Metal Organic Frameworks for Smart Storage and Delivery of Aromatic Volatiles and Essential Oils in Agrifood
Abstract
:1. Introduction
2. Metal-Organic Frameworks
3. Essential Oils, Terpenes and Terpenoids in Agrifood
4. MOFs as Smart Carriers and Delivery Systems of Sensitive Volatile Compounds
- Biocompatibility: Ensuring safety in agrifood applications requires MOFs to be non-toxic and compatible with biological systems, to ensure the safety of consumers and avoid side effects caused by the ingredients of MOFs. This can be achieved through the utilization of biocompatible ligands such as cyclodextrins, amino acids, or nucleobases as well as the use of metals with low toxicity and a low hazard of bioaccumulation in the human body as K+ or Na+ [111].
- High Porosity and Tunable Pore Size: Efficient encapsulation and controlled release of the EO/volatile molecules necessitate high porosity and adjustable pore sizes to accommodate diverse molecular dimensions [135].
- High EO/volatile-Loading Capacity: Maximizing antimicrobial efficacy demands a high capacity for loading and retaining substantial amounts of the EO/volatile compound. Also, high loading of MOFs ensures the employment of smaller mass of MOF, which is both cost effective as well as safer for humans and other nonpathogenic living organisms consuming the targeted product [135].
- Controlled Release Mechanisms: Achieving sustained and targeted delivery requires mechanisms for controlled release, such as pH-sensitive or stimuli-responsive release. Many pathogens cause alterations in the physiological pH levels of the environment they parasitize. The immediate detection and action towards such a stimuli can be crucial [6].
- Functionalization Capabilities: The ability to modify the surface or internal structure of MOFs enables improved targeting, solubility, and interaction with biological molecules [136].
4.1. γ-CD-MOFs
4.2. Copper Based MOFs
4.3. Zinc Based MOFs
4.4. ZIFs
4.5. Zr-MOFs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MOF | Metal Organic Framework |
EO | Essential Oil |
CEO | Clove Essential Oil |
SBU | Secondary Building Unit |
CD | Cyclodextrin |
GRAS | Generally Recognized As Safe |
TTO | Tea Tree Oil |
CA | Cinnamaldehyde |
OEO | Oregano Essential Oil |
PCL | Polycaprolactone |
REO | Reactive Oxygen Species |
BA | Benzoic Acid |
CA | Carvacrol |
EU | Eugenol |
CS | Chitosan |
CT | Citral |
MEO | Marjoram Essential Oil |
References
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef]
- Yusuf, V.F.; Malek, N.I.; Kailasa, S.K. Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7, 44507–44531. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yadav, A.; Zhou, H.; Roy, K.; Thanasekaran, P.; Lee, C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. Glob. Chall. 2024, 8, 2300244. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Lee, L.Y.S. Metal–Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst? ACS Energy Lett. 2021, 6, 2838–2843. [Google Scholar] [CrossRef]
- Saboorizadeh, B.; Zare-Dorabei, R.; Safavi, M.; Safarifard, V. Applications of Metal–Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. Langmuir 2024, 40, 22477–22503. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, Y.; Wu, W.; Zhe, M.; Yu, P.; Shakya, S.; Li, Z.; Xing, F. Metal–organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: Advances, challenges, and future perspectives. J. Nanobiotechnology 2025, 23, 157. [Google Scholar] [CrossRef]
- Basak, S.; Bhattacharyya, P.; Lokhande, P.E.; Chakrabarti, S. MOF: A New Age Smart Material as Nano Carriers for Fertilizers and Pesticides. In Biological Applications of Nanoparticles; Sarkar, B., Sonawane, A., Eds.; Springer Nature: Singapore, 2023; pp. 135–148. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, X.; Yue, L.; He, Y.; Chen, B. Porous metal–organic frameworks for hydrogen storage. Chem. Commun. 2022, 58, 11059–11078. [Google Scholar] [CrossRef]
- Sutton, A.L.; Mardel, J.I.; Hill, M.R. Metal-Organic Frameworks (MOFs) As Hydrogen Storage Materials At Near-Ambient Temperature. Chem.-A Eur. J. 2024, 30, e202400717. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.-C.; Yi, S. Rational design and synthesis of metal–organic frameworks derivatives: A perspective on emerging techniques. Chem. Eng. J. 2024, 495, 153398. [Google Scholar] [CrossRef]
- Trickett, C.A.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045. [Google Scholar] [CrossRef]
- Vellingiri, K.; Szulejko, J.E.; Kumar, P.; Kwon, E.E.; Kim, K.-H.; Deep, A.; Boukhvalov, D.W.; Brown, R.J.C. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci. Rep. 2016, 6, 27813. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Tan, Z. High Loading of Air-Sensitive Guest Molecules into Polycrystalline Metal–Organic Framework Hosts. Inorg. Chem. 2021, 60, 10830–10836. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, J.; Wang, D.; Wang, R.; Janiak, C. Host molecules inside metal–organic frameworks: Host@MOF and guest@host@MOF (Matrjoschka) materials. Chem. Soc. Rev. 2025, 54, 601–622. [Google Scholar] [CrossRef]
- Yang, W.; Liu, S.; Ren, H.; Huang, Y.; Zheng, S.; Li, S.; Ling, Z.; Fan, W.; Tian, Y.; Pan, L.; et al. Metal–organic frameworks (MOFs)-based materials in food packaging: A review. J. Mater. Sci. 2024, 59, 20157–20175. [Google Scholar] [CrossRef]
- Sani, M.A.; Jahed-Khaniki, G.; Shariatifar, N.; Khezerlou, A.; Abedini, A.; Rezvani-Ghalhari, M.; Hassani, S.; Tavassoli, M.; McClements, D.J. Metal Organic Frameworks (MOFs) as Advanced Functional Materials for Food Applications. ACS Food Sci. Technol. 2024, 4, 2272–2300. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Mohan, B.; Sharma, H.K.; Ručman, S.; Singjai, P.; Pombeiro, A.J.L. Contaminants Removal and Monitoring: The Role of Hybrid MOFs in Agricultural Advancement and Soil Amendment. Adv. Sustain. Syst. 2025, 9, 2400637. [Google Scholar] [CrossRef]
- Elumalai, P.; Gao, X.; Parthipan, P.; Luo, J.; Cui, J. Agrochemical pollution: A serious threat to environmental health. Curr. Opin. Environ. Sci. Health 2025, 43, 100597. [Google Scholar] [CrossRef]
- Prakash, B.; Singh, P.P.; Gupta, V.; Raghuvanshi, T.S. Essential oils as green promising alternatives to chemical preservatives for agri-food products: New insight into molecular mechanism, toxicity assessment, and safety profile. Food Chem. Toxicol. 2024, 183, 114241. [Google Scholar] [CrossRef]
- Jyotsna, B.; Patil, S.; Prakash, Y.S.; Rathnagiri, P.; Kishor, P.K.; Jalaja, N. Essential oils from plant resources as potent insecticides and repellents: Current status and future perspectives. Biocatal. Agric. Biotechnol. 2024, 61, 103395. [Google Scholar] [CrossRef]
- Garrido-Miranda, K.A.; Giraldo, J.D.; Schoebitz, M. Essential Oils and Their Formulations for the Control of Curculionidae Pests. Front. Agron. 2022, 4, 876687. [Google Scholar] [CrossRef]
- Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017, 7, 8211. [Google Scholar] [CrossRef]
- Su, X.; Li, B.; Chen, S.; Wang, X.; Song, H.; Shen, B.; Zheng, Q.; Yang, M.; Yue, P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J. Control. Release 2024, 367, 107–134. [Google Scholar] [CrossRef]
- Sundar, S.; Parikh, J.K. Advances and trends in encapsulation of essential oils. Int. J. Pharm. 2023, 635, 122668. [Google Scholar] [CrossRef]
- Angeli, G.K.; Batzavali, D.; Mavronasou, K.; Tsangarakis, C.; Stuerzer, T.; Ott, H.; Trikalitis, P.N. Remarkable Structural Diversity between Zr/Hf and Rare-Earth MOFs via Ligand Functionalization and the Discovery of Unique (4, 8)-c and (4, 12)-connected Frameworks. J. Am. Chem. Soc. 2020, 142, 15986–15994. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhou, H.-C. Synthesis of MOFs for heterogeneous catalysis via linker design. Polyhedron 2018, 154, 189–201. [Google Scholar] [CrossRef]
- Ha, J.; Lee, J.H.; Moon, H.R. Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorg. Chem. Front. 2020, 7, 12–27. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 2019, 399, 213023. [Google Scholar] [CrossRef]
- Yaghi, O.M. Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks. J. Am. Chem. Soc. 2016, 138, 15507–15509. [Google Scholar] [CrossRef]
- Alezi, D.; Spanopoulos, I.; Tsangarakis, C.; Shkurenko, A.; Adil, K.; Belmabkhout, Y.; O′Keeffe, M.; Eddaoudi, M.; Trikalitis, P.N. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. J. Am. Chem. Soc. 2016, 138, 12767–12770. [Google Scholar] [CrossRef]
- Wang, K.; Feng, D.; Liu, T.-F.; Su, J.; Yuan, S.; Chen, Y.-P.; Bosch, M.; Zou, X.; Zhou, H.-C. A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 2014, 136, 13983–13986. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.; Albalad, J.; Sánchez-Naya, R.; Ruiz-Relaño, S.; Cortés-Martínez, A.; Yang, Y.; Juanhuix, J.; Imaz, I.; Maspoch, D. Isolation of the Secondary Building Unit of a 3D Metal–Organic Framework through Clip-Off Chemistry, and its Reuse to Synthesize New Frameworks by Dynamic Covalent Chemistry. J. Am. Chem. Soc. 2024, 146, 27255–27261. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Church, T.L.; Brandt, E.G.; Hedin, N.; Zou, X.; Bernin, D. Insights into Functionalization of Metal-Organic Frameworks Using In Situ NMR Spectroscopy. Sci. Rep. 2018, 8, 17530. [Google Scholar] [CrossRef]
- Vendrame, D.; Bragaggia, G.; Carraro, M.; Gross, S. Metal Oxocluster-Based Organic–Inorganic Hybrid Materials: From Design Principles to Applications. Chem. Mater. 2024, 36, 9259–9278. [Google Scholar] [CrossRef]
- Wang, C.; Yan, J.; Chen, S.; Liu, Y. High-Valence Metal-Organic Framework Materials Constructed from Metal-Oxo Clusters: Opportunities and Challenges. Chempluschem 2023, 88, e202200462. [Google Scholar] [CrossRef] [PubMed]
- Zeggai, F.Z.; Ait-Touchente, Z.; Bachari, K.; Elaissari, A. Investigation of Metal-Organic Frameworks (MOFs): Synthesis, Properties, and Applications—An In-Depth Review. Chem. Phys. Impact 2025, 10, 100864. [Google Scholar] [CrossRef]
- Jimenez-Lopez, L.; Ospino, R.M.; de Araujo, L.G.; Celzard, A.; Fierro, V. Latest developments in the synthesis of metal–organic frameworks and their hybrids for hydrogen storage. Nanoscale 2025, 17, 6390–6413. [Google Scholar] [CrossRef] [PubMed]
- Kirlikovali, K.O.; Hanna, S.L.; Son, F.A.; Farha, O.K. Back to the Basics: Developing Advanced Metal–Organic Frameworks Using Fundamental Chemistry Concepts. ACS Nanosci. Au 2023, 3, 37–45. [Google Scholar] [CrossRef]
- Daglar, H.; Gulbalkan, H.C.; Avci, G.; Aksu, G.O.; Altundal, O.F.; Altintas, C.; Erucar, I.; Keskin, S. Effect of Metal–Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angew. Chem. Int. Ed. Engl. 2021, 60, 7828–7837. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, D.; Lu, Y.; Sun, W.-Y. Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater. Chem. A 2019, 7, 22744–22767. [Google Scholar] [CrossRef]
- Muthukumaran, M.K.; Govindaraj, M.; Kogularasu, S.; Sriram, B.; Raja, B.K.; Wang, S.F.; Chang-Chien, G.P. Recent advances in metal-organic frameworks for electrochemical sensing applications. Talanta Open 2025, 11, 100396. [Google Scholar] [CrossRef]
- Thorarinsdottir, A.E.; Harris, T.D. Metal–Organic Framework Magnets. Chem. Rev. 2020, 120, 8716–8789. [Google Scholar] [CrossRef] [PubMed]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef]
- Malekshah, R.E.; Moharramnejad, M.; Gharanli, S.; Shahi, M.; Ehsani, A.; Haribabu, J.; Ouachtak, H.; Mirtamizdoust, B.; Kamwilaisak, K.; Sillanpää, M.; et al. MOFs as Versatile Catalysts: Synthesis Strategies and Applications in Value-Added Compound Production. ACS Omega 2023, 8, 31600–31619. [Google Scholar] [CrossRef] [PubMed]
- Stavila, V.; Talin, A.A.; Allendorf, M.D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010. [Google Scholar] [CrossRef]
- Kotzabasaki, M.; Froudakis, G.E. Review of computer simulations on anti-cancer drug delivery in MOFs. Inorg. Chem. Front. 2018, 5, 1255–1272. [Google Scholar] [CrossRef]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef]
- Khafaga, D.S.R.; El-Morsy, M.T.; Faried, H.; Diab, A.H.; Shehab, S.; Saleh, A.M.; Ali, G.A.M. Metal–organic frameworks in drug delivery: Engineering versatile platforms for therapeutic applications. RSC Adv. 2024, 14, 30201–30229. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, T.; Liu, Z. Metal-Organic Frameworks for Bioimaging: Strategies and Challenges. Nanotheranostics 2022, 6, 143–160. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, T.T.T.; Ge, S.; Liew, R.K.; Nguyen, D.T.C.; Van Tran, T. Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery. Nanoscale Adv. 2024, 6, 1800–1821. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, L.; Chen, J.; Li, X.; Sun, J.; Zhu, J.; Wang, X.; Fu, Y. Recent development and applications of electrical conductive MOFs. Nanoscale 2021, 13, 485–509. [Google Scholar] [CrossRef] [PubMed]
- Chettiannan, B.; Dhandapani, E.; Arumugam, G.; Rajendran, R.; Selvaraj, M. Metal-organic frameworks: A comprehensive review on common approaches to enhance the energy storage capacity in supercapacitor. Coord. Chem. Rev. 2024, 518, 216048. [Google Scholar] [CrossRef]
- Hazarika, U.N.; Borah, J.; Kakoti, A.; Brahma, R.; Sarmah, K.; Guha, A.K.; Khakhlary, P. Highly conductive three-dimensional metal organic frameworks from small in situ generated ligands. Mater. Adv. 2023, 4, 6304–6311. [Google Scholar] [CrossRef]
- Sandhu, Z.A.; Raza, M.A.; Awwad, N.S.; Ibrahium, H.A.; Farwa, U.; Asharaf, S.; Dildar, A.; Fatima, E.; Ashraf, S.; Ali, F. Metal–organic frameworks for next-generation energy storage devices; a systematic review. Mater. Adv. 2024, 5, 30–50. [Google Scholar] [CrossRef]
- Gándara, F.; Bennett, T.D. Crystallography of metal–organic frameworks. IUCrJ 2014, 1, 563–570. [Google Scholar] [CrossRef]
- Angeli, G.K.; Loukopoulos, E.; Kouvidis, K.; Bosveli, A.; Tsangarakis, C.; Tylianakis, E.; Froudakis, G.; Trikalitis, P.N. Continuous Breathing Rare-Earth MOFs Based on Hexanuclear Clusters with Gas Trapping Properties. J. Am. Chem. Soc. 2021, 143, 10250–10260. [Google Scholar] [CrossRef]
- Ambroz, F.; Macdonald, T.J.; Martis, V.; Parkin, I.P. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods 2018, 2, 1800173. [Google Scholar] [CrossRef]
- ASTM E2149-13a; Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents under Dynamic Contact Conditions. Annual Book of ASTM Standards. ASTM: West Conshohocken, PA, USA, 2013.
- Xu, C.; Li, J.; Yang, L.; Shi, F.; Yang, L.; Ye, M. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 2017, 73, 1445–1451. [Google Scholar] [CrossRef]
- Moghimi, R.; Aliahmadi, A.; McClements, D.J.; Rafati, H. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT—Food Sci. Technol. 2016, 71, 69–76. [Google Scholar] [CrossRef]
- Negro, C.; Pérez-Cejuela, H.M.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M.; Bruno, R.; Armentano, D.; Ferrando-Soria, J.; Pardo, E. Highly Efficient Removal of Neonicotinoid Insecticides by Thioether-Based (Multivariate) Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2021, 13, 28424–28432. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yan, C.; Fei, Q.; Zhang, B.; Wu, W. MOF-based stimuli-responsive controlled release nanopesticide: Mini review. Front. Chem. 2023, 11, 1272725. [Google Scholar] [CrossRef]
- Mahmoud, L.A.M.; dos Reis, R.A.; Chen, X.; Ting, V.P.; Nayak, S. Metal–Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS Omega 2022, 7, 45910–45934. [Google Scholar] [CrossRef]
- dos Reis, R.A.; Mahmoud, L.A.M.; Ivanovska, E.H.; Telford, R.; Addicoat, M.A.; Terry, L.R.; Ting, V.P.; Nayak, S. Biodegradable Polymer-Metal-Organic Framework (MOF) Composites for Controlled and Sustainable Pesticide Delivery. Adv. Sustain. Syst. 2023, 7, 2300269. [Google Scholar] [CrossRef]
- Rojas, S.; Rodríguez-Diéguez, A.; Horcajada, P. Metal–Organic Frameworks in Agriculture. ACS Appl. Mater. Interfaces 2022, 14, 16983–17007. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Qin, J.-C.; Yang, Y.-W. Multifunctional Metal–Organic Framework (MOF)-Based Nanoplatforms for Crop Protection and Growth Promotion. J. Agric. Food Chem. 2023, 71, 5953–5972. [Google Scholar] [CrossRef]
- Anstoetz, M.; Rose, T.J.; Clark, M.W.; Yee, L.H.; Raymond, C.A.; Vancov, T. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer? PLoS ONE 2015, 10, e0144169. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Trickett, C.A.; Alahmadi, S.B.; Alshammari, A.S.; Yaghi, O.M. Calcium l-Lactate Frameworks as Naturally Degradable Carriers for Pesticides. J. Am. Chem. Soc. 2017, 139, 8118–8121. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shan, Y.; Cao, L.; Zhao, P.; Cao, C.; Li, F.; Huang, Q. Enhanced Fungicidal Efficacy by Co-Delivery of Azoxystrobin and Diniconazole with Cauliflower-Like Metal–Organic Frameworks NH2-Al-MIL-101. Int. J. Mol. Sci. 2021, 22, 10412. [Google Scholar] [CrossRef]
- Huang, W.; Wang, M.; Hu, Z.; Yang, T.; Pei, H.; Zhang, F. Multifunctional metal-organic framework with pH-response for co-delivery of prochloraz and siRNA to synergistic control pathogenic fungi. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131563. [Google Scholar] [CrossRef]
- Shan, Y.; Cao, L.; Muhammad, B.; Xu, B.; Zhao, P.; Cao, C.; Huang, Q. Iron-based porous metal–organic frameworks with crop nutritional function as carriers for controlled fungicide release. J. Colloid Interface Sci. 2020, 566, 383–393. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, Y.; Huang, Y.; Zhou, A.; Han, J.; Yang, K.; Zhao, Y.; Zhou, J.; Wang, J.; Chen, G.; et al. A pH-responsive MOFs@MPN nanocarrier with enhancing antifungal activity for sustainable controlling myclobutanil release. Chem. Eng. J. 2024, 497, 155713. [Google Scholar] [CrossRef]
- Hou, C.; Wei, N.; Liang, Q.; Tan, Y.; Li, X.; Feng, J. Nano-pesticide delivery system based on UiO-66 with pH sensitivity for precise control of Spodoptera frugiperda. Pest Manag. Sci. 2025, 81, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Tian, Z.; Yao, P.; Fang, X.; Wu, T.; Cheng, J.; Zou, A. Preparation of a novel sustained-release system for pyrethroids by using metal-organic frameworks (MOFs) nanoparticle. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 604, 125266. [Google Scholar] [CrossRef]
- He, Y.; Min, Q.; Chen, L.; Lai, J.; Pang, B.; Qian, K. Preparation of DNF@UiO-67 and the insecticidal activity study and safety evaluation. Pest Manag. Sci. 2025. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Lai, T.; Ren, J.; Cui, X.; Tian, X.; Yang, Z.; Xiao, X.; Wang, Y. Trimetallic metal-organic frameworks (Fe, Co, Ni-MOF) derived as efficient electrochemical determination for ultra-micro imidacloprid in vegetables. Nanotechnology 2022, 33, 135502. [Google Scholar] [CrossRef]
- Magri, A.; Petriccione, M.; Gutiérrez, T.J. Metal-organic frameworks for food applications: A review. Food Chem. 2021, 354, 129533. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Zhang, J.-L.; Liu, J.-M.; Xiong, Z.-H.; Chen, X. Selective and Competitive Adsorption of Azo Dyes on the Metal–Organic Framework ZIF-67. Water Air Soil Pollut. 2016, 227, 1–12. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Alizadeh, S. MnFe2O4-NH2-HKUST-1, MOF magnetic composite, as a novel sorbent for efficient dye removal: Fabrication, characterization and isotherm studies. Sci. Rep. 2024, 14, 9048. [Google Scholar] [CrossRef]
- Sarker, T.; Tahmid, I.; Sarker, R.K.; Dey, S.C.; Islam, M.T.; Sarker, M. ZIF-67-based materials as adsorbent for liquid phase adsorption-a review. Polyhedron 2024, 260, 117069. [Google Scholar] [CrossRef]
- Sellaoui, L.; Edi-Soetaredjo, F.; Mohamed, M.; Ismadji, S.; Ernst, B.; Bonilla-Petriciolet, A.; Ben Lamine, A.; Dell’Angelo, D.; Badawi, M. A novel application of HKUST-1 for textile dyes removal in single and binary solutions: Experimental investigation combined with physical modelling. Chem. Eng. J. 2024, 480, 147958. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Nekoo, N.M.; Alizadeh, S.; Sadeghi, S.; Geranmayeh, S. Enhanced removal of organic dyes from aqueous solutions by new magnetic HKUST-1: Facile strategy for synthesis. Sci. Rep. 2023, 13, 17981. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, S.; Zhao, Q.; Lu, R.; Hang, C.; Chen, Z.; Zheng, H. Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J. 2018, 333, 49–57. [Google Scholar] [CrossRef]
- Yoon, S.; Calvo, J.J.; So, M.C. Removal of Acid Orange 7 from Aqueous Solution by Metal-Organic Frameworks. Crystals 2019, 9, 17. [Google Scholar] [CrossRef]
- Lin, K.A.; Wu, C. Efficient Adsorptive Removal of Toxic Amaranth Dye from Water using a Zeolitic Imidazolate Framework. Water Environ. Res. 2018, 90, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Pandey, R.; Basu, S.; Saravanan, P. ZIF-67 blended PVDF membrane for improved Congo red removal and antifouling properties: A correlation establishment between morphological features and ultra-filtration parameters. Chemosphere 2023, 320, 138075. [Google Scholar] [CrossRef]
- Li, M.; Gao, D.; Cui, S.; Shi, Y.; Liu, N. Fabrication of Fe3O4/ZIF-67 composite for removal of direct blue 80 from water. Water Environ. Res. 2020, 92, 740–748. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chang, H.-A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 2015, 139, 624–631. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Z.; Zhang, P.; Ye, J.; Ding, L.; Jia, W. Ultra-high adsorption behavior of zeolitic imidazole framework-67 nanoparticles for removing brilliant green dye. AIP Adv. 2021, 11, 095304. [Google Scholar] [CrossRef]
- Tu, N.T.T.; Thien, T.V.; Du, P.D.; Chau, V.T.T.; Mau, T.X.; Khieu, D.Q. Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework–67. J. Environ. Chem. Eng. 2018, 6, 2269–2280. [Google Scholar] [CrossRef]
- Wang, B.; Lv, X.-L.; Feng, D.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.-R.; Zhou, H.-C. Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc. 2016, 138, 6204–6216. [Google Scholar] [CrossRef]
- Zong, Y.; Ma, S.; Gao, J.; Xu, M.; Xue, J.; Wang, M. Synthesis of Porphyrin Zr-MOFs for the Adsorption and Photodegradation of Antibiotics under Visible Light. ACS Omega 2021, 6, 17228–17238. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.R.; Abid, H.R.; Sun, H.; Periasamy, V.; Tadé, M.O.; Wang, S. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J. Colloid Interface Sci. 2016, 478, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Khezerlou, A.; Tavassoli, M.; Abedi-Firoozjah, R.; Sani, M.A.; Ehsani, A.; Varma, R.S. MOFs-based adsorbents for the removal of tetracycline from water and food samples. Sci. Rep. 2025, 15, 502. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Meng, J.; Li, X.; Li, Y.; Hu, L. Preparation of Mg@MIL-101(Fe)/NH2-MIL-125(Ti) bis-MIL composites and their sorption performance towards Pb(II) from aqueous solution. Sep. Purif. Technol. 2024, 339, 126692. [Google Scholar] [CrossRef]
- Wu, P.; Du, Q.; Sun, Y.; Li, Z.; He, H. MIP-coated Eu(BTC) for the fluorometric determination of lincomycin in eggs. Anal. Methods 2019, 11, 4501–4510. [Google Scholar] [CrossRef]
- Hu, Z.; Lustig, W.P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N.D.; Li, J. Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, D.; Chen, Y.; Shi, J.; Zhang, X.; Hao, Y.; Zhang, Z.; Sun, Y.; Zhang, J. MOF-Based Active Packaging Materials for Extending Post-Harvest Shelf-Life of Fruits and Vegetables. Materials 2023, 16, 3406. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.; Zhou, T.; Chen, X.; Li, W.; Pang, H. Metal–Organic Frameworks and Their Composites for Environmental Applications. Adv. Sci. 2022, 9, e2204141. [Google Scholar] [CrossRef]
- Chen, N.; Wang, C.; Kong, F.; Wang, S. In situ facile synthesis and antibacterial activity of Ag-MOFs/cellulose filter paper composites for fruit fresh-keeping. Int. J. Biol. Macromol. 2024, 256, 128424. [Google Scholar] [CrossRef]
- Kim, H.; Trinh, B.T.; Kim, K.H.; Moon, J.; Kang, H.; Jo, K.; Akter, R.; Jeong, J.; Lim, E.-K.; Jung, J.; et al. Au@ZIF-8 SERS paper for food spoilage detection. Biosens. Bioelectron. 2021, 179, 113063. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Wang, C.; Zhang, L.; Yang, Y.; Chen, C.; Xie, Y.; Zhao, P.; Fei, J. An electrochemical sensor based on Ce-MOF-derived Ce-doped poly(3,4-ethylenedioxythiophene) composite for efficient determination of rutin in food. Talanta 2023, 263, 124678. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, X.; Chen, S.; Wang, X.; Shang, H.; Zhou, Y.; Dai, J.; Xiao, L.; Qin, W.; Liu, Y. Synthesis of γ-cyclodextrin metal-organic framework as ethylene absorber for improving postharvest quality of kiwi fruit. Food Hydrocoll. 2023, 136, 108294. [Google Scholar] [CrossRef]
- Saxena, S.; Lis, M.J. Native Cyclodextrin-Based Metal–Organic Frameworks (MOFs): Synthesis, Characterization, and Potential Applications in Food Industry. Molecules 2025, 30, 293. [Google Scholar] [CrossRef]
- Bae, Y.J.; Cho, E.S.; Qiu, F.; Sun, D.T.; Williams, T.E.; Urban, J.J.; Queen, W.L. Transparent Metal–Organic Framework/Polymer Mixed Matrix Membranes as Water Vapor Barriers. ACS Appl. Mater. Interfaces 2016, 8, 10098–10103. [Google Scholar] [CrossRef]
- Huang, G.; Li, Y.; Qin, Z.; Liang, Q.; Xu, C.; Lin, B. Hybridization of carboxymethyl chitosan with MOFs to construct recyclable, long-acting and intelligent antibacterial agent carrier. Carbohydr. Polym. 2020, 233, 115848. [Google Scholar] [CrossRef]
- Wang, B.; Wang, P.; Xie, L.-H.; Lin, R.-B.; Lv, J.; Li, J.-R.; Chen, B. A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nat. Commun. 2019, 10, 3861. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Haponiuk, J.; Saeb, M.R.; Rabiee, N.; Bencherif, S.A. Mitigating metal-organic framework (MOF) toxicity for biomedical applications. Chem. Eng. J. 2023, 471, 144400. [Google Scholar] [CrossRef]
- Singh, N.; Qutub, S.; Khashab, N.M. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J. Mater. Chem. B 2021, 9, 5925–5934. [Google Scholar] [CrossRef]
- Zhao, R.-N.; Zhu, B.-W.; Xu, Y.; Yu, S.-F.; Wang, W.-J.; Liu, D.-H.; Hu, J.-N. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr. Polym. 2023, 319, 121198. [Google Scholar] [CrossRef]
- Baldim, I.; Tonani, L.; Kress, M.R.v.Z.; Oliveira, W.P. Lippia sidoides essential oil encapsulated in lipid nanosystem as an anti-Candida agent. Ind. Crops Prod. 2019, 127, 73–81. [Google Scholar] [CrossRef]
- Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.J.; Horcajada, P. Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B 2014, 2, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M.F.; Zakhama, A.; Couvreur, P.; Serre, C.; et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem. Sci. 2013, 4, 1597–1607. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Edrada-Ebel, R.; Da Costa, F.B. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016, 6, 29265. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.C.; Ma, R.J.; Duan, M.W.; Lu, D.J. Preparation and antimicrobial activity of thyme essential oil microcapsules prepared with gum arabic. RSC Adv. 2019, 9, 19740–19747. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef]
- Lopez-Romero, J.C.; González-Ríos, H.; Borges, A.; Simões, M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2015, 2015, 795435. [Google Scholar] [CrossRef]
- Wang, M.; Liu, H.; Dang, Y.; Li, D.; Qiao, Z.; Wang, G.; Liu, G.; Xu, J.; Li, E. Antifungal Mechanism of Cinnamon Essential Oil against Chinese Yam-Derived Aspergillus niger. J. Food Process. Preserv. 2023, 2023, 1–9. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Jackson-Davis, A.; White, S.; Kassama, L.S.; Coleman, S.; Shaw, A.; Mendonca, A.; Cooper, B.; Thomas-Popo, E.; Gordon, K.; London, L. A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J. Food Prot. 2023, 86, 100025. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Sahraoui, A.L.-H. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef]
- Kesraoui, S.; Andrés, M.F.; Berrocal-Lobo, M.; Soudani, S.; Gonzalez-Coloma, A. Direct and Indirect Effects of Essential Oils for Sustainable Crop Protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef] [PubMed]
- Andarzbakhsh, K.; Sharafi-Badr, P.; Ehsandoost, E.; Morad, H.; Rezazadeh, A.; Kazemian, H. Encapsulation of biological molecules in metal-organic frameworks for biomedical applications: Recent developments and future perspectives. Inorg. Chem. Commun. 2024, 169, 113029. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Alshehri, M.A.; Kandasamy, S.; Sarangi, P.K.; Sharma, A. Deciphering the importance of nanoencapsulation to improve the availability of bioactive molecules in food sources to the human body. Food Chem. 2025, 464, 141762. [Google Scholar] [CrossRef] [PubMed]
- Reis, D.R.; Ambrosi, A.; Di Luccio, M. Encapsulated essential oils: A perspective in food preservation. Futur. Foods 2022, 5, 100126. [Google Scholar] [CrossRef]
- Dupuis, V.; Cerbu, C.; Witkowski, L.; Potarniche, A.V.; Timar, M.C.; Żychska, M.; Sabliov, C.M. Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications. Drug Deliv. 2022, 29, 1007–1024. [Google Scholar] [CrossRef]
- Weisany, W.; Samadi, S.; Tahir, N.A.-R.; Amini, J.; Hossaini, S. Nano-encapsulated with mesoporous silica enhanced the antifungal activity of essential oil against Botrytis cinerea (Helotiales; Sclerotiniaceae) and Colletotrichum nymphaeae (Glomerellales; Glomerellaceae). Physiol. Mol. Plant Pathol. 2022, 122, 101902. [Google Scholar] [CrossRef]
- Attia, R.G.; Khalil, M.M.H.; Hussein, M.A.; Fattah, H.M.A.; Rizk, S.A.; Ma’moun, S.A.M. Cinnamon Oil Encapsulated with Silica Nanoparticles: Chemical Characterization and Evaluation of Insecticidal Activity Against the Rice Moth, Corcyra cephalonica. Neotropical Èntomol. 2023, 52, 500–511. [Google Scholar] [CrossRef]
- Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Bernardos, A.; Martínez-Máñez, R.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials 2019, 9, 227. [Google Scholar] [CrossRef]
- Cadena, M.B.; Preston, G.M.; Van der Hoorn, R.A.; Townley, H.E.; Thompson, I.P. Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Ind. Crops Prod. 2018, 122, 582–590. [Google Scholar] [CrossRef]
- Overmans, S.; Alflayyeh, Y.; Gutiérrez, S.; Aldlaigan, Y.; Lauersen, K.J. Treatment with metal–organic frameworks (MOFs) elicits secondary metabolite accumulation in Aquilaria crassna (agarwood) callus culture. Discov. Plants 2025, 2, 104. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Chen, X.; Liu, Y.; Han, Y.; Cui, Y. Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal–Organic Frameworks. J. Am. Chem. Soc. 2021, 143, 3509–3518. [Google Scholar] [CrossRef] [PubMed]
- Haikal, R.R.; El Salakawy, N.; Ibrahim, A.; Ali, S.L.; Mamdouh, W. Synergistic antioxidant and antibacterial effects of a Zn-ascorbate metal–organic framework loaded with marjoram essential oil. Nanoscale Adv. 2024, 6, 4664–4671. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, M.; Zhu, D.; Zhang, J.; Wei, G. Metal-organic frameworks functionalized with nucleic acids and amino acids for structure- and function-specific applications: A tutorial review. Chem. Eng. J. 2022, 428, 131118. [Google Scholar] [CrossRef]
- Núñez-Rico, J.L.; Cabezas-Giménez, J.; Lillo, V.; Balestra, S.R.G.; Galán-Mascarós, J.R.; Calero, S.; Vidal-Ferran, A. TAMOF-1 as a Versatile and Predictable Chiral Stationary Phase for the Resolution of Racemic Mixtures. ACS Appl. Mater. Interfaces 2023, 15, 39594–39605. [Google Scholar] [CrossRef]
- Nagarajan, V.; Kizhaeral, S.S.; Subramanian, M.; Rajendran, S.; Ranjan, J. Encapsulation of a Volatile Biomolecule (Hexanal) in Cyclodextrin Metal–Organic Frameworks for Slow Release and Its Effect on Preservation of Mangoes. ACS Food Sci. Technol. 2021, 1, 1936–1944. [Google Scholar] [CrossRef]
- Cai, L.; Li, L.; Li, D.; Wu, Y.; Bai, J.; Zhong, K.; Gao, H. A nanoscale γ-cyclodextrin metal-organic framework loaded with eugenol (CMFE) for controlling F. graminearum on the wheat during harvest time. Ind. Crops Prod. 2024, 221, 119314. [Google Scholar] [CrossRef]
- Che, J.; Chen, K.; Song, J.; Tu, Y.; Reymick, O.O.; Chen, X.; Tao, N. Fabrication of γ-cyclodextrin-Based metal-organic frameworks as a carrier of cinnamaldehyde and its application in fresh-cut cantaloupes. Curr. Res. Food Sci. 2022, 5, 2114–2124. [Google Scholar] [CrossRef]
- Chen, K.; Brennan, C.; Cao, J.; Cheng, G.; Li, L.; Qin, Y.; Chen, H. Characterization of chitosan/eugenol-loaded IRMOF-3 nanoparticles composite films with sustained antibacterial activity and their application in postharvest preservation of strawberries. LWT 2023, 186, 115270. [Google Scholar] [CrossRef]
- Ding, Y.; Yuan, J.; Mo, F.; Wu, S.; Ma, Y.; Li, R.; Li, M. A pH-Responsive Essential Oil Delivery System Based on Metal–organic Framework (ZIF-8) for Preventing Fungal Disease. J. Agric. Food Chem. 2023, 71, 18312–18322. [Google Scholar] [CrossRef]
- He, W.; Ye, K.; Li, H.; Wang, C.; Wei, H.; Dang, L. Novel γ-cyclodextrin-based metal–organic frameworks for the effective encapsulation of oregano essential oil and controlled release. New J. Chem. 2023, 47, 10322–10332. [Google Scholar] [CrossRef]
- Hong, S.J.; Riahi, Z.; Shin, G.H.; Kim, J.T. Development of innovative active packaging films using gelatin/pullulan-based composites incorporated with cinnamon essential oil-loaded metal-organic frameworks for meat preservation. Int. J. Biol. Macromol. 2024, 267, 131606. [Google Scholar] [CrossRef]
- Hu, Z.; Li, S.; Wang, S.; Zhang, B.; Huang, Q. Encapsulation of menthol into cyclodextrin metal-organic frameworks: Preparation, structure characterization and evaluation of complexing capacity. Food Chem. 2021, 338, 127839. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Pan, X.; Gao, T.; He, T.; Chen, C.; Zhang, B.; Fu, X.; Huang, Q. Controlled Release of Thymol by Cyclodextrin Metal-Organic Frameworks for Preservation of Cherry Tomatoes. Foods 2022, 11, 3818. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhou, Z.; Shen, Y.; Jiang, L. Pore size effect of zirconium-based metal-organic frameworks for encapsulation and release of volatile monoterpenes. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 674, 131907. [Google Scholar] [CrossRef]
- Min, T.; Lei, Y.; Cheng, C.; Luo, Y.; Zhang, Y.; Yue, J. Highly efficient anchoring of γ-cyclodextrin-MOFs on chitosan/cellulose film by in situ growth to enhance encapsulation and controlled release of carvacrol. Food Hydrocoll. 2024, 150, 109633. [Google Scholar] [CrossRef]
- Motakef-Kazemi, N.; Ghorbani, M. Adsorption and release of thymol using metal organic framework Zn2(BDC)2(DABCO) and its chitosan nanocomposite. J. Theor. Appl. Phys. 2024, 30, 18. [Google Scholar] [CrossRef]
- Ning, H.; Lu, L.; Xu, J.; Lu, L.; Pan, L.; Lin, Z. Development of sodium alginate-based antioxidant and antibacterial bioactive films added with IRMOF-3/Carvacrol. Carbohydr. Polym. 2022, 292, 119682. [Google Scholar] [CrossRef]
- Ning, H.; Lu, L.; Zhang, Y. Isoreticular metal-organic framework-3 post-synthetic modification: Application in a new active film based on sodium alginate and carvacrol for pork preservation. Food Biosci. 2024, 59, 103926. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; Huang, Y.; Xiao, S.; Cui, R.; Yuan, M.; Brennan, M.; Brennan, C. Preparation and characterization of Ag@MOF-eugenol/poly (lactic acid) composite films for zucchini preservation. Int. J. Biol. Macromol. 2024, 282, 136809. [Google Scholar] [CrossRef]
- Qin, Y.; Yu, H.; Chen, K.; Cui, R.; Cao, J.; Wang, Z.; Zhang, Z.-H.; Soteyome, T. Effects of chitosan/eugenol-loaded IRMOF-3 nanoparticles composite films on reactive oxygen species metabolism and microbial community dynamics in postharvest strawberries. Food Biosci. 2025, 63, 105652. [Google Scholar] [CrossRef]
- Qin, Z.; Jiang, Q.; Zou, Y.; Chen, M.; Li, J.; Li, Y.; Zhang, H. Synthesis of Nanosized γ-Cyclodextrin Metal-Organic Frameworks as Carriers of Limonene for Fresh-Cut Fruit Preservation Based on Polycaprolactone Nanofibers. Small 2024, 20, 2400399. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, L.; Liu, J.; Yu, K.; Yu, W.; Jiang, H.; Chen, X.; Peng, S.; Zhong, J.; Liu, W. Metal-organic frameworks-based moisture responsive essential oil hydrogel beads for fresh-cut pineapple preservation. Food Chem. 2024, 451, 139440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Du, Y.-T.; Xue, W.-Y.; Wang, L.; Li, R.; Jiang, Z.-T.; Tang, S.-H.; Tan, J. Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). Meat Sci. 2023, 195, 108998. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhou, X.; Dong, Y.; Zhang, Y.; Liu, R.; Kang, H.; Wang, K.; Li, J. Citral Encapsulated into a Zeolite Imidazolate Framework-67 (ZIF-67) Cage via Biomimetic Mineralization as an Efficient Preservative for Long-Term Antimildew Efficacy of Bamboo. ACS Sustain. Chem. Eng. 2024, 12, 15991–16000. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, Y.; Zhou, B.; Mei, L.; Wang, Q.; Zhang, B. Porous metal-organic framework (MOF) Carrier for incorporation of volatile antimicrobial essential oil. Food Control. 2019, 98, 174–178. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, D.; Guo, X.; Shu, C.; Ouyang, H.; He, Y.; Tang, K.; Zhu, P.; Wang, Y.; Li, H. Preparation, characterization, and application on storage blueberries of starch matrix packaging film with slow-release activity by clove essential oil loaded in a zirconium-based metal-organic framework. Ind. Crops Prod. 2024, 220, 119205. [Google Scholar] [CrossRef]
- Zuniega, J.; Grabulos, J.; Lebrun, M.; Aumond, T.; Daniel, C.; Brat, P.; Farrusseng, D. Encapsulation of thymol and limonene in metal–organic frameworks for inhibition of Colletotrichum musae growth. Int. J. Food Sci. Technol. 2024, 59, 730–742. [Google Scholar] [CrossRef]
- Liang, M.; Xing, S.; Bai, F.; Tan, M.; Su, W. Cyclodextrin-based metal-organic frameworks as microreactors: Purification and stabilization of food bioactive compounds in Confined Spaces. Trends Food Sci. Technol. 2024, 150, 104588. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, J.; Liu, K.; Zhou, Z.; Jiang, L.; Shen, Y.; Zhao, D. Biocompatible Cyclodextrin-Based Metal–Organic Frameworks for Long-Term Sustained Release of Fragrances. Ind. Eng. Chem. Res. 2019, 58, 19767–19777. [Google Scholar] [CrossRef]
- Gayen, P.; Karmakar, A.; Sepay, N.; Sinha, C. Influence of the cavity size of cyclodextrins on the photochromism of azoimidazoles. J. Indian Chem. Soc. 2022, 99, 100295. [Google Scholar] [CrossRef]
- Kathuria, A.; Kumar, L.; Gaikwad, K.K.; El Badawy, A.; Kivy, M.B. Micro-encapsulation of citral using edible γ-cyclodextrin metal organic framework. J. Incl. Phenom. Macrocycl. Chem. 2024, 104, 99–108. [Google Scholar] [CrossRef]
- Pan, X.; Junejo, S.A.; Tan, C.P.; Zhang, B.; Fu, X.; Huang, Q. Effect of potassium salts on the structure of γ-cyclodextrin MOF and the encapsulation properties with thymol. J. Sci. Food Agric. 2022, 102, 6387–6396. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, L.; Zhang, Y.; Huang, Y.; Cao, J.; Jiang, W. Antimicrobial and controlled release properties of nanocomposite film containing thymol and carvacrol loaded UiO-66-NH2 for active food packaging. Food Chem. 2023, 404, 134427. [Google Scholar] [CrossRef]
MOF | Essential Oil | Crop | Targeted Pathogens |
---|---|---|---|
γ-CD MOF [139] | Eugenol | Wheat | F-graminearum |
γ-CD MOF [140] | Cinnamaldehyde | Cantaloupes | E. coli |
IRMOF-3 [141] | Eugenol | Strawberries | E. coli and S. aureus |
ZIF-8 [142] | Citral EO | Rice | Magnaporthe oryzae, Botryosphaeria dothidea, and Fusarium oxysporum |
Zn-ascorbate MOF [135] | Marjoram EO | - | E. coli and S. aureus |
γ-CD MOF [143] | Oregano EO | - | - |
Cu-H3BTC [144] | Cinnamon EO | Meat preservation | S. aureus, S. enterica, E. coli, and L. monocytogenes |
CD MOFs (α,β,γ) [145] | Menthol | - | - |
γ-CD-MOFs [146] | Thymol | Cherry Tomatoes | - |
UiO-66,67,68 [147] | d-limonene (Lim), α-terpinene (Terp), myrcene (Myr), and α-pinene (Pine) | - | - |
γ-CD MOF [148] | Carvacrol | Strawberries | E. coli, S. aureus and B. cinerea |
Zn2(BDC)2(DABCO) [149] | Thymol | - | E. coli, S. aureus |
IRMOF-3 [150] | Carvacrol | - | E. coli, S. aureus |
IRMOF-3 [151] | Carvacrol | Pork preservation | E. coli, S. aureus |
Ag-MOF [152] | Eugenol | Zucchini | Staphylococcus aureus, E. coli |
IRMOF-3 [153] | Eugenol | Post harvest Strawberries | Botrytis cinerea, Ralstonia, Sphingomonas, Erwinia, Rhodotorula |
γ-CD MOF@PCL [154] | Limonene | Preservation of fresh cut apples | E. coli and S. aureus |
HKUST-1@ALG [155] | Tea Tree Oil | Fresh-cut pineapple preservation | E. coli and S. aureus |
β-CD-MOF [156] | Clove EO | Chinese bacon | Inhibition of lipid oxidation |
ZIF-67 [157] | Citral | Bamboo | E. coli and S. aureus |
Zn-BDC-NH2 [158] | Thymol | - | E. coli |
NH2-UiO-66 [159] | Clove EO | Blueberries | E. coli and S. aureus |
ZIF-8 [160] | Thymol | - | Colletotrichum musae |
UiO-66-(COOH)2 [160] | Thymol | - | Colletotrichum musae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angeli, G.K.; Kotzabasaki, M.I.; Maraveas, C. Metal Organic Frameworks for Smart Storage and Delivery of Aromatic Volatiles and Essential Oils in Agrifood. Appl. Sci. 2025, 15, 5479. https://doi.org/10.3390/app15105479
Angeli GK, Kotzabasaki MI, Maraveas C. Metal Organic Frameworks for Smart Storage and Delivery of Aromatic Volatiles and Essential Oils in Agrifood. Applied Sciences. 2025; 15(10):5479. https://doi.org/10.3390/app15105479
Chicago/Turabian StyleAngeli, Giasemi K., Marianna I. Kotzabasaki, and Chrysanthos Maraveas. 2025. "Metal Organic Frameworks for Smart Storage and Delivery of Aromatic Volatiles and Essential Oils in Agrifood" Applied Sciences 15, no. 10: 5479. https://doi.org/10.3390/app15105479
APA StyleAngeli, G. K., Kotzabasaki, M. I., & Maraveas, C. (2025). Metal Organic Frameworks for Smart Storage and Delivery of Aromatic Volatiles and Essential Oils in Agrifood. Applied Sciences, 15(10), 5479. https://doi.org/10.3390/app15105479