Comparative Evaluation of Presented Strength Criteria of Anisotropic Rocks Based on Triaxial Experiments
Abstract
:1. Introduction
2. Anisotropic Strength Criteria
2.1. Jaeger’s Plane of Weakness Model
2.2. Plane of Patchy Weakness Model
2.3. Pariseau’s Model
3. Analysis of Experimental Results
4. Comparison of Prediction Accuracy
4.1. Fitting Method
4.2. Results and Analysis
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, W.; Yang, T.; Liu, H.; Liu, F.; Xu, H. Applicability of anisotropic failure criteria and associated application with layered rocks. Adv. Civ. Eng. 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Bai, B.; Elgmati, M.; Zhang, H.; Wei, M. Rock characterization of Fayetteville shale gas plays. Fuel 2013, 105, 645–652. [Google Scholar] [CrossRef]
- Chenevert, M.E.; Amanullah, M. Shale preservation and testing techniques for borehole-stability studies. SPE Drill. Compl. 2001, 16, 146–149. [Google Scholar] [CrossRef]
- Ghorbani, A.; Zamora, M.; Cosenza, P. Effects of desiccation on the elastic wave velocities of clay-rocks. Int. J. Rock Mech. Min. Sci. 2009, 46, 1267–1272. [Google Scholar] [CrossRef]
- Ismael, M.S.M.; Chang, M.S.L.; Konietzky, H.H. Behavior of Anisotropic Rocks; Technical Report; Geotechnical Institute, TU Berg Akademie Freiberg: Freiberg, Germany, 2017. [Google Scholar]
- Hoek, E.; Brown, E.T. Empirical strength criterion for rock masses. J. Geotech. Geoenviron. Eng. 1980, 106, 1013–1035. [Google Scholar] [CrossRef]
- Jaeger, J.C. Shear failure of anisotropic rocks. Geol. Mag. 1960, 97, 65–72. [Google Scholar] [CrossRef]
- Ambrose, J.; Zimmerman, R.W.; Suarez-Rivera, R. Failure of shales under triaxial compressive stress. In Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, MN, USA, 1–4 June 2014; American Rock Mechanics Association: Alexandria, VA, USA, 2014. [Google Scholar]
- Saroglou, H.; Tsiambaos, G. A modified Hoek–Brown failure criterion for anisotropic intact rock. Int. J. Rock Mech. Min. Sci. 2008, 45, 223–234. [Google Scholar] [CrossRef]
- Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. What controls the mechanical properties of shale rocks?—Part I: Strength and Young’s modulus. J. Pet. Sci. Eng. 2015, 135, 702–722. [Google Scholar] [CrossRef]
- Rybacki, E.; Meier, T.; Dresen, G. What controls the mechanical properties of shale rocks?—Part II: Brittleness. J. Pet. Sci. Eng. 2016, 144, 39–58. [Google Scholar] [CrossRef]
- Tien, Y.M.; Kuo, M.C. A failure criterion for transversely isotropic rocks. Int. J. Rock Mech. Min. Sci. 2001, 38, 399–412. [Google Scholar] [CrossRef]
- Ramamurthy, T. Strength and modulus responses of anisotropic rocks. In Comprehensive Rock Engineering; Hudson, J.A., Ed.; Pergamon: Oxford, UK, 1993; Volume 1, pp. 313–329. [Google Scholar]
- Lee, Y.K.; Pietruszczak, S.; Choi, B.H. Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions. Int. J. Rock Mech. Min. Sci. 2012, 56, 146–160. [Google Scholar] [CrossRef]
- Benz, T.; Schwab, R. A quantitative comparison of six rock failure criteria. Int. J. Rock Mech. Min. Sci. 2008, 45, 1176–1186. [Google Scholar] [CrossRef]
- Colmenares, L.B.; Zoback, M.D. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int. J. Rock Mech. Min. Sci. 2002, 39, 695–729. [Google Scholar] [CrossRef]
- Shi, X.; Yang, X.; Meng, Y.; Li, G. Modified Hoek–Brown failure criterion for anisotropic rocks. Environ. Earth Sci. 2016, 75, 995. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek–Brown failure criterion—2002 edition. In Proceedings of the North American Rock Mechanics Symposium (NARMS-TAC), Toronto, ON, Canada, 7–10 July 2002; pp. 267–273. [Google Scholar]
- Ramamurthy, T.; Rao, G.V.; Singh, J. A strength criterion for anisotropic rocks. In Proceedings of the Fifth Australia–New Zealand Conference on Geomechanics, Sydney, Australia, 22–23 August 1988; pp. 253–257. [Google Scholar]
- Rao, K.S.; Rao, G.V.; Ramamurthy, T. A strength criterion for anisotropic rocks. Indian Geotech. J. 1986, 16, 317–333. [Google Scholar]
- Li, D.; Wong, L.N.Y.; Liu, G.; Zhang, X. Influence of water content and anisotropy on the strength and deformability of low porosity meta-sedimentary rocks under triaxial compression. Eng. Geol. 2012, 126, 46–66. [Google Scholar] [CrossRef]
- Iferobia, C.C.; Ahmad, M. A review on the experimental techniques and applications in the geomechanical evaluation of shale gas reservoirs. J. Nat. Gas Sci. Eng. 2020, 74, 103090. [Google Scholar] [CrossRef]
- McLamore, R.; Gray, K.E. The mechanical behavior of anisotropic sedimentary rocks. J. Eng. Ind. 1967, 89, 62–73. [Google Scholar] [CrossRef]
- Willson, S.M.; Edwards, S.T.; Crook, A.J.; Bere, A.; Moos, D.; Peska, P.; Last, N. Assuring stability in extended reach wells-analyses, practices and mitigations. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 20–22 February 2007; Society of Petroleum Engineers: Richardson, TX, USA, 2007. [Google Scholar]
- You, M. True-triaxial strength criteria for rock. Int. J. Rock Mech. Min. Sci. 2009, 46, 115–127. [Google Scholar] [CrossRef]
- Alqahtani, A.A.; Mokhtari, M.; Tutuncu, A.N.; Sonnenberg, S. Effect of mineralogy and petrophysical characteristics on acoustic and mechanical properties of organic rich shale. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013; pp. 399–411. [Google Scholar]
- Fjær, E.; Nes, O.M. Strength anisotropy of Mancos shale. In Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013; American Rock Mechanics Association: Alexandria, VA, USA, 2013. [Google Scholar]
- Saroglou, H.; Marinos, P.; Tsiambaos, G. The anisotropic nature of selected metamorphic rocks from Greece. J. S. Afr. Inst. Min. Metall. 2004, 104, 215–222. [Google Scholar]
- Saeidi, O.; Rasouli, V.; Vaneghi, R.G.; Gholami, R.; Torabi, S.R. A modified failure criterion for transversely isotropic rocks. Geosci. Front. 2014, 5, 215–225. [Google Scholar] [CrossRef]
- Fjær, E.; Nes, O.M. The impact of heterogeneity on the anisotropic strength of an outcrop shale. Rock Mech. Rock Eng. 2014, 47, 1603–1611. [Google Scholar] [CrossRef]
- Fjær, E.; Stenebråten, J.F.; Holt, R.M.; Bauer, A.; Horsrud, P.; Nes, O.M. Modeling strength anisotropy. In Proceedings of the ISRM Conference on Rock Mechanics for Natural Resources and Infrastructure (SBMR), Goiânia, Brazil, 9–13 September 2014; International Society for Rock Mechanics: Lisbon, Portugal, 2014. [Google Scholar]
- Cho, J.W.; Kim, H.; Jeon, S.; Min, K.B. An experimental study on deformation and strength anisotropy of transversely isotropic rocks in Korea. In Harmonising Rock Engineering and the Environment; CRC Press: Boca Raton, FL, USA, 2011; pp. 293–296. [Google Scholar]
- Bautmans, P.; Fjær, E.; Horsrud, P. The effect of weakness patches on wellbore stability in anisotropic media. Int. J. Rock Mech. Min. Sci. 2018, 104, 165–173. [Google Scholar] [CrossRef]
- Li, C.; Li, C.; Zhao, R.; Zhou, L. A strength criterion for rocks. Mech. Mater. 2020, 154, 103721. [Google Scholar] [CrossRef]
- Hang, W.; Chen, M.; Yan, J.; Wang, K.; Xia, Y.; Dong, J.; Niu, C. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale. Pet. Explor. Dev. 2014, 41, 817–823. [Google Scholar]
- Josh, M.; Esteban, L.; Delle Piane, C.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B. Laboratory characterization of shale properties. J. Pet. Sci. Eng. 2012, 88, 107–124. [Google Scholar] [CrossRef]
- Quante, N. Geophysical Characteristics of Underground Igneous Rocks in Medina County, Texas. Master’s Thesis, University of Texas at Austin, Austin, TX, USA, 2017. [Google Scholar]
- Roostaei, R. Quantifying the Error Associated with the Use of Triaxial Rock Strength Criteria in Rock Stability Assessment Around Underground Openings. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar]
- Gao, Y.; Feng, X.T.; Wang, Z.; Zhang, X. Strength and failure characteristics of jointed marble under true triaxial compression. Bull. Eng. Geol. Environ. 2020, 79, 891–905. [Google Scholar] [CrossRef]
- Yang, S.Q.; Hong, W.X.; Sun, B.W.; Tang, X.H. Triaxial mechanics and failure characteristics of shale in different saline environments. Chin. J. Rock Mech. Eng. 2023, 45, 2217–2226. (In Chinese) [Google Scholar]
- Jia, L.C.; Sun, B.F.; Lian, T.W. Experimental study on the anisotropic mechanical properties of organic-rich shale. Drill. Prod. Technol. 2017, 40, 20–23. (In Chinese) [Google Scholar]
- Wang, A.; Wang, F.; He, W. Experimental study on mechanical properties of oil shale in Jiyang Depression. Spec. Oil Gas Reserv. 2023, 30, 144–150. (In Chinese) [Google Scholar]
- Zheng, Y.N.; Zhang, Q.; Zhang, S.; Jia, C.J.; Lei, M.F. Study on the transversely isotropic yield criterion of rocks based on Hoek-Brown. Rock Soil Mech. 2023, 43, 139–150. (In Chinese) [Google Scholar]
- Xing, D.D.; Han, S.Y.; Zhu, Y.Q.; Wang, C.; Xu, Q.; Hou, Z.Z.; Zhang, M.M. Experimental study on the mechanical properties of layered shale in the new Yan’an tunnel. Sci. Technol. Eng. 2023, 23, 5201–5209. (In Chinese) [Google Scholar]
- Liu, Z.C.; Zhang, F.; Li, X.Y. Elastic anisotropy characteristics and influencing factors of organic-rich marine shale in southern China. Sci. China Earth Sci. 2019, 49, 1801–1816. (In Chinese) [Google Scholar]
- Dong, Z.; Tian, S.; Xue, H.; Lu, S.; Liu, B.; Erastova, V.; Chen, G.; Zhang, Y. A novel method for automatic quantification of different pore types in shale based on SEM-EDS calibration. Mar. Pet. Geol. 2025, 173, 107278. [Google Scholar] [CrossRef]
- Gao, R.; Kuang, T.J.; Meng, X.B.; Huo, B.J. Effects of ground fracturing with horizontal fracture plane on rock breakage characteristics and mine pressure control. Rock Mech. Rock Eng. 2021, 54, 3229–3243. [Google Scholar] [CrossRef]
- Gao, R.; Dou, B.; Yu, B.; Yang, T.; Meng, X.B.; Zhang, W.Y. Ground fracturing of multi-strata for strong ground pressure control in extra-thick coal seams with hard roofs: Numerical simulation and case study. Eng. Fract. Mech. 2024, 303, 110129. [Google Scholar] [CrossRef]
- Zou, X.W.; Zhou, T.; Li, G.; Hu, Y.; Deng, B.; Yang, T. Intelligent inversion analysis of surrounding rock parameters and deformation characteristics of a water diversion surge shaft. Designs 2024, 8, 116. [Google Scholar] [CrossRef]
- Ma, W.B.; Zou, W.H.; Zhang, J.L.; Li, G. Prediction of shear strength in anisotropic structural planes considering size effects. Designs 2025, 9, 17. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Larsson, S.; Johansson, F. Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test. Innov. Infrastruct. Solut. 2016, 1, 17. [Google Scholar] [CrossRef]
No. | Rock Type | φo/° | So/MPa | /° | Sbp/MPa |
---|---|---|---|---|---|
1 | Bossier shale | 29.1 | 30.6 | 16.7 | 17.4 |
2 | Vaca Muerta shale | 26.9 | 34.1 | 26.1 | 18.2 |
3 | Angiers Schist | 41.3 | 35.7 | 8.2 | 11.1 |
4 | Martinsburg Slate | 30.2 | 49.3 | 16.6 | 14.1 |
5 | Austin Slate | 22.2 | 81 | 13.6 | 45.1 |
6 | GreenRiver Shale 1 | 27.5 | 69.1 | 30.5 | 41.9 |
7 | GreenRiver Shale 2 | 19.7 | 42 | 18.6 | 27.8 |
8 | Quartz Phyllite | 32.4 | 23.9 | 25.9 | 15.4 |
9 | Carbona Phyllite | 33.3 | 21 | 29.1 | 11.8 |
10 | Micaceous Phyllite | 38.7 | 20.4 | 10.7 | 17.1 |
11 | Penrhyn Slate | 35.1 | 48.33 | 14.7 | 34.27 |
12 | Tournemire Shale | 27 | 9.9 | 2 | 30.5 |
No. | Rock Type | φo/° | So/MPa | /° | Sbp/MPa | η |
---|---|---|---|---|---|---|
1 | Bossier shale | 30.6 | 30 | 34.8 | 10.8 | 0.42 |
2 | Vaca Muerta shale | 26.8 | 34.6 | 28 | 20 | 0.1 |
3 | Angiers Schist | 40.8 | 36.4 | 8 | 12 | 0.14 |
4 | Martinsburg Slate | 31.2 | 48.4 | 19.2 | 14 | 0.3 |
5 | Austin Slate | 22 | 92.2 | 30 | 23 | 0.5 |
6 | GreenRiver Shale 1 | 28 | 69 | 33.2 | 40 | 0.07 |
7 | GreenRiver Shale 2 | 20 | 44.2 | 21.2 | 30 | 0.16 |
8 | Quartz Phyllite | 33.2 | 24.6 | 29.2 | 17 | 0.2 |
9 | Carbona Phyllite | 33.2 | 23.6 | 36 | 13 | 0.28 |
10 | Micaceous Phyllite | 36.8 | 24.2 | 26.8 | 13 | 0.71 |
11 | Penrhyn Slate | 36 | 50 | 33.2 | 29 | 0.57 |
12 | Tournemire Shale | 24 | 14 | 32.6 | 7 | 0.32 |
No. | Rock Type | F/MPa−2 | G/MPa−2 | U/MPa−1 | V/MPa−1 | M/MPa−2 |
---|---|---|---|---|---|---|
1 | Bossier shale | 5.01 × 10−5 | 1.91 × 10−4 | 9.67 × 10−3 | 6.0487 × 10−3 | 2.335 × 10−3 |
2 | Vaca Muerta shale | 1.35 × 10−4 | 8.75 × 10−5 | 4.337 × 10−3 | 5.4687 × 10−3 | 8.41 × 10−4 |
3 | Angiers Schist | 2.88 × 10−7 | 2.10 × 10−4 | 1.4504 × 10−2 | 7.0787 × 10−3 | 9.34 × 10−3 |
4 | Martinsburg Slate | 4.78 × 10−7 | 8.23 × 10−5 | 7.847 × 10−3 | 2.5387 × 10−3 | 1.717 × 10−3 |
5 | Austin Slate | 4.35 × 10−7 | 2.42 × 10−5 | 3.017 × 10−3 | 1.2187 × 10−3 | 3.74 × 10−4 |
6 | GreenRiver Shale 1 | 6.96 × 10−6 | 3.98 × 10−5 | 4.337 × 10−3 | 2.2347 × 10−3 | 2.33 × 10−4 |
7 | GreenRiver Shale 2 | 4.35 × 10−7 | 9.34 × 10−5 | 5.366 × 10−3 | 1.7117 × 10−3 | 6.96 × 10−4 |
8 | Quartz Phyllite | 6.14 × 10−5 | 2.90 × 10−4 | 1.3808 × 10−2 | 6.9047 × 10−3 | 2.34 × 10−3 |
9 | Carbona Phyllite | 2.90 × 10−4 | 2.10 × 10−4 | 9.674 × 10−3 | 1.001 × 10−2 | 2.34 × 10−3 |
10 | Micaceous Phyllite | 3.11 × 10−5 | 3.74 × 10−4 | 1.5229 × 10−2 | 1.0356 × 10−2 | 9.34 × 10−3 |
11 | Penrhyn Slate | 8.23 × 10−5 | 2.59 × 10−5 | 2.814 × 10−3 | 5.2797 × 10−3 | 8.41 × 10−4 |
12 | Tournemire Shale | 5.85 × 10−4 | 8.41 × 10−4 | 1.4504 × 10−2 | 1.2618 × 10−2 | 9.34 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yu, Z.; Yin, Y.; Wen, J. Comparative Evaluation of Presented Strength Criteria of Anisotropic Rocks Based on Triaxial Experiments. Appl. Sci. 2025, 15, 5308. https://doi.org/10.3390/app15105308
Liu Y, Yu Z, Yin Y, Wen J. Comparative Evaluation of Presented Strength Criteria of Anisotropic Rocks Based on Triaxial Experiments. Applied Sciences. 2025; 15(10):5308. https://doi.org/10.3390/app15105308
Chicago/Turabian StyleLiu, Yongfeng, Zhengxing Yu, Yongming Yin, and Jinglin Wen. 2025. "Comparative Evaluation of Presented Strength Criteria of Anisotropic Rocks Based on Triaxial Experiments" Applied Sciences 15, no. 10: 5308. https://doi.org/10.3390/app15105308
APA StyleLiu, Y., Yu, Z., Yin, Y., & Wen, J. (2025). Comparative Evaluation of Presented Strength Criteria of Anisotropic Rocks Based on Triaxial Experiments. Applied Sciences, 15(10), 5308. https://doi.org/10.3390/app15105308