Individual Differences in Sustained Attention: Effects of Age, Sex, and Time of Day Based on Psychomotor Vigilance Task Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Psychomotor Vigilance Test (PVT)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basner, M.; Moore, T.M.; Nasrini, J.; Gur, R.C.; Dinges, D.F. Response speed measurements on the psychomotor vigilance test: How precise is precise enough? Sleep 2021, 44, zsaa121. [Google Scholar] [CrossRef] [PubMed]
- Arsintescu, L.; Kato, K.H.; Cravalho, P.F.; Feick, N.H.; Stone, L.S.; Flynn-Evans, E.E. Validation of a touchscreen psychomotor vigilance task. Accid. Anal. Prev. 2019, 126, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Watson, N.F.; Kay, M.; Ocaño, D.; Kientz, J.A. Addressing the need for validation of a touchscreen psychomotor vigilance task: Important considerations for sleep health research. Sleep Health 2018, 4, 387–389. [Google Scholar] [CrossRef] [PubMed]
- Al-Mekhlafi, A.A.; Isha, A.S.N.; Al-Quraishi, M.S.; Kanwal, N. Implementation of a psychomotor vigilance test to investigate the effects of driving fatigue on oil and gas truck drivers’ performance. Front. Public Health 2023, 11, 1160317. [Google Scholar] [CrossRef]
- Matthews, R.W.; Ferguson, S.A.; Sargent, C.; Zhou, X.; Kosmadopoulos, A.; Roach, G.D. Using interstimulus interval to maximise sensitivity of the Psychomotor Vigilance Test to fatigue. Accid. Anal. Prev. 2017, 99, 406–410. [Google Scholar] [CrossRef]
- Behrens, T.; Burek, K.; Pallapies, D.; Kösters, L.; Lehnert, M.; Beine, A.; Wichert, K.; Kantermann, T.; Vetter, C.; Brüning, T.; et al. Decreased psychomotor vigilance of female shift workers after working night shifts. PLoS ONE 2019, 14, e0219087. [Google Scholar] [CrossRef]
- Basner, M.; Rubinstein, J. Fitness for duty: A 3-minute version of the Psychomotor Vigilance Test predicts fatigue-related declines in luggage-screening performance. J. Occup. Environ. Med. 2011, 53, 1146–1154. [Google Scholar] [CrossRef]
- Basner, M.; Hermosillo, E.; Nasrini, J.; McGuire, S.; Saxena, S.; Moore, T.M.; Gur, R.C.; Dinges, D.F. Repeated Administration Effects on Psychomotor Vigilance Test Performance. Sleep 2018, 41, zsx187. [Google Scholar] [CrossRef]
- Mariano, C.; Moron, D.; Maness, C.; Olvera, V.; Saini, P.; Rye, D.B.; Bliwise, D.L.; Trotti, L.M. Feigning daytime sleepiness: Potential effects on the psychomotor vigilance test. Sleep 2023, 46, zsad203. [Google Scholar] [CrossRef]
- Trotti, L.M.; Saini, P.; Bremer, E.; Mariano, C.; Moron, D.; Rye, D.B.; Bliwise, D.L. The Psychomotor Vigilance Test as a measure of alertness and sleep inertia in people with central disorders of hypersomnolence. J. Clin. Sleep Med. 2022, 18, 1395–1403. [Google Scholar] [CrossRef]
- Killgore, W.D.; Rupp, T.L.; Grugle, N.L.; Reichardt, R.M.; Lipizzi, E.L.; Balkin, T.J. Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. J. Sleep Res. 2008, 17, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, E.M.; Casale, C.E.; Brieva, T.E.; Antler, C.A.; Goel, N. Concordance of multiple methods to define resiliency and vulnerability to sleep loss depends on Psychomotor Vigilance Test metric. Sleep 2022, 45, zsab249. [Google Scholar] [CrossRef] [PubMed]
- Chaisilprungraung, T.; Stekl, E.K.; Thomas, C.L.; Blanchard, M.E.; Hughes, J.D.; Balkin, T.J.; Doty, T.J. Quantifying the effects of sleep loss: Relative effect sizes of the psychomotor vigilance test, multiple sleep latency test, and maintenance of wakefulness test. Sleep Adv. 2022, 3, zpac034. [Google Scholar] [CrossRef]
- Thompson, B.J.; Shugart, C.; Dennison, K.; Louder, T.J. Test-retest reliability of the 5-minute psychomotor vigilance task in working-aged females. J. Neurosci. Methods 2022, 365, 109379. [Google Scholar] [CrossRef]
- Dinges, D.F.; Pack, F.; Williams, K.; Gillen, K.A.; Powell, J.W.; Ott, G.E.; Aptowicz, C.; Pack, A.I. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 1997, 20, 267–277. [Google Scholar]
- Parekh, A.; Mullins, A.E.; Kam, K.; Varga, A.W.; Rapoport, D.M.; Ayappa, I. Slow-wave activity surrounding stage N2 K-complexes and daytime function measured by psychomotor vigilance test in obstructive sleep apnea. Sleep 2019, 42, zsy256. [Google Scholar] [CrossRef]
- Taillard, J.; Micoulaud-Franchi, J.A.; Martin, V.P.; Peter-Derex, L.; Vecchierini, M.F. Objective evaluation of excessive daytime sleepiness. Neurophysiol. Clin. 2024, 54, 102938. [Google Scholar] [CrossRef]
- Evangelista, E.; Rassu, A.L.; Lopez, R.; Biagioli, N.; Chenini, S.; Barateau, L.; Jaussent, I.; Dauvilliers, Y. Sleep inertia measurement with the psychomotor vigilance task in idiopathic hypersomnia. Sleep 2022, 45, zsab220. [Google Scholar] [CrossRef]
- Sampol, J.; Ferrer, J.; Miravitlles, M.; Sáez, M.; Romero, O.; Sampol, G. Poor sleep is associated with deficits of attention in COPD patients. Sleep Med. 2023, 112, 165–172. [Google Scholar] [CrossRef]
- Zimecki, M. The lunar cycle: Effects on human and animal behavior and physiology. Postepy Hig. Med. Dosw. 2006, 60, 1–7. [Google Scholar] [PubMed]
- Hines, T.M. Comprehensive review of biorhythm theory. Psychol. Rep. 1998, 83, 19–64. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Wright, K.P., Jr. Entrainment of the human circadian system by light. J. Biol. Rhythm. 2005, 20, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Dijk, D.J.; Skeldon, A.C. Biological rhythms: Human sleep before the industrial era. Nature 2015, 527, 176–177. [Google Scholar] [CrossRef]
- Baran, D.; Apostol, I. Signification of biorhythms for human performance assessment. Rev. Med. Chir. Soc. Med. Nat. Iasi 2007, 111, 295–302. [Google Scholar] [PubMed]
- Wever, R.A. Sex differences in human circadian rhythms: Intrinsic periods and sleep fractions. Experientia 1984, 40, 1226–1234. [Google Scholar] [CrossRef]
- Nelson, J.B.; Sanjuan, M.C.; Vadillo-Ruiz, S.; Pérez, J.; León, S.P. Experimental renewal in human participants. J. Exp. Psychol. Anim. Behav. Process. 2011, 37, 58–70. [Google Scholar] [CrossRef]
- Davis, C.M.; Roma, P.G.; Hienz, R.D. A rodent model of the human psychomotor vigilance test: Performance comparisons. J. Neurosci. Methods 2016, 259, 57–71. [Google Scholar] [CrossRef]
- Azizan, A.; Fard, M.; Azari, M.F.; Benediktsdóttir, B.; Arnardóttir, E.S.; Jazar, R.; Maeda, S. The influence of vibration on seated human drowsiness. Ind. Health 2016, 54, 296–307. [Google Scholar] [CrossRef]
- Staiano, W.; Romagnoli, M.; Salazar Bonet, L.R.; Ferri-Caruana, A. Adaptive cognitive tasks for mental fatigue: An innovative paradigm for cognitive loading in human performance. J. Sci. Med. Sport 2024, 27, 883–889. [Google Scholar] [CrossRef]
- Hu, Z.; Sun, Y.; Lim, J.; Thakor, N.; Bezerianos, A. Investigating the correlation between the neural activity and task performance in a psychomotor vigilance test. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 4725–4728. [Google Scholar] [CrossRef]
- Huiberts, L.M.; Smolders, K.C.H.J.; De Kort, Y.A.W. Seasonal and time-of-day variations in acute non-image forming effects of illuminance level on performance, physiology, and subjective well-being. Chronobiol. Int. 2017, 34, 827–844. [Google Scholar] [CrossRef] [PubMed]
- Montaruli, A.; Castelli, L.; Mulè, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological Rhythm and Chronotype: New Perspectives in Health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Kuehnle, T.; Juda, M.; Kantermann, T.; Allebrandt, K.; Gordijn, M.; Merrow, M. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007, 11, 429–438. [Google Scholar] [CrossRef]
- Schneider, J.; Fárková, E.; Bakštein, E. Human chronotype: Comparison of questionnaires and wrist-worn actigraphy. Chronobiol. Int. 2022, 39, 205–220. [Google Scholar] [CrossRef]
- Taillard, J.; Sagaspe, P.; Philip, P.; Bioulac, S. Sleep timing, chronotype and social jetlag: Impact on cognitive abilities and psychiatric disorders. Biochem. Pharmacol. 2021, 191, 114438. [Google Scholar] [CrossRef]
- Ghotbi, N.; Rabenstein, A.; Pilz, L.K.; Rüther, T.; Roenneberg, T. Chronotype, Social Jetlag, and Nicotine Use. J. Biol. Rhythm. 2023, 38, 392–406. [Google Scholar] [CrossRef]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef]
- Hayano, J.; Ueda, N.; Kisohara, M.; Yoshida, Y.; Yuda, E. Ambient-Task Combined Lighting to Regulate Autonomic and Psychomotor Arousal Levels without Compromising Subjective Comfort to Lighting. J. Physiol. Anthropol. 2021, 40, 8. [Google Scholar] [CrossRef]
- Yuda, E.; Ogasawara, H.; Yoshida, Y.; Hayano, J. Exposure to Blue Light during Lunch Break: Effects on Autonomic Arousal and Behavioral Alertness. J. Physiol. Anthropol. 2017, 36, 30. [Google Scholar] [CrossRef]
- Fuermaier, A.B.M.; Tucha, L.; Guo, N.; Mette, C.; Müller, B.W.; Scherbaum, N.; Tucha, O. It Takes Time: Vigilance and Sustained Attention Assessment in Adults with ADHD. Int. J. Environ. Res. Public Health 2022, 19, 5216. [Google Scholar] [CrossRef] [PubMed]
- Marques, D.R.; Gomes, A.A.; de Azevedo, M.H.P. Daytime Sleepiness in Insomnia: Are We Focusing on What Truly Matters? Chronobiol. Int. 2024, 41, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Bonsignore, M.R.; Marrone, O.; Fanfulla, F. Sleep Apnea, Sleepiness, and Driving Risk. Sleep Med. Clin. 2019, 14, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Douglas, N.J.; Engleman, H.M. Effects of CPAP on Vigilance and Related Functions in Patients with the Sleep Apnea/Hypopnea Syndrome. Sleep 2000, 23 (Suppl. S4), S147–S149. [Google Scholar]
Participants | n | Age |
---|---|---|
All | 356 | 48 ± 19 [18–76] |
Male | 214 | 48 ± 21 [19–76] |
Female | 142 | 46 ± 17 [18–73] |
Sex | Time Class | Fixed Factor | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8:00–12:00 | 13:00–16:00 | 16:00–18:00 | Sex | Time Class | Age | Sex × Time Class | |||||||||
M (n = 93), F (n = 88) | M (n = 75), F (n = 38) | M (n = 46), F (n = 16) | F | p | η2 | F | p | η2 | F | p | η2 | F | p | η2 | |
Male | 428 ± 8 | 297 ± 4 | 293 ± 4 | 5.656 | 0.018 | 0.016 | 153.1 | <0.001 | 0.467 | 15.46 | <0.001 | 0.042 | 1.400 | 0.248 | 0.008 |
Female | 465 ± 9 | 312 ± 7 | 291 ± 7 | ||||||||||||
Male | 77 ± 7 | 82 ± 14 | 63 ± 3 | 1.435 | 0.232 | 0.004 | 0.318 | 0.728 | 0.002 | 2.193 | 0.140 | 0.006 | 0.378 | 0.685 | 0.002 |
Female | 68 ± 3 | 62 ± 3 | 59 ± 4 | ||||||||||||
Male | 5.70 ± 0.41 | 2.20 ± 0.14 | 1.99 ± 0.16 | 3.826 | 0.05 | 0.011 | 69.10 | <0.001 | 0.284 | 1.309 | 0.253 | 0.004 | 5.734 | 0.004 | 0.032 |
Female | 8.18 ± 0.53 | 2.14 ± 0.21 | 1.93 ± 0.25 | ||||||||||||
Male | 1.54 ± 0.10 | 1.41 ± 0.09 | 1.26 ± 0.09 | 4.056 | 0.045 | 0.011 | 6.940 | 0.001 | 0.038 | 5.623 | 0.018 | 0.016 | 0.561 | 0.571 | 0.003 |
Female | 1.45 ± 0.09 | 1.13 ± 0.08 | 1.09 ± 0.09 | ||||||||||||
Male | 2.50 ± 0.72 | 2.36 ± 0.66 | 0.80 ± 0.28 | 0.936 | 0.334 | 0.003 | 0.562 | 0.571 | 0.005 | 3.433 | 0.065 | 0.008 | 0.452 | 0.637 | 0.002 |
Female | 1.68 ± 0.33 | 1.13 ± 0.28 | 0.80 ± 0.27 |
Model | R (Multiple Regression Coefficient) | R2 (Coefficient of Determination) | Adjusted R2 | Estimated SD | F | p |
---|---|---|---|---|---|---|
RT | 0.718 | 0.5167 | 0.5126 | 69.0213 | 125.45 | <0.0001 |
SDRT | ||||||
MNL | 0.4784 | 0.2289 | 0.2245 | 14.1334 | 52.38 | <0.0001 |
MJL | 0.1342 | 0.018 | 0.0152 | 0.8684 | 6.4 | 1 |
FS | 0.1179 | 0.0139 | 0.0111 | 2.8737 | 4.9 | 1 |
RT | Standardized Coefficients | T | p | ||
---|---|---|---|---|---|
B | SD | β | |||
Constant | 511.8912 | ||||
Age | −1.0232 | 0.2001 | −0.263 | −5.114 | <0.0001 |
Gender | 27.0655 | 7.604 | 0.1864 | 3.559 | 0.0004 |
Time period | −76.5889 | 5.245 | −0.6142 | −14.602 | <0.0001 |
MNL | Standardized Coefficients | T | p | ||
---|---|---|---|---|---|
B | SD | β | |||
Constant | 14.7669 | ||||
Gender | 6.1711 | 1.557 | 0.2064 | 3.963 | 0.0001 |
Time period | −8.6109 | 1.0091 | −0.4135 | −8.533 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuda, E.; Yoshida, Y. Individual Differences in Sustained Attention: Effects of Age, Sex, and Time of Day Based on Psychomotor Vigilance Task Performance. Appl. Sci. 2025, 15, 5487. https://doi.org/10.3390/app15105487
Yuda E, Yoshida Y. Individual Differences in Sustained Attention: Effects of Age, Sex, and Time of Day Based on Psychomotor Vigilance Task Performance. Applied Sciences. 2025; 15(10):5487. https://doi.org/10.3390/app15105487
Chicago/Turabian StyleYuda, Emi, and Yutaka Yoshida. 2025. "Individual Differences in Sustained Attention: Effects of Age, Sex, and Time of Day Based on Psychomotor Vigilance Task Performance" Applied Sciences 15, no. 10: 5487. https://doi.org/10.3390/app15105487
APA StyleYuda, E., & Yoshida, Y. (2025). Individual Differences in Sustained Attention: Effects of Age, Sex, and Time of Day Based on Psychomotor Vigilance Task Performance. Applied Sciences, 15(10), 5487. https://doi.org/10.3390/app15105487