Effects of Nordic Exercises on Hamstring Strength and Vertical Jump Performance in Lower Limbs Across Different Sports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedures
- 1.
- Pretest phase:
- a.
- Athletes were grouped by sport at their training facilities for study briefing and consent.
- b.
- Randomization assigned participants to CG or EG using a standardized draw.
- c.
- Pretest evaluations occurred at training sites (Monday post-rest weekend), with coach/athlete approval.
- d.
- Pilot data indicated 13 min per athlete for evaluations.
- 2.
- NHE Training phase:
- a.
- Starting position:
- Kneel on a padded surface, torso upright and facing forward.
- A partner/therapist stabilizes the ankles. ”Kneel on a padded surface”.
- b.
- Activation and descent:
- Stabilize the trunk by contracting the glutes, core, and back muscles.
- Keep arms unsupported (extended or relaxed).
- 3.
- Post-test phase:
- Standardized 20-min warm-up (pre- and post-test).
- General-to-specific joint mobility (proximal-to-distal, upper/lower limbs).
- Ground-level jogging.
- Squats, deadlifts, and bridges: 3 sets × 10 s tension/10 s rest.
- Quadriceps/hamstring stretching: 2 sets × 10 s hold.
2.4. NHE Training Protocol (Table 1)
- Volume Progression:
- Weeks 2–4: 2 sets/session.
- Weeks 5–8: 3 sets/session.
- Repetition Scheme:
- Increase by 2 reps/week until Week 6, then maintain.
- Eccentric Tension:
- Start: 2 s eccentric hold; progress to 5 s.
- Rest and Duration:
- There is a 2-min inter-set rest; total session: 23–25 min.
Weeks | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Warm-up—minutes | P R E - T E S T | 15 | 15 | 15 | 15 | 15 | 15 | 15 | P O S T - T E S T |
Series | 2 | 2 | 2 | 3 | 3 | 3 | 3 | ||
Repetitions | 5 | 6 | 8 | 10 | 12 | 12 | 10 | ||
Eccentric tension in seconds | 2 | 2 | 3 | 3 | 5 | 5 | 3 | ||
Rest in minutes | 2 | 2 | 2 | 1 | 1 | 1 | 1 | ||
Cool-down in minutes | 5 | 5 | 5 | 5 | 5 | 5 | 5 | ||
Total time in minutes | 23 | 23 | 23 | 24 | 25 | 25 | 24 |
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Practical Applications
- (1)
- As described in this study, after applying an NHE protocol to athletes from various sport disciplines, the focus was placed on improving absolute strength and vertical jump. The findings indicate that not all sports lead to gains in these physical capacities.
- (2)
- In this context, physicians, physiotherapists, and other professionals knowledgeable about the protocol can tailor the strength training program to suit the athlete’s current phase within the macrocycle.
- (3)
- Based on the results, vertical jump performance improved in most of the studied disciplines except cycling and taekwondo; therefore, its application may be more appropriate for sports where Nordic stimulation has demonstrated positive effects.
- (4)
- With respect to absolute strength, the implemented protocol showed positive effects, particularly in basketball and soccer.
- (5)
- The scope of the 7-week Nordic training protocol appears to have limited effects; thus, the observed improvements may be temporary or influenced by load management within each macrocycle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bompa, T.O.; Buzzichelli, C. Periodization of Strength Training for Sports, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Calero-Morales, S.; Vinueza-Burgos, G.D.; Yance-Carvajal, C.L.; Paguay-Balladares, W.J. Gross Motor Development in Preschoolers through Conductivist and Constructivist Physical Recreational Activities: Comparative Research. Sports 2023, 11, 61. [Google Scholar] [CrossRef]
- Edouard, P.; Caumeil, B.; Giroux, C.; Bruneau, A.; Tondut, J.; Navarro, L.; Hanon, C.; Guilhem, G.; Ruffault, A. Epidemiology of injury complaints in elite sprinting athletes in athletics (track and field). Appl. Sci. 2023, 13, 8105. [Google Scholar] [CrossRef]
- Biz, C.; Nicoletti, P.; Baldin, G.; Bragazzi, N.L.; Crimì, A.; Ruggieri, P. Hamstring Strain Injury (HSI) Prevention in Professional and Semi-Professional Football Teams: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 8272. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Danelon, F.; La Rosa, G.; Nanni, G.; Stride, M.; Della Villa, F. Recommendations for hamstring function recovery after ACL reconstruction. Sports Med. 2021, 51, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Milić, V.; Radenković, O.; Čaprić, I.; Mekić, R.; Trajković, N.; Špirtović, O.; Koničanin, A.; Bratić, M.; Mujanović, R.; Preljević, A.; et al. Sports injuries in basketball, handball, and volleyball players: Systematic review. Life 2025, 15, 529. [Google Scholar] [CrossRef]
- Jeffreys, I.; Moody, J. Strength and Conditioning for Sports Performance, 2nd ed.; Routledge: New York, NY, USA, 2021. [Google Scholar]
- Augustsson, J.; Alt, T.; Andersson, H. Speed matters in the Nordic hamstring exercise: Higher peak knee flexor force during fast stretch-shortening variant compared to the standard slow eccentric execution in elite athletes. Sports 2023, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Kasper, K. Sports Training Principles. Curr. Sports Med. Rep. 2019, 18, 95–96. [Google Scholar] [CrossRef]
- Paredes-Gómez, R.; Potosí-Moya, V. Análisis del protocolo de curl nórdico en la flexibilidad de los deportistas. Retos 2023, 48, 720–726. [Google Scholar] [CrossRef]
- Gómez-Piqueras, P.; Martínez-Serrano, A.; Freitas, T.T.; Gómez Díaz, A.; Loturco, I.; Giménez, E.; Brito, J.; García-López, D.; Giuria, H.; Granero-Gil, P.; et al. Weekly Programming of Hamstring-Related Training Contents in European Professional Soccer. Sports 2024, 12, 73. [Google Scholar] [CrossRef]
- Lee, J.W.; Mok, K.M.; Chan, H.C.; Yung, P.S.; Chan, K.M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. J. Sci. Med. Sport. 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Patiño, B.A.; Uribe, J.D.; Valderrama, V. Análisis bibliométrico de la pliometría en el deporte: 40 años de producción científica. Retos Nuevas Tend. En. Educ. Física Deporte Y Recreación 2024, 53, 183–195. [Google Scholar] [CrossRef]
- Franchina, M.; Turati, M.; Tercier, S.; Kwiatkowski, B. FIFA 11+ Kids: Challenges in implementing a prevention program. J. Child. Orthop. 2023, 17, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Freeman, B.W.; Young, W.B.; Talpey, S.W.; Smyth, A.M.; Pane, C.L.; Carlon, T.A. The Effects of sprint training and Nordic hamstring exercise on eccentric hamstring strength and sprint performance in adolescent athletes. J. Sports Med. Phys. Fit. 2019, 59, 1119–1125. [Google Scholar] [CrossRef]
- Van de Hoef, P.A.; Brink, M.S.; Huisstede, B.M.; van Smeden, M.; de Vries, N.; Goedhart, E.A.; Gouttebarge, V.; Backx, F.J.G. Does a bounding exercise program prevent hamstring injuries in adult male soccer players? A cluster-RCT. Scand. J. Med. Sci. Sports 2019, 29, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Rudisill, S.S.; Varady, N.H.; Kucharik, M.P.; Eberlin, C.T.; Martin, S.D. Evidence-based hamstring injury prevention and risk factor management: A systematic review and meta-analysis of randomized controlled trials. Am. J. Sports Med. 2023, 51, 1927–1942. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, A.; Horvath, A.; Senorski, C.; Alentorn-Geli, E.; Garrett, W.E.; Cugat, R.; Samuelsson, K.; Senorski, E.H. The mechanism of hamstring injuries: A systematic review. BMC Musculoskelet. Disord. 2020, 21, 641. [Google Scholar] [CrossRef]
- Ribeiro-Alvares, J.B.; Dornelles, M.P.; Fritsch, C.G.; de Lima-E-Silva, F.X.; Medeiros, T.M.; Severo-Silveira, L.; Bernardes Marques, V.; Manfredini Baroni, B. Prevalence of hamstring strain injury risk factors in professional and under-20 male football (soccer) players. J. Sport Rehabil. 2020, 29, 339–345. [Google Scholar] [CrossRef]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef]
- Kalema, R.N.; Schache, A.G.; Williams, M.D.; Heiderscheit, B.; Trajano, G.S.; Shield, A.J. Sprinting biomechanics and hamstring injuries: Is there a link? A literature review. Sports 2021, 9, 141. [Google Scholar] [CrossRef]
- Reis, F.J.; Macedo, A.R. Influence of hamstring tightness in pelvic, lumbar, and trunk range of motion in low back pain and asymptomatic volunteers during forward bending. Asian Spine J. 2015, 9, 535–540. [Google Scholar] [CrossRef]
- Willauschus, M.; Rüther, J.; Millrose, M.; Walcher, M.; Lambert, C.; Bail, H.J.; Geßlein, M. Foot and ankle injuries in elite taekwondo athletes: A 4-year descriptive analysis. Orthop. J. Sports Med. 2021, 9, 23259671211061112. [Google Scholar] [CrossRef]
- Sugiura, Y.; Sakuma, K.; Fujita, S.; Aoki, K.; Takazawa, Y. Effects of various numbers of runs on the success of hamstring injury prevention program in sprinters. Int. J. Environ. Res. Public Health 2022, 19, 9375. [Google Scholar] [CrossRef] [PubMed]
- Nuell, S.; Illera-Dominguez, V.; Carmona, G.; Macadam, P.; Lloret, M.; Padullés, J.M.; Alomar, X.; Cadefau, J.A. Hamstring muscle volume as an indicator of sprint performance. J. Strength. Cond. Res. 2021, 35, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Minghelli, B.; Machado, L.; Capela, R. Musculoskeletal injuries in taekwondo athletes: A nationwide study in Portugal. Rev. Assoc. Med. Bras. 2020, 66, 124–132. [Google Scholar] [CrossRef]
- MacKenzie, R.; Monaghan, L.; Masson, R.A.; Werner, A.K.; Caprez, T.S.; Johnston, L.; Kemi, O.J. Physical and physiological determinants of rock climbing. Int. J. Sports Physiol. Perform. 2020, 15, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Donti, O.; Papia, K.; Toubekis, A.; Donti, A.; Sands, W.A.; Bogdanis, G.C. Flexibility training in preadolescent female athletes: Acute and long-term effects of intermittent and continuous static stretching. J. Sports Sci. 2018, 36, 1453–1460. [Google Scholar] [CrossRef]
- Smajla, D.; Kozinc, Z.; Šarabon, N. Associations between lower limb eccentric muscle capability and change of direction speed in basketball and tennis players. PeerJ 2022, 10, e13439. [Google Scholar] [CrossRef]
- Kotler, D.H.; Babu, A.N.; Robidoux, G. Prevention, evaluation, and rehabilitation of cycling-related injury. Curr. Sports Med. Rep. 2016, 15, 199–206. [Google Scholar] [CrossRef]
- Tumiñá-Ospina, D.M.; Rivas-Campo, Y.; García-Garro, P.A.; Gómez-Rodas, A.; Afanador, D.F. Efectividad de los ejercicios nórdicos sobre la incidencia de lesiones de isquiotibiales en futbolistas profesionales y amateur masculinos entre los 15 y 41 años. Revisión sistemática. Rev. Iberoam. Cienc. Act. Fís Deporte 2022, 11, 47–65. [Google Scholar] [CrossRef]
- Huygaerts, S.; Cos, F.; Cohen, D.D.; Calleja-González, J.; Guitart, M.; Blazevich, A.J.; Alcaraz, P.E. Mechanisms of hamstring strain injury: Interactions between Fatigue, Muscle Activation and function. Deportes 2020, 8, 65. [Google Scholar] [CrossRef]
- Sharma, V.; Desai, S.; Devare, N. The Role of the Nordic Hamstring Curl in the Rehabilitation of Hamstring Injuries: A Narrative Review. Parul Univ. J. Health Sci. Res. 2023, 2, 23–30. [Google Scholar] [CrossRef]
- Saleh, A.; Al Attar, W.; Faude, O.; Husain, M.A.; Soomro, N.; Sanders, R.H. Combining the Copenhagen Adduction Exercise and Nordic Hamstring Exercise Improves Dynamic Balance Among Male Athletes: A Randomized Controlled Trial. Sports Health 2021, 13, 580–587. [Google Scholar] [CrossRef]
- Cuthbert, M.; Ripley, N.; McMahon, J.J.; Evans, M.; Haff, G.G.; Comfort, P. The Effect of Nordic Hamstring Exercise Intervention Volume on Eccentric Strength and Muscle Architecture Adaptations: A Systematic Review and Meta-analyses. Sports Med. 2020, 50, 83–99. [Google Scholar] [CrossRef]
- Edouard, P.; Pollock, N.; Guex, K.; Kelly, S.; Prince, C.; Navarro, L.; Branco, P.; Depiesse, F.; Gremeaux, V.; Hollander, K. Hamstring muscle injuries and hamstring specific training in elite athletics (Track and Field) Athletes. Int. J. Environ. Res. Public Health 2022, 19, 10992. [Google Scholar] [CrossRef]
- Nunes, H.; Fernandes, L.G.; Martins, P.N.; Ferreira, R.M. The Effects of Nordic Hamstring Exercise on Performance and Injury in the Lower Extremities: An Umbrella Review. Healthcare 2024, 12, 1462. [Google Scholar] [CrossRef] [PubMed]
- Siedlecki, S.L. Quasi-Experimental Research Designs. Clin. Nurse Spec. 2020, 34, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Manor, J.; Bunn, J.; Bohannon, R.W. Validity and reliability of jump height measurements obtained from Nonathletic populations with the VERT device. J. Geriatr. Phys. Ther. 2020, 43, 20–23. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P.; Montaño-Munuera, J.A. Validity and Reliability of a Low-Cost Digital Dynamometer for Measuring Isometric Strength of Lower Limb. J. Sports Sci. 2017, 35, 2179–2184. [Google Scholar] [CrossRef]
- Van der Horst, N.; Smits, D.W.; Petersen, J.; Goedhart, E.A.; Backx, F.J. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: A randomized controlled trial. Inj. Prev. Am. J. Sports Med. 2015, 20, e8. [Google Scholar] [CrossRef]
- Hu, C.; Du, Z.; Tao, M.; Song, Y. Effects of Different Hamstring Eccentric Exercise Programs on Preventing Lower Extremity Injuries: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health. 2023, 20, 2057. [Google Scholar] [CrossRef]
- Capaverde, V.D.; Oliveira, G.D.; de Lima-E-Silva, F.X.; Ribeiro-Alvares, J.B.; Baroni, B.M. Do age and body size affect the eccentric knee flexor strength measured during the Nordic hamstring exercise in male soccer players? Sports Biomech. 2021, 23, 2157–2167. [Google Scholar] [CrossRef]
- Raya-González, J.; Castillo, D.; Clemente, F.M. Injury prevention of hamstring injuries through exercise interventions. J. Sports Med. Phys. Fit. 2021, 61, 1242–1251. [Google Scholar] [CrossRef]
- Ishøi, L.; Krommes, K.; Husted, R.S.; Juhl, C.B.; Thorborg, K. Diagnosis, prevention and treatment of common lower extremity muscle injuries in sport—Grading the evidence: A statement paper commissioned by the Danish Society of Sports Physical Therapy (DSSF). Br. J. Sports Med. 2020, 54, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Al Attar, W.S.; Soomro, N.; Sinclair, P.J.; Pappas, E.; Sanders, R.H. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: A systematic review and meta-analysis. Sports Med. 2017, 47, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Vianna, K.B.; Rodrigues, L.G.; Oliveira, N.T.; Ribeiro-Alvares, J.B.; Baroni, B.M. A preseason training program with the Nordic hamstring exercises increases eccentric knee flexor strength and fascicle length in professional female soccer players. Int. J. Sports Phys. Ther. 2021, 16, 459–467. [Google Scholar] [CrossRef]
- de Villarreal, E.S.; Molina, J.G.; de Castro-Maqueda, G.; Gutiérrez-Manzanedo, J.V. Effects of plyometric, strength and change of direction training on high-school basketball player’s Physical Fitness. J. Hum. Kinet. 2021, 78, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef]
- Whyte, E.F.; Heneghan, B.; Feely, K.; Moran, K.A.; O’Connor, S. The effect of hip extension and Nordic hamstring exercise protocols on hamstring strength: A randomized controlled trial. J. Strength Cond. Res. 2021, 35, 2682–2689. [Google Scholar] [CrossRef]
- Llurda-Almuzara, L.; Labata-Lezaun, N.; López-de-Celis, C.; Aiguadé-Aiguadé, R.; Romaní-Sánchez, S.; Rodríguez-Sanz, J.; Fernández-de-Las-Peñas, C.; Pérez-Bellmunt, A. Biceps femoris activation during hamstring strength exercises: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 8733. [Google Scholar] [CrossRef]
- Cardozo, L.A.; Moreno-Jiménez, J. Valoración de la fuerza explosiva en deportistas de taekwondo: Una revisión sistemática. Kronos 2018, 17, 1–15. Available online: https://revistakronos.info/articulo/valoracion-de-la-fuerza-explosiva-en-deportistas-de-taekwondo-una-revision-sistematica-2430-sa-y5b4e14fcec173 (accessed on 29 April 2025).
- Drury, B.; Peacock, D.; Moran, J.; Cone, C.; Campillo, R.R. Different interset rest intervals during the Nordic hamstring exercise in young male athletes. J. Athl. Train. 2021, 56, 952–959. [Google Scholar] [CrossRef] [PubMed]
Variable | EG | CG | t Value | p |
---|---|---|---|---|
Age | 18.2 ± 3.2 | 18.6 ± 3.4 | 0.44 | 0.6 |
Gender | ||||
Female | 23.0% | 22.1% | - | - |
Male | 30.3% | 24.6% | - | - |
Experience (years) | 3.6 ± 4.11 | 3.7 ± 3.89 | 0.1 | 0.5 |
Dominant absolute strength I | 12.4 ± 0.51 | 12.5 ± 0.48 | 1.19 | 0.5 |
Non-dominant absolute strength I | 11.1 ± 0.42 | 11.5 ± 0.48 | 0.56 | 0.7 |
Vertical jump | 42.4 ± 1.02 | 40.5 ± 1.36 | −1.1 | 0.7 |
Group | Experimental | Control | ||||||
---|---|---|---|---|---|---|---|---|
Characteristics | Pretest | Post-test | t value | p | Pretest | Post-test | t value | p |
Dominant A.S | 12.4 ± 0.51 | 14.5 ± 0.98 | −3.47 | - | 12.5 ± 0.48 | 12.52 ± 0.48 | −0.18 | 0.85 |
Non-dominant A.S | 11.1 ± 0.42 | 13.8 ± 0.81 | −2.8 | - | 11.5 ± 0.48 | 11.61 ± 0.44 | −0.33 | 0.74 |
Vertical jump | 42.4 ± 1.02 | 45.8 ± 1.5 | −4.5 | - | 40.5 ± 1.4 | 39.8 ± 1.2 | −1.3 | 0.17 |
Characteristics | CG | EG | t Value | p |
---|---|---|---|---|
Dominant A.S | 12.52 ± 0.48 | 14.5 ± 0.98 | −2.22 | - |
Non-dominant A.S | 11.61 ± 0.44 | 13.8 ± 0.81 | −1.7 | - |
V.J | 39.84 ± 1.21 | 45.8 ± 1.5 | −3.59 | - |
Strength | Effect | F | p | ηp2 |
---|---|---|---|---|
S.A dominant | T × G | 6.63 | - | 0.04 |
T × S × G | 2.74 | 0.9 | 0.01 | |
S.A non-dominant | T × G | 8.3 | - | 0.07 |
T × S × G | 0.91 | 0.5 | 0.04 | |
V.J | T × G | 19.03 | - | 0.14 |
T × S × G | 1.6 | 0.175 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potosí-Moya, V.; Paredes-Gómez, R.; Calero-Morales, S. Effects of Nordic Exercises on Hamstring Strength and Vertical Jump Performance in Lower Limbs Across Different Sports. Appl. Sci. 2025, 15, 5651. https://doi.org/10.3390/app15105651
Potosí-Moya V, Paredes-Gómez R, Calero-Morales S. Effects of Nordic Exercises on Hamstring Strength and Vertical Jump Performance in Lower Limbs Across Different Sports. Applied Sciences. 2025; 15(10):5651. https://doi.org/10.3390/app15105651
Chicago/Turabian StylePotosí-Moya, Verónica, Ronnie Paredes-Gómez, and Santiago Calero-Morales. 2025. "Effects of Nordic Exercises on Hamstring Strength and Vertical Jump Performance in Lower Limbs Across Different Sports" Applied Sciences 15, no. 10: 5651. https://doi.org/10.3390/app15105651
APA StylePotosí-Moya, V., Paredes-Gómez, R., & Calero-Morales, S. (2025). Effects of Nordic Exercises on Hamstring Strength and Vertical Jump Performance in Lower Limbs Across Different Sports. Applied Sciences, 15(10), 5651. https://doi.org/10.3390/app15105651