Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum
Abstract
:1. Introduction
2. Method
2.1. Simulation Software
2.1.1. DEM Model
2.1.2. CFD Model
2.2. Characterization of Mo Powder
2.3. Simulation of Molybdenum Powders in the LPBF Process
- The initial system temperature was set to 200 °C;
- The length of a single scan path was adjusted to 10,000 µm to ensure a homogeneous and consistent melt track.
- FLOW-3D WELD 3.0.1.1.8 Release 7 and FLOW-DEM 3.0.1.1.6 Release 7;
- Particle to STL Converter 3.0.0.0.0 Release 7 Update 3 was used to convert the particle geometry into STL format;
- HEEDS software was used to optimize the inputs for FLOW-3D WELD simulation within the parameter ranges specified in Table 5.
3. Results and Discussion
3.1. Powder Distribution and Packing Density
3.2. Melt Pool Formation and Thermal Behavior
3.3. Optimization Results
- Investigation of different material alloys;
- Experimental validation: Conducting tests with the same parameters in actual production environments will enhance the reliability of the simulation results;
- Integration of machine learning: Employing machine learning algorithms to analyze large datasets can expedite the identification of optimal parameter combinations;
- Impact of single-track formation on microstructure: Future research should explore how single-track formation affects microstructural evolution.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimiduk, D.M.; Perepezko, J.H. Mo–Si–B alloys: Developing a revolutionary turbine-engine material. MRS Bull. 2003, 28, 639–645. [Google Scholar] [CrossRef]
- Faidel, D.; Jonas, D.; Natour, G.; Behr, W. Investigation of the selective laser melting process with molybdenum powder. Addit. Manuf. 2015, 8, 88–94. [Google Scholar] [CrossRef]
- Yan, A.; Atif, A.M.; Wang, X.; Lan, T.; Wang, Z. The microstructure and cracking behaviors of pure molybdenum fabricated by selective laser melting. Materials 2021, 15, 6230. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. Effect of selective laser melting process parameters on the quality of Al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials 2018, 11, 2343. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Kaserer, L.; Stajkovic, J.; Leitz, K.-H.; Tabernig, B.; Singer, P.; Leibenguth, P.; Gspan, C.; Kestler, H.; Leichtfried, G. Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms. Int. J. Refract. Met. Hard Mater. 2019, 84, 104999. [Google Scholar] [CrossRef]
- Wang, D.; Yu, C.; Ma, J.; Liu, W.; Shen, Z. Densification and crack suppression in selective laser melting of pure molybdenum. Mater. Des. 2017, 129, 44–52. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Zhang, D.; Shen, Z.; Liu, W. Balling phenomena in selective laser melted tungsten. J. Mech. Work. Technol. 2015, 222, 33–42. [Google Scholar] [CrossRef]
- Leung, C.L.A.; Marussi, S.; Towrie, M.; Atwood, R.C.; Withers, P.J.; Lee, P.D. The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater. 2019, 166, 294–305. [Google Scholar] [CrossRef]
- Li, K.; Wang, D.; Xing, L.; Wang, Y.; Yu, C.; Chen, J.; Zhang, T.; Ma, J.; Liu, W.; Shen, Z. Crack suppression in additively manufactured tungsten by introducing secondary-phase nanoparticles into the matrix. Int. J. Refract. Met. Hard Mater. 2019, 79, 158–163. [Google Scholar] [CrossRef]
- Kaserer, L.; Braun, J.; Stajkovic, J.; Leitz, K.-H.; Tabernig, B.; Singer, P.; Letofsky-Papst, I.; Kestler, H.; Leichtfried, G. Fully dense and crack free molybdenum manufactured by Selective Laser Melting through alloying with carbon. Int. J. Refract. Met. Hard Mater. 2019, 84, 105000. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, K.; Ma, W.; Attard, B.; Zhang, P.; Kuang, T. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties. Sci. Technol. Adv. Mater. 2018, 19, 370–380. [Google Scholar] [CrossRef]
- Huang, G.; He, Y.; Long, S.; Duan, Q.; Chen, H.; Peng, X.; Zhou, L.; Huang, K. Microstructure, compressive performance and wear resistance of pure molybdenum additively manufactured via laser powder bed fusion. Int. J. Refract. Met. Hard Mater. 2024, 123, 106740. [Google Scholar] [CrossRef]
- Rebesan, P.; Ballan, M.; Bonesso, M.; Campagnolo, A.; Corradetti, S.; Dima, R.; Gennari, C.; Longo, G.; Mancin, S.; Manzolaro, M.; et al. Pure molybdenum manufactured by Laser Powder Bed Fusion: Thermal and mechanical characterization at room and high temperature. Addit. Manuf. 2021, 47, 102277. [Google Scholar] [CrossRef]
- Yakang, K.; Wang, C.; Chen, X.; Qu, Y.; Yu, J.; Ju, H.; Yilei, X. Review of Research Progress on Mo–Si–B Alloys. Materials 2023, 16, 5495. [Google Scholar] [CrossRef] [PubMed]
- Makineni, S.; Kini, A.; Jägle, E.; Springer, H.; Raabe, D.; Gault, B. Synthesis and stabilization of a new phase regime in a Mo–Si–B based alloy by laser-based additive manufacturing. Acta Mater. 2018, 151, 31–40. [Google Scholar] [CrossRef]
- Chen, X.; Kong, Y.; Qu, Y.; Yu, J.; Xiao, Y.; Wang, C. Influence of TiC contents on the microstructure, mechanical properties, and oxidation behavior of Mo–10Si–8B alloys. Intermetallics 2024, 164, 108122. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, L.; Wang, C.; Ding, X.; Liu, J. Heat transfer, molten pool flow micro-simulation, and experimental research on molybdenum alloys fabricated via selective laser melting. Materials 2021, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, M.; Wang, J.; Wang, Y.; An, X.; Fu, H.; Zhang, H.; Yang, X.; Zou, Q. Powder-bed-fusion additive manufacturing of molybdenum: Process simulation, optimization, and property prediction. Addit. Manuf. 2022, 58, 103069. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [Google Scholar] [CrossRef]
- King, W.E.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A.; Rubenchik, A.M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2015, 2, 041304. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lin, C.-C.; Horng, M.-H.; Chang, L.-K.; Hsu, J.-H.; Chang, T.-W.; Hung, J.-C.; Lee, R.-M.; Tsai, M.-C. Deep learning applied to defect detection in powder spreading process of magnetic material additive manufacturing. Materials 2022, 15, 5662. [Google Scholar] [CrossRef] [PubMed]
Item | Result |
---|---|
Melting Point | 2610 °C |
Boiling Point | 5560 °C |
Crystal Structure | Body-Centered Cubic (BCC) |
Density | 8.2 g/cm3 |
Coefficient of Expansion @ 20 °C | 5.1 × 10⁻6/°C |
Electrical Resistivity | 5.17 µΩ·cm |
Form | Powder |
Particle Diameter (µ) | Value |
---|---|
Dmin | 15 |
D10 | 24.34 |
D50 | 33.26 |
D90 | 44.6 |
Dmax | 45 |
Group Particle Diameter (µ) | Volume Percentage (%) |
---|---|
19.67 | 10 |
28.8 | 40 |
38.93 | 40 |
44.8 | 10 |
Particle Radius (µm) | Particle Number Density Percentage (%) |
---|---|
9.835 | 34.78 |
14.4 | 44.33 |
19.465 | 17.95 |
22.4 | 2.94 |
Parameter | Min | Baseline | Max |
---|---|---|---|
Scanning Speed (mm/s) | 80 | 150 | 300 |
Laser Power (W) | 50 | 200 | 400 |
Laser Spot Diameter (µm) | 40 | 50 | 100 |
Powder Layer Thickness (µm) | 50 | 50 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toprak, İ.B.; Dogdu, N.; Salamci, M.U. Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum. Appl. Sci. 2025, 15, 5485. https://doi.org/10.3390/app15105485
Toprak İB, Dogdu N, Salamci MU. Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum. Applied Sciences. 2025; 15(10):5485. https://doi.org/10.3390/app15105485
Chicago/Turabian StyleToprak, İnayet Burcu, Nafel Dogdu, and Metin Uymaz Salamci. 2025. "Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum" Applied Sciences 15, no. 10: 5485. https://doi.org/10.3390/app15105485
APA StyleToprak, İ. B., Dogdu, N., & Salamci, M. U. (2025). Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum. Applied Sciences, 15(10), 5485. https://doi.org/10.3390/app15105485