Real-Time Accurate Determination of Table Tennis Ball and Evaluation of Player Stroke Effectiveness with Computer Vision-Based Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Architecture of the System and Ball Detection
2.2. Hitting Pose Analysis
3. Results
3.1. Detection Rate and Accuracy Test
3.2. Evaluation of Hitting Pose—Pilot Study with Dynamic Time Wrapping (DTW)
3.3. DTW Validation Study
3.4. Limitation of DTW for Individual Scoring
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebermann, D.G.; Katz, L.; Hughes, M.D.; Bartlett, R.M.; McClements, J.; Franks, I.M. Advances in the application of information technology to sport performance. J. Sports Sci. 2002, 20, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Mittal, V. Wearable Sensors for Real-Time Kinematics Analysis in Sports: A Review. IEEE Sens. J. 2021, 21, 1187–1207. [Google Scholar] [CrossRef]
- Capasa, L.; Zulauf, K.; Wagner, R. Virtual Reality Experience of Mega Sports Events: A Technology Acceptance Study. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 686–703. [Google Scholar] [CrossRef]
- Zadeh, A.; Taylor, D.; Bertsos, M.; Tillman, T.; Nosoudi, N.; Bruce, S. Predicting Sports Injuries with Wearable Technology and Data Analysis. Inf. Syst. Front. 2021, 23, 1023–1037. [Google Scholar] [CrossRef]
- Giménez-Egido, J.M.; Ortega, E.; Verdu-Conesa, I.; Cejudo, A.; Torres-Luque, G. Using Smart Sensors to Monitor Physical Activity and Technical–Tactical Actions in Junior Tennis Players. Int. J. Environ. Res. Public Health 2020, 17, 1068. [Google Scholar] [CrossRef]
- Dokic, K.; Mesic, T.; Martinovic, M. Table Tennis Forehand and Backhand Stroke Recognition Based on Neural Network. In Proceedings of Advances in Computing and Data Sciences; Springer: Singapore, 2020; pp. 24–35. [Google Scholar]
- Oagaz, H.; Schoun, B.; Choi, M.H. Performance Improvement and Skill Transfer in Table Tennis Through Training in Virtual Reality. IEEE Trans. Vis. Comput. Graph. 2022, 28, 4332–4343. [Google Scholar] [CrossRef]
- Lin, H.-I.; Yu, Z.; Huang, Y.-C. Ball Tracking and Trajectory Prediction for Table-Tennis Robots. Sensors 2020, 20, 333. [Google Scholar] [CrossRef]
- Mat Sanusi, K.A.; Mitri, D.D.; Limbu, B.; Klemke, R. Table Tennis Tutor: Forehand Strokes Classification Based on Multimodal Data and Neural Networks. Sensors 2021, 21, 3121. [Google Scholar] [CrossRef]
- Büchler, D.; Guist, S.; Calandra, R.; Berenz, V.; Schölkopf, B.; Peters, J. Learning to Play Table Tennis From Scratch Using Muscular Robots. IEEE Trans. Robot. 2022, 38, 3850–3860. [Google Scholar] [CrossRef]
- Michalski, S.C.; Szpak, A.; Saredakis, D.; Ross, T.J.; Billinghurst, M.; Loetscher, T. Getting your game on: Using virtual reality to improve real table tennis skills. PLoS ONE 2019, 14, e0222351. [Google Scholar] [CrossRef]
- Oagaz, H.; Schoun, B.; Choi, M.-H. Real-time posture feedback for effective motor learning in table tennis in virtual reality. Int. J. Hum. Comput. Stud. 2022, 158, 102731. [Google Scholar] [CrossRef]
- Ralf, S.; Lars, L.; Stefan, K.; Christian, S. Table Tennis and Physics. In Simulation Modeling—Recent Advances, New Perspectives, and Applications; Abdo Abou, J., Ed.; IntechOpen: Rijeka, Croatia, 2022; Chapter 11. [Google Scholar]
- Yu, H.-I.; Hong, S.-C.; Ju, T.-Y. Low-cost system for real-time detection of the ball-table impact position on ping-pong table. Appl. Acoust. 2022, 195, 108832. [Google Scholar] [CrossRef]
- Rong, Z. Optimization of table tennis target detection algorithm guided by multi-scale feature fusion of deep learning. Sci. Rep. 2024, 14, 1401. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; An, K.; Qin, C.; Cheng, Y. Table Tennis Track Detection Based on Temporal Feature Multiplexing Network. Sensors 2023, 23, 1726. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Wang, C.; Fu, M.; Duan, X. A study on table tennis landing point detection algorithm based on spatial domain information. Sci. Rep. 2023, 13, 20656. [Google Scholar] [CrossRef]
- Goh, G.L.; Goh, G.D.; Pan, J.W.; Teng, P.S.; Kong, P.W. Automated Service Height Fault Detection Using Computer Vision and Machine Learning for Badminton Matches. Sensors 2023, 23, 9759. [Google Scholar] [CrossRef]
- Messelodi, S.; Modena, C.M.; Ropele, V.; Marcon, S.; Sgrò, M. A Low-Cost Computer Vision System for Real-Time Tennis Analysis. In Proceedings of Image Analysis and Processing—ICIAP 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 106–116. [Google Scholar]
- Brocherie, F.; Dinu, D. Biomechanical estimation of tennis serve using inertial sensors: A case study. Front. Sports Act. Living 2022, 4, 962941. [Google Scholar] [CrossRef]
- Yin, Y.; Zhu, H.; Yang, P.; Yang, Z.; Liu, K.; Fu, H. High-precision and rapid binocular camera calibration method using a single image per camera. Opt. Express 2022, 30, 18781–18799. [Google Scholar] [CrossRef]
- Gomez-Gonzalez, S.; Nemmour, Y.; Schölkopf, B.; Peters, J. Reliable Real-Time Ball Tracking for Robot Table Tennis. Robotics 2019, 8, 90. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; TaoXie; Fang, J.; Imyhxy; Michael, K.; et al. Ultralytics/yolov5: v6.1—TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference; Zenodo: Geneve, Switzerland, 2022. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; TaoXie; Michael, K.; Fang, J.; Imyhxy; et al. Ultralytics/Yolov5: v6.2—YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai Integrations; Zenodo: Geneve, Switzerland, 2022. [Google Scholar]
- Barone, S.; Neri, P.; Paoli, A.; Razionale, A.V. 3D acquisition and stereo-camera calibration by active devices: A unique structured light encoding framework. Opt. Lasers Eng. 2020, 127, 105989. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Fang, J.; Liu, Q.; Li, J. A Deployment Scheme of YOLOv5 with Inference Optimizations Based on the Triton Inference Server. In Proceedings of the 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 24–26 April 2021; pp. 441–445. [Google Scholar]
- Qiaoshou, L.I.U.; Zhiyuan, Z.; Juncheng, W.; Shengwen, P.I. High Performance YOLOv5: Research on High Performance Target Detection Algorithm for Embedded Platform. J. Electron. Inf. Technol. 2023, 45, 2205–2215. [Google Scholar] [CrossRef]
- Zhang, Z. Microsoft Kinect Sensor and Its Effect. IEEE MultiMedia 2012, 19, 4–10. [Google Scholar] [CrossRef]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.-L.; Yong, M.; Lee, J. Mediapipe: A framework for perceiving and processing reality. In Proceedings of the Third Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 17 June 2019. [Google Scholar]
- Wang, Y.; Wang, H.; Xin, Z. Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7. IEEE Access 2022, 10, 133936–133944. [Google Scholar] [CrossRef]
- Sardy, S.; Tseng, P.; Bruce, A. Robust wavelet denoising. IEEE Trans. Signal Process. 2001, 49, 1146–1152. [Google Scholar] [CrossRef]
- Dynamic Time Warping. In Information Retrieval for Music and Motion; Müller, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 69–84. [Google Scholar]
- Wong, D.W.; Lee, W.C.; Lam, W.-K. Biomechanics of Table Tennis: A Systematic Scoping Review of Playing Levels and Maneuvers. Appl. Sci. 2020, 10, 5203. [Google Scholar] [CrossRef]
- Mateus, N.; Abade, E.; Coutinho, D.; Gómez, M.-Á.; Peñas, C.L.; Sampaio, J. Empowering the Sports Scientist with Artificial Intelligence in Training, Performance, and Health Management. Sensors 2025, 25, 139. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Huang, P.; Li, R.; Liu, Z.; Zou, Y. Exploring the Application of Artificial Intelligence in Sports Training: A Case Study Approach. Complexity 2021, 2021, 4658937. [Google Scholar] [CrossRef]
- Naughton, M.; Salmon, P.M.; Compton, H.R.; McLean, S. Challenges and opportunities of artificial intelligence implementation within sports science and sports medicine teams. Front. Sports Act. Living 2024, 6, 1332427. [Google Scholar] [CrossRef]
Day | Player 1 | Player 2 | Player 3 |
---|---|---|---|
1 | 45.92 ± 0.20 | 48.48 ± 1.16 | 31.83 ± 1.86 |
3 | 46.98 ± 0.75 | 50.13 ± 1.69 | 35.97 ± 2.32 |
7 | 46.61 ± 1.10 | 47.48 ± 0.77 | 35.96 ± 1.47 |
Player Number | Coach 1 | Coach 2 | DTW |
---|---|---|---|
1 | 50 | 50 | 56.183 |
2 | 60 | 75 | 55.5373 |
3 | 50 | 50 | 31.4156 |
4 | 40 | 55 | 56.3357 |
5 | 95 | 85 | 54.4985 |
6 | 30 | 50 | 51.2162 |
7 | 35 | 50 | 31.85 |
8 | 50 | 30 | 58.1829 |
9 | 60 | 65 | 34.0617 |
10 | 55 | 40 | 63.1853 |
11 | 20 | 20 | 49.6189 |
12 | 65 | 60 | 54.1336 |
13 | 40 | 30 | 45.655 |
14 | 60 | 65 | 54.9442 |
15 | 15 | 20 | 51.2449 |
16 | 55 | 50 | 50.6556 |
17 | 75 | 65 | 35.2383 |
18 | 80 | 60 | 58.487 |
19 | 80 | 65 | 31.4568 |
20 | 80 | 50 | 62.1548 |
21 | 30 | 40 | 33.2791 |
22 | 60 | 60 | 52.4147 |
23 | 80 | 65 | 33.3141 |
24 | 30 | 20 | 39.5985 |
25 | 70 | 50 | 58.7212 |
Player Number | Coach 1 | Coach 2 | DTW |
---|---|---|---|
1 | 70 | 85 | 32.1214 |
2 | 80 | 75 | 33.3529 |
3 | 85 | 75 | 45.51 |
4 | 75 | 75 | 39.6811 |
5 | 85 | 90 | 55.2254 |
6 | 75 | 80 | 35.6166 |
7 | 75 | 80 | 41.3269 |
8 | 75 | 70 | 36.8432 |
9 | 100 | 90 | 44.3954 |
10 | 80 | 80 | 36.5016 |
11 | 80 | 80 | 32.821 |
12 | 90 | 70 | 55.742 |
13 | 100 | 90 | 45.247 |
14 | 75 | 65 | 47.9326 |
15 | 80 | 75 | 44.0434 |
16 | 75 | 85 | 33.8868 |
17 | 75 | 75 | 48.2472 |
18 | 75 | 85 | 32.1372 |
19 | 90 | 90 | 36.8544 |
20 | 90 | 95 | 36.2313 |
21 | 80 | 75 | 33.8565 |
22 | 85 | 75 | 33.6036 |
23 | 85 | 85 | 50.626 |
24 | 85 | 80 | 36.2405 |
25 | 50 | 70 | 35.0458 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Yang, Z.; Xu, J.; Chen, H.; Li, X.; Wang, A.; Yang, J.; Chow, G.C.-C.; Chen, X. Real-Time Accurate Determination of Table Tennis Ball and Evaluation of Player Stroke Effectiveness with Computer Vision-Based Deep Learning. Appl. Sci. 2025, 15, 5370. https://doi.org/10.3390/app15105370
He Z, Yang Z, Xu J, Chen H, Li X, Wang A, Yang J, Chow GC-C, Chen X. Real-Time Accurate Determination of Table Tennis Ball and Evaluation of Player Stroke Effectiveness with Computer Vision-Based Deep Learning. Applied Sciences. 2025; 15(10):5370. https://doi.org/10.3390/app15105370
Chicago/Turabian StyleHe, Zilin, Zeyi Yang, Jiarui Xu, Hongyu Chen, Xuanfeng Li, Anzhe Wang, Jiayi Yang, Gary Chi-Ching Chow, and Xihan Chen. 2025. "Real-Time Accurate Determination of Table Tennis Ball and Evaluation of Player Stroke Effectiveness with Computer Vision-Based Deep Learning" Applied Sciences 15, no. 10: 5370. https://doi.org/10.3390/app15105370
APA StyleHe, Z., Yang, Z., Xu, J., Chen, H., Li, X., Wang, A., Yang, J., Chow, G. C.-C., & Chen, X. (2025). Real-Time Accurate Determination of Table Tennis Ball and Evaluation of Player Stroke Effectiveness with Computer Vision-Based Deep Learning. Applied Sciences, 15(10), 5370. https://doi.org/10.3390/app15105370