Jake LaPorte, G.; Richardson, D.; Scioletti, M.; Heymsfield, S.B.; Shepherd, J.A.; McGurk, M.; Bustillos, B.; Gist, N.; Thomas, D.M. Translating digital anthropometry measurements obtained from different 3D body image scanners. Eur. J. Clin. Nutr. 2023, 77, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Kouchi, M.; Mochimaru, M.; Bradtmiller, B.; Daanen, H.; Li, P.; Nacher, B.; Nam, Y. A protocol for evaluating the accuracy of 3D body scanners. Work 2012, 41 (Suppl. S1), 4010–4017. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, A.; Wischniewski, S.; Bonin, D.; Gaida, A.-K.; Jaitner, T. Validation of a 3D whole-body scanning system to collect anthropometric data from a working-age population for ergonomic design. Int. J. Ind. Ergon. 2025, 105, 103698. [Google Scholar] [CrossRef]
- Keizer, R.; Dubay, R.; Waugh, L.; Bradley, C. Architecture for a Mobile Robotic Camera Positioning System for Photogrammetric Data Acquisition in Hydroelectric Tunnels. Sensors 2023, 23, 7079. [Google Scholar] [CrossRef] [PubMed]
- Kouchi, M.; Mochimaru, M. Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry. Appl. Ergon. 2011, 42, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri Lopez, M.; Matthes, K.L.; Sob, C.; Bender, N.; Staub, K. Associations between 3D surface scanner derived anthropometric measurements and body composition in a cross-sectional study. Eur. J. Clin. Nutr. 2023, 77, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Briguglio, M.; Wainwright, T.W. Towards Personalised Nutrition in Major Orthopaedic Surgery: Elements of Care Process. Nutrients 2025, 17, 700. [Google Scholar] [CrossRef] [PubMed]
Parameter | Cohort (n = 53) | Females (n = 34) | Males (n = 19) |
---|---|---|---|
Age (years) | 34.02 (11.94) [18; 67] | 34.3 (10.83) [21; 64] | 33.53 (14) [18; 67] |
Body mass index (kg∙m−2) | 22.49 (4.04) [17; 38] | 21.73 (3.82) [17; 38] | 23.86 (4.16) [19; 38] |
Neck (cm) | 33.83 (3.35) [29; 44] | 31.9 (2.03) [29; 39] | 37.28 (2.31) [35; 44] |
Armpit, right (cm) | 41.00 (4.81) [33; 54] | 38.94 (4.04) [33; 53] | 44.89 (3.64) [40; 54] |
Armpit, left (cm) | 41.27 (4.93) [33; 56] | 39.2 (4.5) [33; 56] | 44.97 (3.25) [40; 51] |
Bicep, right (cm) | 27.18 (3.54) [22; 38] | 25.81 (2.93) [22; 35] | 29.64 (3.25) [24; 38] |
Bicep, left (cm) | 27.08 (3.52) [22; 38] | 25.77 (2.88) [22; 36] | 29.42 (3.4) [24; 38] |
Elbow, right (cm) | 24.24 (2.5) [20; 33] | 23.05 (1.81) [20; 29] | 26.36 (2.17) [23; 33] |
Elbow, left (cm) | 24.20 (2.49) [21; 32] | 23.01 (1.88) [21; 30] | 26.32 (2.01) [23; 32] |
Wrist, right (cm) | 15.45 (1.30) [13; 19] | 14.81 (0.96) [13; 18] | 16.59 (1.03) [15; 19] |
Wrist, left (cm) | 15.38 (1.28) [13; 19] | 14.75 (0.93) [13; 17] | 16.51 (1.01) [15; 19] |
Chest (cm) | 90.60 (8.59) [79; 115] | 86.51 (6.44) [79; 107] | 97.92 (6.98) [88; 115] |
Breast (cm) | 91.42 (9.65) [78; 122] | 88.99 (9.07) [78; 122] | 95.77 (9.34) [85; 121] |
Waist (cm) | 76.00 (11.63) [62; 117] | 72.11 (9.96) [62; 113] | 82.95 (11.36) [68; 117] |
Belly (cm) | 83.11 (13.40) [45; 126] | 81.74 (11.52) [68; 126] | 85.56 (16.3) [45; 126] |
Hip (cm) | 95.78 (9.40) [84; 135] | 95.48 (10.04) [84; 135] | 96.33 (8.37) [87; 117] |
Thigh, right (cm) | 50.75 (4.26) [42; 64] | 49.98 (4.28) [42; 64] | 52.13 (3.96) [47; 63] |
Thigh, left (cm) | 50.61 (4.11) [42; 64] | 49.79 (4.09) [42; 64] | 52.09 (3.8) [48; 63] |
Knee, right (cm) | 37.37 (3.13) [31; 49] | 36.6 (3.13) [31; 49] | 38.75 (2.68) [36; 47] |
Knee, left (cm) | 37.39 (3.15) [32; 48] | 36.68 (3.12) [32; 48] | 38.67 (2.85) [35; 48] |
Calf, right (cm) | 36.04 (2.95) [30; 46] | 35.18 (2.63) [30; 44] | 37.58 (2.93) [34; 46] |
Calf, left (cm) | 36.06 (2.76) [31; 44] | 35.17 (2.5) [31; 44] | 37.67 (2.51) [35; 44] |
Ankle, right (cm) | 24.59 (1.88) [20; 29] | 23.58 (1.34) [20; 27] | 26.4 (1.25) [24; 29] |
Ankle, left (cm) | 24.42 (1.78) [22; 28] | 23.48 (1.25) [22; 27] | 26.09 (1.28) [24; 28] |
Intervention | ICC 95% CI | % Within 1 cm | SEM (cm) | CV% | Bland–Altman |
---|---|---|---|---|---|
Neck | 0.958 [0.850; 0.983] | 60.4% | 0.578 | 2.42 | −0.594 [−2.197; 1.009], 5 |
Armpit, dx | 0.919 [0.794; 0.965] | 53.8% | 1.152 | 3.97 | −1.137 [−4.329; 2.054], 4 |
Armpit, sx | 0.895 [0.758; 0.948] | 52.8% | 1.458 | 5.00 | −1.159 [−5.200; 2.883], 4 |
Bicep, dx | 0.992 [0.980; 0.996] | 94.3% | 0.281 | 1.46 | −0.215 [−0.995; 0.566], 4 |
Bicep, sx | 0.994 [0.975; 0.997] | 98.1% | 0.228 | 1.19 | −0.237 [−0.869; 0.395], 4 |
Elbow, dx | 0.996 [0.993; 0.998] | 100.0% | 0.160 | 0.93 | −0.053 [−0.496; 0.391], 3 |
Elbow, sx | 0.995 [0.992; 0.997] | 100.0% | 0.166 | 0.97 | −0.058 [−0.518; 0.401], 5 |
Wrist, dx | 0.954 [0.895; 0.977] | 96.2% | 0.266 | 2.44 | −0.195 [−0.933; 0.544], 4 |
Wrist, sx | 0.945 [0.872; 0.973] | 94.3% | 0.280 | 2.58 | −0.214 [−0.991; 0.562], 3 |
Chest | 0.917 [0.717; 0.966] | 25.0% | 2.317 | 3.62 | −2.441 [−8.863; 3.982], 3 |
Breast | 0.988 [0.971; 0.994] | 77.4% | 0.965 | 1.49 | −0.700 [−3.373; 1.974], 3 |
Waist | 0.979 [0.945; 0.990] | 62.3% | 1.494 | 2.78 | −1.198 [−5.341; 2.944], 1 |
Belly | 0.918 [0.861; 0.952] | 75.5% | 3.655 | 6.22 | −1.199 [−11.330; 8.932], 1 |
Hip | 0.997 [0.995; 0.998] | 88.7% | 0.517 | 0.76 | −0.132 [−1.565; 1.302], 4 |
Thigh, dx | 0.997 [0.995; 0.998] | 96.2% | 0.218 | 0.61 | −0.069 [−0.673; 0.535], 2 |
Thigh, sx | 0.997 [0.995; 0.998] | 98.1% | 0.223 | 0.62 | −0.024 [−0.642; 0.594], 2 |
Knee, dx | 0.995 [0.992; 0.997] | 98.1% | 0.212 | 0.80 | −0.046 [−0.635; 0.542], 3 |
Knee, sx | 0.990 [0.983; 0.994] | 92.5% | 0.316 | 1.19 | −0.056 [−0.931; 0.819], 6 |
Calf, dx | 0.994 [0.990; 0.997] | 98.1% | 0.213 | 0.84 | 0.087 [−0.503; 0.677], 4 |
Calf, sx | 0.991 [0.981; 0.995] | 96.2% | 0.235 | 0.92 | 0.154 [−0.498; 0.806], 2 |
Ankle, dx | 0.974 [0.953; 0.985] | 98.1% | 0.291 | 1.67 | 0.132 [−0.674; 0.937], 2 |
Ankle, sx | 0.956 [0.913; 0.976] | 92.5% | 0.341 | 1.97 | 0.207 [−0.738; 1.152], 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briguglio, M.; Latella, M.; Borghi, S.; Bizzozero, S.; Imperiali, L.; Wainwright, T.W.; Vitale, J.A.; Banfi, G. Anthropometric Measurements from a 3D Photogrammetry-Based Digital Avatar: A Non-Experimental Cross-Sectional Study to Assess Reliability and Agreement. Appl. Sci. 2025, 15, 5738. https://doi.org/10.3390/app15105738
Briguglio M, Latella M, Borghi S, Bizzozero S, Imperiali L, Wainwright TW, Vitale JA, Banfi G. Anthropometric Measurements from a 3D Photogrammetry-Based Digital Avatar: A Non-Experimental Cross-Sectional Study to Assess Reliability and Agreement. Applied Sciences. 2025; 15(10):5738. https://doi.org/10.3390/app15105738
Chicago/Turabian StyleBriguglio, Matteo, Marialetizia Latella, Stefano Borghi, Sara Bizzozero, Lucia Imperiali, Thomas W. Wainwright, Jacopo A. Vitale, and Giuseppe Banfi. 2025. "Anthropometric Measurements from a 3D Photogrammetry-Based Digital Avatar: A Non-Experimental Cross-Sectional Study to Assess Reliability and Agreement" Applied Sciences 15, no. 10: 5738. https://doi.org/10.3390/app15105738
APA StyleBriguglio, M., Latella, M., Borghi, S., Bizzozero, S., Imperiali, L., Wainwright, T. W., Vitale, J. A., & Banfi, G. (2025). Anthropometric Measurements from a 3D Photogrammetry-Based Digital Avatar: A Non-Experimental Cross-Sectional Study to Assess Reliability and Agreement. Applied Sciences, 15(10), 5738. https://doi.org/10.3390/app15105738