Comparison of Chromatographic and Electrochemical Methods for Detecting and Quantifying Sunscreen Agents and Their Degradation Products in Water Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Solutions
2.3. Instrumental Analytical Measurements
2.4. Procedure for Measuring OC Using the GCS
2.5. Water Matrix Treatment
3. Results and Discussion
3.1. Comparison Between Electroanalytic and Chromatographic Approaches for Quantifying OC in Different Sunscreen Samples Using the Standard Additions Method
3.2. Applicability of Electroanalysis and Chromatography for Determining OC Concentration During the Electrochemical Treatment of Different Water Matrices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDD | Boron-Doped Diamond |
BR | Britton–Robinson |
DNA | Deoxyribonucleic acid |
DPAdSV | Differential Pulse Adsorptive Stripping Voltammetry |
DPV | Differential Pulse Voltammetry |
FDA | U.S. Food and Drug Administration |
HPLC | High Performance Liquid Chromatography |
IUPAC | International Union of Pure and Applied Chemistry |
LOD | Limit of Detection |
LOQ | Limit of Quantification |
OC | Octocrylene |
SS | Stainless Steel |
SWV | Square Wave Voltammetry |
UV | Ultraviolet |
References
- Medici, A.; Saviano, L.; Siciliano, A.; Libralato, G.; Guida, M.; Previtera, L.; Di Fabio, G.; Zarrelli, A. Octocrylene: From sunscreens to the degradation pathway during chlorination processes: Formation of byproducts and their ecotoxicity assessment. Molecules 2022, 27, 5286. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.C.; Roberts, D.W. Contact and photocontact allergy to octocrylene: A review. Contact Dermat. 2014, 70, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Carvalhais, A.; Lippa, R.; Oliveira, I.B.; Di Lorenzo, G.; Mieiro, C.; Pacheco, M. Effects of the UV filter octocrylene and its degradation product benzophenone on pacific oyster (Magallana gigas) larvae: A call for reassessment of environmental hazards. Toxics 2025, 13, 177. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, R.; Lu, G.; Lin, Q.; Liu, F.; Li, Y. Degradation of octocrylene using combined ozonation and electrolysis process: Optimization by response surface methodology. Clean Soil Air Water 2017, 45, 1500664. [Google Scholar] [CrossRef]
- Downs, C.A.; Dinardo, J.C.; Stien, D.; Rodrigues, A.M.S.; Lebaron, P. Benzophenone accumulates over time from the degradation of Octocrylene in commercial sunscreen products. Chem. Res. Toxicol. 2021, 34, 1046–1054. [Google Scholar] [CrossRef]
- Oceanological Observatory of Banyuls-sur-Mer (OOB). Available online: https://www.obs-banyuls.fr/en/oob.html (accessed on 27 March 2025).
- Hudson-Davis, M.L.; Wong, G.R.; London-Adeoshun, L.A.; Staake, M.A.; Wu, Y.; Walker, J.A.; Gamallo-Herrera, E.; Gogley, J. Identification and Quantitation of Oxybenzone, Octocrylene, Avobenzone, Octinoxate, Homosalate and Octisalate in Sunscreen Products by High Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) (CARTS No. IR01925). Available online: https://www.fda.gov/media/169773/download (accessed on 8 May 2025).
- Valdez-Carrillo, M.; Abrell, L.; Ramírez-Hernández, J.; Reyes-López, J.A.; Carreón-Diazconti, C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: A review. Environ. Sci. Pollut. Res. 2020, 27, 44863–44891. [Google Scholar] [CrossRef]
- Monteiro-Riviere, N.A.; Wiench, K.; Landsiedel, R.; Schulte, S.; Inman, A.O.; Riviere, J.E. Safety Evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UV-B sunburned skin: An in vitro and in vivo study. Toxicol. Sci. 2011, 123, 264–280. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.H.; Lu, H.T.; Zhang, Q. Electrochemical behavior and voltammetric determination of paracetamol on nafion/TiO2–graphene modified glassy carbon electrode. Colloids Surf. B Biointerfaces 2011, 85, 289–292. [Google Scholar] [CrossRef]
- Tyszczuk-Rotko, K.; Bȩczkowska, I.; Wójciak-Kosior, M.; Sowa, I. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with nafion and lead films. Talanta 2014, 129, 384–391. [Google Scholar] [CrossRef]
- Tefera, M.; Geto, A.; Tessema, M.; Admassie, S. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Food Chem. 2016, 210, 156–162. [Google Scholar] [CrossRef]
- Chapman, D. Water Quality Assessments—A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; Chapter 2: Strategies for water quality assessment, 2nd ed.; Taylor & Francis: New York, NY, USA, 1996. [Google Scholar]
- Mokh, S.; Nassar, R.; Berry, A.; El Khatib, M.; Doumiati, S.; Taha, M.; Ezzeddine, R.; Al Iskandarani, M. Chromatographic methods for the determination of a broad spectrum of UV filters in swimming pool water. Environ. Sci. Pollut. Res. 2022, 29, 18605–18616. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Sciascia, F.; Cifelli, R.; Malatesta, L.; Bruni, P.; Croce, F. Analytical methods for the endocrine disruptor compounds determination in environmental water samples. J. Chromatogr. A 2016, 1434, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sharma, A. A review on nature-based sunscreen agents. IOP Conf. Ser. Earth Environ. Sci. 2023, 1110, 012047. [Google Scholar] [CrossRef]
- Gandar, A.; Noguer, T.; Ekomo, V.M.; Rodrigues, A.M.S.; Stien, D.; Calas-Blanchard, C.; Ekomo, M. Spectroelectrochemistry as a new tool for the quantification of UV filters in sun creams. Talanta 2022, 250, 123728. [Google Scholar] [CrossRef]
- Mallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Mahesar, S.A.; Bajeer, M.A. A rapid Fourier-Transform Infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 64–70. [Google Scholar] [CrossRef]
- El Bouabi, Y.; Farahi, A.; Labjar, N.; El Hajjaji, S.; Bakasse, M.; El Mhammedi, M.A. Square wave voltammetric determination of paracetamol at chitosan-modified carbon paste electrode: Application in natural water samples, commercial tablets and human urines. Mater. Sci. Eng. C 2016, 58, 70–77. [Google Scholar] [CrossRef]
- Khaskheli, A.R.; Fischer, J.; Barek, J.; Vyskočil, V.; Sirajuddin; Bhanger, M.I. Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite–polystyrene composite film modified electrode. Electrochim. Acta 2013, 101, 238–242. [Google Scholar] [CrossRef]
- Monteiro, M.K.S.; Santos, E.C.M.M.; Silva, D.R.; Martínez-Huitle, C.A.; dos Santos, E.V. Simultaneous determination of paracetamol and caffeine in pharmaceutical formulations and synthetic urine using cork-modified graphite electrodes. J. Solid State Electrochem. 2020, 24, 1789–1800. [Google Scholar] [CrossRef]
- Murugan, E.; Dhamodharan, A. Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode. Diam. Relat. Mater. 2021, 120, 108684. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Doan, T.C.D.; Huynh, T.M.; Nguyen, V.N.P.; Dinh, H.H.; Dang, D.M.T.; Dang, C.M. An electrochemical sensor based on polyvinyl alcohol/chitosan-thermally reduced graphene composite modified glassy carbon electrode for sensitive voltammetric detection of lead. Sens. Actuators B Chem. 2021, 345, 130443. [Google Scholar] [CrossRef]
- Okutan, M.; Boran, F.; Alver, E.; Asan, A. One-pot synthesis of graphene-ZrO2 nanocomposite: A novel modified glassy carbon electrode for the detection of caffeine in beverage samples. Mater. Chem. Phys. 2022, 280, 125846. [Google Scholar] [CrossRef]
- Medeiros de Araújo, D.; do Nascimento Brito, C.; Denise Sales de Oliveira, S.; Ribeiro da Silva, D.; Martínez-Huitle, C.A.; Flavio Soares Aragão, C. Platinum sensor for quantifying caffeine in drug formulations. Curr. Pharm. Anal. 2014, 10, 231–238. [Google Scholar] [CrossRef]
- Júnior, J.B.G.; Araujo, T.A.; Trindade, M.A.G.; Ferreira, V.S. Electroanalytical determination of the sunscreen agent octocrylene in cosmetic products. Int. J. Cosmet. Sci. 2012, 34, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 1982, 54, 67A. [Google Scholar] [CrossRef]
- Wood, R. How to validate analytical methods. TrAC Trends Anal. Chem. 1999, 18, 624–632. [Google Scholar] [CrossRef]
- González, A.G.; Herrador, M.A.; Asuero, A.G. Intra-laboratory testing of method accuracy from recovery assays. Talanta 1999, 48, 729–736. [Google Scholar] [CrossRef]
- Sunyer, A.; González-Navarro, A.; Serra-Roig, M.P.; Serrano, N.; Díaz-Cruz, M.S.; Díaz-Cruz, J.M. First application of carbon-based screen-printed electrodes for the voltammetric determination of the organic UV filters oxybenzone and octocrylene. Talanta 2019, 196, 381–388. [Google Scholar] [CrossRef]
- Ferreira, V.S.; Júnior, J.B.G.; Oliveira, C.M.S.C.; Takeuchi, R.M.; Santos, A.L.; Trindade, M.A.G. Voltammetric analysis of sun-block preparations containing octocrylene and its association with 2-hydroxy-4-methoxybenzophenone and octyl methoxycinnamate. Microchem. J. 2013, 106, 378–383. [Google Scholar] [CrossRef]
- Downs, C.A.; Diaz-Cruz, M.S.; White, W.T.; Rice, M.; Jim, L.; Punihaole, C.; Dant, M.; Gautam, K.; Woodley, C.M.; Walsh, K.O.; et al. Beach showers as sources of contamination for sunscreen pollution in marine protected areas and areas of intensive beach tourism in Hawaii, USA. J. Hazard. Mater. 2022, 438, 129546. [Google Scholar] [CrossRef]
- Esbenshade, J.L.; Cardoso, J.C.; Zanoni, M.V.B. Removal of sunscreen compounds from swimming pool water using self-organized TiO2 nanotubular array electrodes. J. Photochem. Photobiol. A Chem. 2010, 214, 257–263. [Google Scholar] [CrossRef]
- Bratkovics, S.; Sapozhnikova, Y. Determination of seven commonly used organic UV filters in fresh and saline waters by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods 2011, 3, 2943–2950. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A Sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement 2014, 51, 91–99. [Google Scholar] [CrossRef]
- Yu, Q.; Zou, J.; Xiong, Q.; Peng, G.; Gao, F.; Fan, G.; Chen, S.; Lu, L. Electrochemical sensor based on biochar decorated with gold clusters for sensitive determination of acetaminophen. Int. J. Electrochem. Sci. 2022, 17, 220438. [Google Scholar] [CrossRef]
- Lopes Neves, R.A.; Moreira Araujo, F.; Siqueira Pacheco, F.; Chevitarese Azevedo, G.; Costa Matos, M.A.; Camargo Matos, R. Electrochemical determination of sunscreen agents in cosmetics using square wave voltammetry. Electroanalysis 2019, 31, 496–503. [Google Scholar] [CrossRef]
- Da Silva, A.P.; Trindade, M.A.G.; Ferreira, V.S. Polarographic determination of sunscreen agents in cosmetic products in micellar media. Talanta 2006, 68, 679–685. [Google Scholar] [CrossRef]
- Monteiro, M.K.S.; Da Silva, D.R.; Quiroz, M.A.; Vilar, V.J.P.; Martínez-Huitle, C.A.; Dos Santos, E.V. Applicability of cork as novel modifiers to develop electrochemical sensor for caffeine determination. Materials 2021, 14, 37. [Google Scholar] [CrossRef]
- Abdulgani, I.; Escalona-Durán, F.; de Araújo, D.M.; dos Santos, E.V.; Barbosa Segundo, I.D.; Martínez-Huitle, C.A. The role of saline-related species in the electrochemical treatment of produced water using Ti/IrO2-Ta2O5 anode. J. Electroanal. Chem. 2022, 910, 116163. [Google Scholar] [CrossRef]
- Brito, L.R.D.; Ganiyu, S.O.; dos Santos, E.V.; Oturan, M.A.; Martínez-Huitle, C.A. Removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: Role of electrode materials, electrolytes and real water matrices. Electrochim. Acta 2021, 396, 139254. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Vieira dos Santos, E.; Tossi de Araújo Costa, E.C.; Martínez-Huitle, C.A. Electrochemical advanced oxidation processes (EAOPs) as alternative treatment techniques for carwash wastewater reclamation. Chemosphere 2018, 211, 998–1006. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Ferro, S.; De Battisti, A. Electrochemical incineration in the presence of halides. Electrochem. Solid-State Lett. 2005, 8, D35. [Google Scholar]
- Martínez-Huitle, C.A.; Ferro, S.; Reyna, S.; Cerro-López, M.; De Battisti, A.; Quiroz, M.A. Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode. J. Braz. Chem. Soc. 2008, 19, 150–156. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martínez-Huitle, C.A. Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment. ChemElectroChem 2019, 6, 2379–2392. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Kapałka, A.; Fóti, G.; Comninellis, C. The importance of electrode material in environmental electrochemistry: Formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes. Electrochim. Acta 2009, 54, 2018–2023. [Google Scholar] [CrossRef]
- Cañizares, P.; Sáez, C.; Sánchez-Carretero, A.; Rodrigo, M.A. Synthesis of novel oxidants by electrochemical technology. J. Appl. Electrochem. 2009, 39, 2143–2149. [Google Scholar] [CrossRef]
- Lan, Y.; Coetsier, C.; Causserand, C.; Groenen Serrano, K. On the role of salts for the treatment of wastewater containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim. Acta 2017, 231, 309–318. [Google Scholar] [CrossRef]
Electrode | Method | Linear Range (mg L−1) | LOD (mg L−1) | LOQ (mg L−1) | Ref. |
---|---|---|---|---|---|
Screen-Printed Carbon | DPAdSV | 4.00–108.00 | 1.50 | 4.70 | [30] |
Carbon Nanofibers Modified Screen-Printed | DPAdSV | 17.00–90.00 | 2.20 | 7.60 | [30] |
Hanging Mercury Drop | SWV | 7 × 10−3–0.18 | 1.2 × 10−3 | 3.9 × 10−3 | [31] |
GCS | SWV | 1.80–25.00 | 1.00 | 3.20 | [26] |
GCS | DPV | 0.09–1.08 | 0.11 ± 0.01 | 0.86 ± 0.04 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabino, L.R.D.B.; Monteiro, M.K.S.; Alexandre Costa, L.G.; dos Santos, E.V.; Martínez-Huitle, C.A.; Ferro, S. Comparison of Chromatographic and Electrochemical Methods for Detecting and Quantifying Sunscreen Agents and Their Degradation Products in Water Matrices. Appl. Sci. 2025, 15, 5504. https://doi.org/10.3390/app15105504
Sabino LRDB, Monteiro MKS, Alexandre Costa LG, dos Santos EV, Martínez-Huitle CA, Ferro S. Comparison of Chromatographic and Electrochemical Methods for Detecting and Quantifying Sunscreen Agents and Their Degradation Products in Water Matrices. Applied Sciences. 2025; 15(10):5504. https://doi.org/10.3390/app15105504
Chicago/Turabian StyleSabino, Laysa Renata Duarte Brito, Mayra Kerolly Sales Monteiro, Letícia Gracyelle Alexandre Costa, Elisama Vieira dos Santos, Carlos Alberto Martínez-Huitle, and Sergio Ferro. 2025. "Comparison of Chromatographic and Electrochemical Methods for Detecting and Quantifying Sunscreen Agents and Their Degradation Products in Water Matrices" Applied Sciences 15, no. 10: 5504. https://doi.org/10.3390/app15105504
APA StyleSabino, L. R. D. B., Monteiro, M. K. S., Alexandre Costa, L. G., dos Santos, E. V., Martínez-Huitle, C. A., & Ferro, S. (2025). Comparison of Chromatographic and Electrochemical Methods for Detecting and Quantifying Sunscreen Agents and Their Degradation Products in Water Matrices. Applied Sciences, 15(10), 5504. https://doi.org/10.3390/app15105504