Increasing Photovoltaic Systems Efficiency Through the Implementation of Statistical Methods
Abstract
1. Introduction
2. Literature Review
2.1. Review of High-Performance Technologies for PV Cells and Modules
2.2. Analysis of the PV Market in Romania
2.3. Assessment of PV Power Plants’ Operating Conditions
2.4. Using Statistical Methods for the Assessment of PV Power Plants
2.5. Prediction of PV System Performance Using PVGIS Platform
- The location on the displayed map or the analytical entry of the geographical position (latitude and longitude);
- Choosing the database for solar irradiation;
- Photovoltaic cells/panels technology (Si-mono/polycrystalline);
- Installed power of the photovoltaic power plant [kWp];
- System power losses (typical 14%);
- Orientation of the panels according to azimuth (−90° East, 0° South, and 90° West, respectively);
- Orientation of the panels according to the angle of inclination to the horizontal—in the case of the mount without tracking;
- Characteristic of the tracking system (one or two axes);
- Economic data:
- ▪
- Cost of investment (in the currency of the respective country);
- ▪
- Interest rate [%/an];
- ▪
- Estimated service life [years].
- Global horizontal irradiation (GHI)—This value is the monthly sum of the energy of solar radiation hitting one square meter from a horizontal plane, measured in kWh/m2;
- Direct average irradiation (DNI)—This value is the monthly sum of the solar radiation energy hitting one square meter always oriented in the direction of the sun, measured in kWh/m2, including only the radiation coming directly from the sun;
- Global irradiation, optimal angle—This value is the monthly sum of the solar radiation energy hitting one square meter oriented toward the equator at the angle of inclination that gives the highest annual irradiation, measured in kWh/m2;
- Global irradiation, selected angle (GTI)—This value is the monthly sum of the solar radiation energy hitting one square meter from a plane oriented toward the equator at the angle of inclination chosen by the user, measured in kWh/m2;
- Ratio of diffuse radiation to global radiation—Much of the radiation that reaches the ground does not come directly from the sun but from scattering clouds and water vapour from the air (blue sky). This is known as diffuse radiation. This number represents the fraction of the total radiation that reaches the ground due to diffuse radiation.
- Electricity production per month (January–December). According to input data for photovoltaic systems, PVGIS can also calculate the cost of electricity generated by the photovoltaic system. The calculation is based on a “Levelized Cost of Energy” (LCOE) method, similar to how a fixed-rate mortgage is calculated.
- The total cost of purchasing and installing the photovoltaic system in the currency of the respective country;
- The interest rate, in % per annum, is assumed to be constant throughout the lifetime of the photovoltaic system;
- Estimated lifespan of the photovoltaic system in years.
3. Methodology
3.1. ANOVA Method Regarding Operational and Structural Analysis
- Fisher’s test technique—(χ2);
- Mann–Whitney U test (equivalent to the independent parametric t-test);
- Wilcoxon test of paired ranks (ANOVA equivalent of repeated measurements or t-dependent);
- Kruskal–Wallis ANOVA test of ranks, equivalent to simple ANOVA (data are converted to ranks).
- Analysis of variance (ANOVA) is a statistical formula that compares variances across different groups’ means (or averages). In this paper, we propose using the Kruskal–Wallis ANOVA test of ranks to determine the tilt angle of the panels based on geographical coordinates and season.
- N = the size of the sample analysed (total number of observations across all groups);
- k = number of groups;
- R = the sum of the ranks of a group; ni = the number of elements in a group.
3.2. Application of STEM Method Focused on Economic Efficiency
- S1 represents the subset of characteristics whose value is directly proportional to the quality of the product;
- S2 represents the subset of characteristics whose value is inversely proportional to the quality of the product;
- i represents the product for which the technical level is calculated;
- 1 represents the reference product (any of the analysed products can be considered a reference);
- a is a constant that defines the technical level of the reference product (usually a = 1000, to differentiate the products sufficiently);
- j is the characteristic of the product;
- Kij is the value of the characteristic j for product i;
- γj represents the weight of the characteristic j.
4. Results
4.1. Analysis of the ANOVA Method Results
- For June, July, and August, an optimum tilt angle of 30° is obtained;
- For September, October, and November, an optimal tilt angle of 50° is obtained;
- For December, January, and February, an optimal tilt angle of 70° is obtained;
- For March, April, and May, an optimal tilt angle of 40° is obtained.
- Case analysis—Fixed tilt angle
4.2. Applying the STEM Method Results
- Step 1
- Efficiency of photovoltaic panels (E), the greater, the better;
- Nominal power of a panel (P), the greater, the better;
- Tracking systems (T), the greater, the better;
- Panel surface (S), the smaller, the better;
- The specific cost of a panel (C), the smaller, the better;
- Overall losses (L), the smaller, the better.
- Step 2
- PV power plant Borzesti (Romania), 1.19 MWp—considered the reference [34], using monocrystalline PV panels;
- PV power plant Stupini–Brasov (Romania), 20 MWp, Ref. [35] monocrystalline panels;
- PV power plant Elazig (Turkey), 1 MWp, Ref. [30], using polycrystalline panels;
- PV power plant Bisha (Saudi Arabia), 10 MWp, Ref. [39] using monocrystalline panels and a single-axis tracking system.
- Step 3
- Step 4
- Step 5
5. Discussion
- 30° for June, July, and August;
- 50° for September, October, and November;
- 70° for December, January, and February;
- 40° for March, April, and May.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bobbitt, Z. How to Perform a Kruskal-Wallis Test in Excel. 2020. Available online: https://www.statology.org/kruskal-wallis-test-excel/ (accessed on 18 June 2024).
- Oğuz Kaan Çinci, O.K.; Adem Acir, A. Optimization of Array Design in Photovoltaic Power Plants Using the Taguchi and ANOVA Analysis. Gazi Univ. J. Sci. Part C Des. Technol. 2023, 11, 1195–1208. [Google Scholar] [CrossRef]
- Fan, W.; Kokogiannakis, G.; Ma, Z. A multi-objective design optimisation strategy for hybrid photovoltaic thermal collector (PVT)-solar air heater (SAH) systems with fins. Sol. Energy 2018, 163, 315–328. [Google Scholar] [CrossRef]
- Trambitas, R. Analysis of Variance (ANOVA) Compare Several Means, University Babes-Bolyai Cluj-Napoca, Romania. Available online: https://math.ubbcluj.ro/~tradu/applstat/anovaart.pdf (accessed on 8 April 2025).
- Kudelas, D.; Taušová, M.; Tauš, P.; Gabániová, L.; Koščo, J. Investigation of Operating Parameters and Degradation of Photovoltaic Panels in a Photovoltaic Power Plant. Energies 2019, 12, 3631. [Google Scholar] [CrossRef]
- Samy, M.M.; Almamlook, R.E.; Elkhouly, H.I.; Barakat, S. Decision-making and optimal design of green energy system based on statistical methods and artificial neural network approaches. Sustain. Cities Soc. 2022, 84, 104015. [Google Scholar] [CrossRef]
- Pietro De Giovanni, P.; Zaccour, G. A survey of dynamic models of product quality. Eur. J. Oper. Res. 2023, 307, 991–1007. [Google Scholar] [CrossRef]
- Lupton, R.A.; Weiss, J.E.; Peterson, R.T. Sales Training Evaluation Model (STEM): A Conceptual Framework. Ind. Mark. Manag. 1999, 28, 73–86. [Google Scholar] [CrossRef]
- Grabinski, M.; Klinkova, G. Explaining Cobb-Douglas with the New Mathematics of Inteduct. Theor. Econ. Lett. 2023, 13, 136077. [Google Scholar] [CrossRef]
- Ionescu, S.C. Arhitectura Calitatii (Quality Architecture); Politehnica Press: Bucharest, Romania, 2013; pp. 49–59. ISBN 978-606-515-441-4. [Google Scholar]
- Ionescu, S.; Grecu, I. Optimizări în Management: Culegere de Probleme (Optimizations in Management: Collection of Problems); Politehnica Press: Bucharest, Romania, 2015; pp. 101–110. ISBN 978-606-515-635-7. [Google Scholar]
- Clean Energy Technology Observatory: Photovoltaics in the European Union—2022 Status Report on Technology Development, Trends, Value Chains and Markets. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC130720 (accessed on 10 May 2024).
- Circiumaru, G.; Chihaia, R.-A.; El-Leathey, L.-A.; Voina, A. Experimental Study of a Fish Behavioral Barrier Based on Bubble Curtains for a River Water Intake; Environmental Sciences; IntechOpen: London, UK, 2024; Available online: http://dx.doi.org/10.5772/intechopen.1003997 (accessed on 4 May 2025). [CrossRef]
- Information Fusion of Multi-Vector Real-Time Data Streams for Energy Management in Emerging Power Grids, INFUSE, Project No. 61/2024, Ministry of Research, Innovation and Digitization, CCCDI–UEFISCDI. Available online: http://infuse-project.eu/ (accessed on 8 April 2025).
- El-Leathey, L.-A.; Anghelita, P.; Constantin, A.-I.; Circiumaru, G.; Chihaia, R.-A. System for Indoor Comfort and Health Monitoring Tested in Office Building Environment. Appl. Sci. 2023, 13, 11360. [Google Scholar] [CrossRef]
- Vodapally, S.N.; Ali, M.H.A. Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency. Energies 2023, 16, 319. [Google Scholar] [CrossRef]
- Ijagbemi, K. Skills Development for Sustainable Manufacturing. Chapter 2: Sustainable Power Technology: A Viable Sustainable Energy; BoD–Books on Demand: Norderstedt, Germany, 2017; ISBN 978-953-51-4602-5. [Google Scholar] [CrossRef]
- EIA U.S. Energy Information Administration. What Is the Efficiency of Different Types of Power Plants? 2024. Available online: https://www.eia.gov/tools/faqs/faq.php?id=107&t=3 (accessed on 14 May 2024).
- Graus, W.; Worrell, E. Trend in efficiency and capacity of fossil power generation in the EU. Energy Policy 2009, 37, 2147–2160. [Google Scholar] [CrossRef]
- European Union. Greenhouse Gas Emissions from Fossil Fuel Fired Power Generation System. 2023. Available online: https://op.europa.eu/en/publication-detail/-/publication/221658dd-9556-4591-86ea-51544346a8f7 (accessed on 15 May 2024).
- Gatti, M.; Martelli, E.; Di Bona, D.; Gabba, M.; Scaccabarozzi, R.; Spinelli, M.; Vigano, F.; Consonni, S. Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO2 Capture in Natural Gas-Fired Power Plants. Energies 2020, 13, 543. [Google Scholar] [CrossRef]
- Green, M.A. Photovoltaics: Coming of age. In Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Orlando, FL, USA, 21–25 May 1990. [Google Scholar] [CrossRef]
- Blakers, A.; Wang, A.; Milne, A.-M.; Zhao, J.; Green, M.-A. 22.8% efficient silicon solar cell. Appl. Phys. Lett. 1989, 55, 1363–1365. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X. Solar cell efficiency tables (Version 60). Prog. Photovolt. 2022, 30, 687–701. [Google Scholar] [CrossRef]
- U.S. Department of Energy, Solar Energy Technologies Office. Cadmium Telluride. 2024. Available online: https://www.energy.gov/eere/solar/cadmium-telluride#:~:text=CdTe%20solar%20cells%20are%20the,more%20than%20doubled%20in%20efficiency (accessed on 18 May 2024).
- Macsun Solar, “HCPV”. Available online: http://www.macsunsolar.com/en/showpro.php?id=89 (accessed on 28 May 2024).
- IRENA International Renewable Energy Agency. Renewable Capacity Statistics. 2020. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf (accessed on 28 May 2024).
- IRENA International Renewable Energy Agency. Renewable Capacity Statistics. 2023. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Jul/IRENA_Renewable_energy_statistics_2023.pdf (accessed on 29 May 2024).
- Amine Allouhi, A.; Rehman, S.; Buker, M.S.; Said, Z. Up-to-date literature review on Solar PV systems: Technology progress. market status and R&D. J. Clean. Prod. 2022, 362, 132339. [Google Scholar] [CrossRef]
- Gürtürk, M. Economic feasibility of solar power plants based on PV module with levelized cost analysis. Energy 2019, 171, 866–878. [Google Scholar] [CrossRef]
- Legarreta, A.E.; Figueroa, J.H.; Bortolin, J.A. An IEC 61000-4-30 class a—Power quality monitor: Development and performance analysis. In Proceedings of the 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 17–19 October 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Masetti, C. Revision of European Standard EN 50160 on power quality: Reasons and solutions. In Proceedings of the 14th International Conference on Harmonics and Quality of Power—ICHQP, Bergamo, Italy, 26–29 September 2010; pp. 1–7. [Google Scholar] [CrossRef]
- European Commission; EU Science Hub. “PVGIS User Manual” (PVGIS-SARAH, PVGIS-NSRDB, PVGIS-ERA5). Available online: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en (accessed on 18 June 2024).
- Agentia Nationala pentru Protectia Mediului (National Agency for Environmental Protection). Centrala Electrica Fotovoltaica (Photovoltaic Power Plant) 1,19 MWp, Borzesti, Bacau, Romania. 2022. Available online: http://www.anpm.ro/documents/14011/73035009/Memoriu+de+prezentare+acord+mediu+292+final+CEF+04.2022.pdf (accessed on 24 June 2024).
- Institutul de Tehnica de Calcul. Cluj (Institute of Computer Technology) PV Power Plant “Braşov Stupini Merilor FN, Studiu de fezabilitate (Feasibility Study). 2012. Available online: http://www.itc-cluj.ro/negoiu/negoiu-StudiiFezabilitate.htm (accessed on 24 June 2024).
- Kingdom of Morocco “Collaboration Program with the Private Sector for Disseminating Japanese Technology fot Promotion of Concentrator Photovoltaic Power Generation System (“CPV”) at Ouarzazate in Morocco” Final Report (Public Version) Japan International Cooperation Agency (JICA)Sumitomo Electric Industries, Lt4. 2017. Available online: https://openjicareport.jica.go.jp/pdf/12285060.pdf (accessed on 4 May 2025).
- Horowitz, K.A.W.; Woodhouse, M.; Lee, H.; Smestad, G.P.; NREL. A Bottom-Up Cost Analysis of a High Concentration PV Module. 2015. Available online: https://www.nrel.gov/docs/fy15osti/63947.pdf (accessed on 4 May 2025).
- Sumitomo Electric. Osaka, Japan “Concentrator Photovoltaic System”. Available online: https://sumitomoelectric.com/products/cpv (accessed on 26 June 2024).
- Rehman, S.; Ahmed, M.A.; Mohamed, M.H.; Al-Sulaiman, F.A. Feasibility study of the grid connected 10 MW installed capacity PV power plants in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 80, 319–329. [Google Scholar] [CrossRef]
PV Panel Type | Efficiency [%] |
---|---|
PERC (passivated emitter rear contact) | 22.8 |
Bifacial PERC | <25 |
PERL (passivated emitter with rear locally diffused cells) | 24.5 |
HIT (heterojunction with intrinsic thin layer) | 26 |
HJ-IBC (heterojunction-interdigitated back contact) | 26.7 |
TOPCon (tunnel oxide passivated contact) | 26.1 |
Thin-film CIGS (copper indium gallium selenide) | 22.2 |
Tandem solar cells based on silicon and perovskite | 32 |
Panel Type | Surface [m2] | Peak Power [Wp] | Efficiency [%] | Technology | Price [USD] | Price Ratio [USD/Wp] | Power Ratio [W/m2] |
---|---|---|---|---|---|---|---|
Yingli Solar | 1.9 | 330 | 17 | Si-polycrystalline | 109 | 0.33 | 174 |
Solaro LR5-72HPH-575M | 2.5 | 575 | 22.3 | Si-mono N Multi Busbar | 140 | 0.24 | 230 |
ENF-Germany | 2.6 | 580 | 22 | HJT Half-Cell Bifacial | NA | 0.35 | 223 |
Risen Solar RSM132 8 660 | 3.1 | 660 | 21.3 | Mono PERC BIFACIAL | 297 | 0.45 | 213 |
Jinko | 2.27 | 460 | 20.3 | Si-mono Bifac. Half-Cut | 118 | 0.26 | 203 |
Jinko Solar JKM440N-54HL4R-V | 2 | 440 | 22 | TOPCon N type mono | 96.8 | 0.22 | 220 |
Canadian Solar CS3L-375MS | 1.8 | 375 | 20.8 | Mono PERC | 95 | 0.25 | 208 |
JA Solar JAM72S30 | 2.5 | 550 | 22 | PERC | 200 | 0.4 | 220 |
Macsun Solar Ms-Hcpv120w | 0.48 | 133 | 28 | GaAs Si Fresnel lens | 286 | 2.15 | 277 |
Month | 10° | 20° | 30° | 37° | 40° | 50° | 60° | 70 ° |
---|---|---|---|---|---|---|---|---|
January | 39 | 46 | 52 | 55 | 57 | 60 | 61 | 61 |
February | 54 | 61 | 66 | 68 | 69 | 71 | 70 | 69 |
March | 97 | 105 | 110 | 112 | 112 | 112 | 110 | 104 |
April | 128 | 133 | 135 | 135 | 134 | 130 | 123 | 113 |
May | 150 | 151 | 149 | 146 | 144 | 137 | 126 | 112 |
June | 157 | 156 | 152 | 148 | 146 | 136 | 123 | 107 |
July | 166 | 166 | 163 | 159 | 157 | 147 | 134 | 118 |
August | 155 | 159 | 160 | 159 | 158 | 152 | 142 | 129 |
September | 119 | 127 | 132 | 134 | 135 | 134 | 130 | 122 |
October | 79 | 89 | 97 | 101 | 102 | 105 | 105 | 102 |
November | 44 | 52 | 59 | 62 | 63 | 66 | 68 | 67 |
December | 33 | 39 | 45 | 48 | 49 | 52 | 54 | 54 |
Case | Months Under Surveillance | ||
---|---|---|---|
A | May 2024 | July 2024 | September 2024 |
B | June 2024 | July 2024 | August 2024 |
Orientation | May | July | September |
---|---|---|---|
10° | 150 | 166 | 119 |
20° | 151 | 166 | 127 |
30° | 149 | 163 | 132 |
37° | 146 | 159 | 134 |
40° | 144 | 157 | 135 |
50° | 137 | 147 | 134 |
60° | 126 | 134 | 130 |
70° | 112 | 118 | 122 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | 112 | 118 | 119 | 122 | 126 | 127 | 130 | 132 | 134 | 134 | 134 | 135 |
Avg rank | 10 | |||||||||||
Rank | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Value | 137 | 144 | 146 | 147 | 149 | 150 | 151 | 157 | 159 | 163 | 166 | 166 |
Avg rank | 23.5 |
Orientation | May | July | September | |||
---|---|---|---|---|---|---|
10° | 150 | 18 | 166 | 23.5 | 119 | 3 |
20° | 151 | 19 | 166 | 23.5 | 127 | 6 |
30° | 149 | 17 | 163 | 22 | 132 | 8 |
37° | 146 | 15 | 159 | 21 | 134 | 10 |
40° | 144 | 14 | 157 | 29 | 135 | 12 |
50° | 137 | 13 | 147 | 16 | 134 | 10 |
60° | 126 | 5 | 134 | 10 | 130 | 7 |
70° | 112 | 1 | 118 | 2 | 122 | 4 |
Rang sum | 102 | 147 | 60 | |||
(Rang sum)2 | 10,404 | 21,609 | 3600 |
Orientation | June 2024 | July 2024 | August 2024 |
---|---|---|---|
10° | 157 | 166 | 155 |
20° | 156 | 166 | 159 |
30° | 152 | 163 | 160 |
37° | 148 | 159 | 159 |
40° | 146 | 157 | 158 |
50° | 136 | 147 | 152 |
60° | 123 | 134 | 142 |
70° | 107 | 118 | 129 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | 107 | 118 | 123 | 129 | 134 | 136 | 142 | 146 | 147 | 148 | 152 | 152 |
Avg rank | 11.5 | |||||||||||
Rank | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Value | 155 | 156 | 157 | 157 | 158 | 159 | 159 | 159 | 160 | 163 | 166 | 166 |
Avg rank | 157 | 159 | 23.5 |
Orientation | June | July | August | |||
---|---|---|---|---|---|---|
10° | 157 | 15.5 | 166 | 23.5 | 155 | 13 |
20° | 156 | 14 | 166 | 23.5 | 159 | 19 |
30° | 152 | 11.5 | 163 | 22 | 160 | 21 |
37° | 148 | 10 | 159 | 19 | 159 | 19 |
40° | 146 | 8 | 157 | 15.5 | 158 | 17 |
50° | 136 | 6 | 147 | 9 | 152 | 11.5 |
60° | 123 | 3 | 134 | 5 | 142 | 7 |
70° | 107 | 1 | 118 | 2 | 129 | 4 |
Rang sum | 69 | 99.5 | 111.5 | |||
(Rang sum)2 | 4761 | 9900.25 | 12,432.25 |
PV Power Plant | 1. (Ref.) | 2. (A) | 3. (B) | 4. (C) | 5. (D) |
---|---|---|---|---|---|
E [%] | 20 | 15 | 40 | 16.6 | 15.7 |
P [Wp] | 370 | 280 | 150 | 270 | 255 |
T (yes/no) | 1.10 (no) | 1.10 (no) | 1.30 (yes) | 1.10 (no) | 1.30 (yes) |
S [m2] | 1.77 | 1.94 | 0.512 | 1.62 | 1.6 |
C [EUR/Wp] | 0.34 | 0.21 | 8.68 × 1.1 | 0.51 | 0.41 × 1.1 |
L [%] | 14 | 14 | 14 | 14 | 14 |
(j)\(i) | Unit | 1. (ref.) | A. | B. | C. | D. |
---|---|---|---|---|---|---|
K1j | K2j (A) | K3j (B) | K4j (C) | K5j (D) | ||
E + | % | 20 | 15 | 40 | 16.6 | 15.7 |
P + | Wp | 370 | 280 | 150 | 270 | 255 |
T + | % | 10 | 10 | 13 | 10 | 13 |
S − | m2 | 1.77 | 1.94 | 0.512 | 1.62 | 1.6 |
C − | EUR/Wp | 0.34 | 0.21 | 9.55 | 0.51 | 0.45 |
L − | % | 14 | 14 | 14 | 14 | 14 |
(j) ↓ →(i) | E + | P + | T + | S − | C − | L − | (∑) | γj |
---|---|---|---|---|---|---|---|---|
E + | 0 | 4 | 1 | 0 | 0 | 5 | 0.125 | |
P + | 2 | 0 | 1 | 0 | 0 | 3 | 0.075 | |
T + | 0 | 2 | 0 | 0 | 0 | 2 | 0.05 | |
S − | 1 | 0 | 4 | 1 | 1 | 7 | (−) 0.175 | |
C − | 4 | 2 | 2 | 1 | 1 | 10 | (−) 0.25 | |
L − | 4 | 4 | 2 | 1 | 2 | 13 | (−) 0.325 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sima, D.-A.; Tudor, E.; El-Leathey, L.-A.; Cîrciumaru, G.; Matache, M.-G. Increasing Photovoltaic Systems Efficiency Through the Implementation of Statistical Methods. Appl. Sci. 2025, 15, 5300. https://doi.org/10.3390/app15105300
Sima D-A, Tudor E, El-Leathey L-A, Cîrciumaru G, Matache M-G. Increasing Photovoltaic Systems Efficiency Through the Implementation of Statistical Methods. Applied Sciences. 2025; 15(10):5300. https://doi.org/10.3390/app15105300
Chicago/Turabian StyleSima, Daniela-Adriana, Emil Tudor, Lucia-Andreea El-Leathey, Gabriela Cîrciumaru, and Mihai-Gabriel Matache. 2025. "Increasing Photovoltaic Systems Efficiency Through the Implementation of Statistical Methods" Applied Sciences 15, no. 10: 5300. https://doi.org/10.3390/app15105300
APA StyleSima, D.-A., Tudor, E., El-Leathey, L.-A., Cîrciumaru, G., & Matache, M.-G. (2025). Increasing Photovoltaic Systems Efficiency Through the Implementation of Statistical Methods. Applied Sciences, 15(10), 5300. https://doi.org/10.3390/app15105300