Risk Assessment of Geological Hazards Based on Multi-Condition Development Scenarios: A Case Study of Huangshi Town, Guangdong Province
Abstract
:1. Introduction
2. Study Area and Data
3. Research Methods
3.1. Correlation of Evaluation Factors
3.2. Information Entropy Calculation
3.3. Hazard Index Method
4. Establishment and Grading of Evaluation Indicators
4.1. Slope Unit Division
4.2. Selection and Correlation Analysis of Evaluation Factors
5. Results
5.1. Information Content Calculation
5.2. Susceptibility Mapping
5.3. Hazard Assessment Under Different Rainfall Conditions
5.4. Risk Assessment Under Different Rainfall Conditions
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, H. Study on Landslide Geological Hazard Risk Assessment and Ecological Restoration Strategies. Environ. Sci. Manag. 2024, 49, 180–184. [Google Scholar]
- Zhu, X. Analysis of Geological Disaster Characteristics and Influencing Factors in Longchuan County, Guangdong Province. West China Resour. 2021, 2, 106–108. [Google Scholar]
- Fan, L.; Guo, P. Analysis of the causes of the “Dragon Boat Rain” precipitation in Guangdong. J. Guangdong Ocean Univ. 2009, 29, 61–67. [Google Scholar]
- Huang, J.; Zhang, Z. Research on the Susceptibility of Geological Disasters in Mining Areas in High-Cold Mountainous Regions Based on Machine Learning. J. China Univ. Min. Technol. 2024, 53, 960–976. [Google Scholar]
- Fang, Z. Study on the Current Situation and Countermeasures of Geological Disaster Prevention and Control in Guangdong Province. West China Resour. 2018, 8, 112–114. [Google Scholar]
- Guangdong Provincial Government. Notice of the General Office of the People’s Government of Guangdong Province on Issuing the Three-Year Action Plan for Improving the Comprehensive Prevention and Control Capabilities of Geological Hazards in Guangdong Province (2023–2025). In Gazette of the People’s Government of Guangdong Province; Guangdong Provincial Government: Guangzhou, China, 2023; pp. 40–45. [Google Scholar]
- Wang, L.J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci. J. 2016, 20, 117–136. [Google Scholar] [CrossRef]
- Pacheco Quevedo, R.; Velastegui-Montoya, A.; Montalván-Burbano, N.; Morante-Carballo, F.; Korup, O.; Rennó, C.D. Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides 2023, 20, 967–982. [Google Scholar] [CrossRef]
- Huang, X.; Wu, Z.Y.; Ding, D.J.; Li, X.X.; Shi, Z.F.; Zhu, M.Q.; Sun, B.H. Landslide susceptibility assessment of Wuyuan County, Jiangxi Province based on Information Value-Logistic Regression Model. J. Donghua Univ. (Nat. Sci. Ed.) 2023, 46, 259–268. [Google Scholar]
- Wang, G.; Guo, N.; Deng, B.; Tian, Y.; Ye, Z.; Chen, Z.; Lü, F.; Gao, Y. Analysis of Landslide Susceptibility and Accuracy in Different Combination Models. Northwestern Geol. 2021, 54, 259–272. [Google Scholar]
- Ying, G.S.; Maguire, M.G.; Glynn, R.J.; Rosner, B. Tutorial on biostatistics: Receiver-operating characteristic (ROC) analysis for correlated eye data. Ophthalmic Epidemiol. 2022, 29, 117–127. [Google Scholar] [CrossRef]
- Guo, Y.; Dou, J.; Xiang, Z.; Ma, H.; Dong, A.; Luo, W. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies. Bull. Geol. Sci. Technol. 2024, 43, 251–265. [Google Scholar]
- Bi, X.; Fan, Q.; He, L.; Zhang, C.; Diao, Y.; Han, Y. Analysis and Evaluation of Extreme Rainfall Trends and Geological Hazards Risk in the Lower Jinshajiang River. Appl. Sci. 2023, 13, 4021. [Google Scholar] [CrossRef]
- Cheng, Y.; Gan, Y.; Shi, C.; Huo, A.; Pei, Y.; Song, Y.; Wang, X.; Ahmed, A. A Critical Analysis of Geological Hazard Risk Assessment Including Future Perspectives. Sustainability 2024, 16, 3701. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, P. Impact of human interventions on coastal and marine geological hazards: A review. Bull. Eng. Geol. Environ. 2018, 77, 1081–1090. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, F.; Pu, C.; Li, W.; Fan, X.; Dong, X.; Wang, X.; Li, Z. Preliminary analysis of cluster landslides induced by extreme rainfall in Jiangwan Town, Shaoguan, Guangdong in April 2024. J. Wuhan Univ. (Inf. Sci. Ed.) 2024, 49, 1264–1274. [Google Scholar]
- Ponomareva, V.V.; Melekestsev, I.V.; Dirksen, O.V. Sector collapses and large landslides on Late Pleistocene–Holocene volcanoes in Kamchatka, Russia. J. Volcanol. Geotherm. Res. 2006, 158, 117–138. [Google Scholar] [CrossRef]
- Sui, H.; Su, T.; Hu, R.; Wang, D.; Zheng, Z. Study on the Risk Assessment Method of Rainfall Landslide. Water 2022, 14, 3678. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Rong, Q.; Xiong, D. Selection of Evaluation Factors for Debris Flow Based on Entropy Theory. J. Traffic Transp. Eng. 2014, 14, 28–33. [Google Scholar]
- She, X.; Li, D.; Yang, S.; Xie, X.; Sun, Y.; Zhao, W. Landslide Hazard Assessment for Wanzhou Considering the Correlation of Rainfall and Surface Deformation. Remote Sens. 2024, 16, 1587. [Google Scholar] [CrossRef]
- Mukaka, M.M. A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Jiang, W.; Rao, P.; Cao, R.; Tang, Z.; Chen, K. Comparative Evaluation of Geological Disaster Susceptibility Using Multi-Regression Methods and Spatial Accuracy Validation. J. Geogr. Sci. 2017, 27, 439–462. [Google Scholar] [CrossRef]
- Fan, J.; He, Z.; Zhao, Y.; Ni, Z.; Chen, X. Application of GIS in Geological Hazard Zoning of Jiulong County, Sichuan. J. Chengdu Univ. Technol. (Nat. Sci. Ed.) 2007, 2, 180–184. [Google Scholar]
- Ha, H.; Bui, Q.D.; Tran, D.T.; Nguyen, D.Q.; Bui, H.X.; Luu, C. Improving the Forecast Performance of Landslide Susceptibility Mapping by Using Ensemble Gradient Boosting Algorithms. Environ. Dev. Sustain. 2024, 27, 439–462. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Jiang, S.; Yao, C.; Fan, X.; Catani, F.; Chang, Z.; Zhou, X.; Huang, J.; Liu, K. Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory. Earth-Sci. Rev. 2024, 250, 104700. [Google Scholar] [CrossRef]
- Islam, S.M.S.; Yeşilköy, S.; Baydaroğlu, Ö.; Yıldırım, E.; Demir, I. State-level Multidimensional Agricultural Drought Susceptibility and Risk Assessment for Agriculturally Prominent Areas. Int. J. River Basin Manag. 2024, 13, 1–8. [Google Scholar] [CrossRef]
- Yan, M.; Xie, W.L.; He, Y.N.; Liu, Q.; He, G.; Yang, H. Research on the Coupling Model of Urban Geological Hazard Risk Assessment Based on the Assumption of Extreme Rainfall—A Case Study of Guanyuan Town, Langao County, Ankang City. J. Catastrophology 2023, 38, 219–227. [Google Scholar]
- Hou, M.; Yuan, Y.; Zhou, A.; Liu, C.; Le, J. Different Slope Units Division-Based Geohazard Susceptibility Evaluation of Support Vector Machine Optimized by Sparrow Search Algorithm. Int. J. Environ. Sci. Technol. 2024, 21, 3365–3380. [Google Scholar] [CrossRef]
- Shao, Z.; Huq, M.E.; Cai, B.; Altan, O.; Li, Y. Integrated Remote Sensing and GIS Approach Using Fuzzy-AHP to Delineate and Identify Groundwater Potential Zones in Semi-Arid Shanxi Province, China. Environ. Model. Softw. 2020, 134, 104868. [Google Scholar] [CrossRef]
- Ma, H.D.; Tong, Y. Spatial Differentiation of Traditional Villages Using ArcGIS and GeoDa: A Case Study of Southwest China. Ecol. Inform. 2022, 68, 101416. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Q.; Zhang, J.; Luo, P.; Zhu, W. Risk Assessment of Geological Landslide Hazards Using D-InSAR and Remote Sensing. Remote Sens. 2024, 16, 345. [Google Scholar] [CrossRef]
- Najafi, E.; Hosseinali, F.; Najafi, M.M.; Sharifi, A. A GIS-based Evaluation of Urban Livability using Factor Analysis and a Combination of Environmental and Socio-economic Indicators. J. Geovisualization Spat. Anal. 2024, 8, 27. [Google Scholar] [CrossRef]
- Luo, L.; Pei, X.; Cui, S.; Liu, G.; Zhang, P.; Lin, K.; Chen, W.; Wang, Z.; Sun, C.; Zeng, F.; et al. Study on the Selection of Evaluation Factor Combinations for Landslide Susceptibility Assessment Induced by the Jiuzhaigou Earthquake. Chin. J. Rock Mech. Eng. 2021, 40, 2306–2319. [Google Scholar]
- Wang, J.; Li, W.; Zhang, J.; Wang, P.; Li, W.; Liu, P.; Li, K.; Li, D.; Wang, P.; Liu, Y. Analysis of Factors Influencing Stability and Failure Modes of Anti-Dip Rock Slopes with Alternating Soft and Hard Layers. J. Eng. Geol. 2023, 31, 1680–1688. [Google Scholar]
- Chatterjee, S. A new coefficient of correlation. J. Am. Stat. Assoc. 2021, 116, 2009–2022. [Google Scholar] [CrossRef]
- Xu, C.; Li, X.; Chen, L. Geological Hazard Susceptibility Mapping Using Integrated Methods: A Case Study from Guangdong Province, China. Environ. Earth Sci. 2020, 79, 233. [Google Scholar]
- Zhao, P.; Yang, C.; Chen, X. Evaluation of Geological Hazard Risk Based on Terrain Features and Engineering Geological Properties. J. Rock Mech. Geotech. Eng. 2017, 9, 655–664. [Google Scholar]
- Huang, Y.T.; Guo, Y.G. Debris Flow Hazard Assessment Considering Rainfall Sensitivity: A Case Study in Southeastern Tibet. Chin. J. Geol. Hazard Control 2023, 34, 129–138. [Google Scholar]
- Askaripour, M.; Saeidi, A.; Mercier-Langevin, P.; Rouleau, A. A Review of Relationship between Texture Characteristic and Mechanical Properties of Rock. Geotechnics 2022, 2, 262–296. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Wang, P.; Li, W.; Liu, P.; Li, K.; Li, D.; Wang, P.; Liu, Y. Mechanism Study on the Influence of Rainfall on the Stress and Deformation of Foundation Pits in Unsaturated Residual Soil. J. Eng. Geol. 2022, 30, 1266–1274. [Google Scholar]
Factor | Slope | Aspect | SM | TR | EGRG | CLT | VC | LUT | SS | SH |
---|---|---|---|---|---|---|---|---|---|---|
Slope | 1.00 | 0.01 | 0.03 | 0.48 | 0.11 | −0.04 | 0.39 | −0.09 | 0.05 | 0.21 |
Aspect | 0.01 | 1.00 | 0.00 | 0.02 | 0.06 | −0.01 | 0.00 | −0.02 | 0.08 | 0.09 |
SM | 0.03 | 0.00 | 1.00 | 0.03 | 0.00 | −0.01 | 0.00 | −0.03 | 0.10 | 0.15 |
TR | 0.48 | 0.02 | 0.03 | 1.00 | 0.11 | −0.05 | 0.43 | −0.10 | 0.04 | 0.23 |
EGRG | 0.11 | 0.06 | 0.00 | 0.11 | 1.00 | 0.08 | 0.22 | −0.01 | 0.46 | 0.09 |
CLT | −0.04 | −0.01 | −0.01 | −0.05 | 0.08 | 1.00 | −0.07 | 0.08 | −0.06 | −0.13 |
VC | 0.39 | 0.00 | 0.00 | 0.43 | 0.22 | −0.07 | 1.00 | −0.25 | 0.16 | 0.18 |
LUT | −0.09 | −0.02 | −0.03 | −0.10 | −0.01 | 0.08 | −0.25 | 1.00 | −0.10 | −0.11 |
SS | 0.05 | 0.08 | 0.10 | 0.04 | 0.46 | −0.06 | 0.16 | −0.10 | 1.00 | −0.02 |
SH | 0.21 | 0.09 | 0.15 | 0.23 | 0.09 | −0.13 | 0.18 | −0.11 | −0.02 | 1.00 |
Factor Indicator | Status Indicator | Information Quantity |
---|---|---|
Topographic Slope | 0–10° | −0.4030 |
10–25° | 0.2383 | |
25–40° | −0.0958 | |
>40° | 0.4657 | |
Topographic Aspect | Horizontal (−1) | −1.2071 |
North (337.5°–22.5°) | −0.5177 | |
Northeast (22.5°–67.5°) | −0.3595 | |
East (67.5°–112.5°) | −0.1046 | |
Southeast (112.5°–157.5°) | 0.3230 | |
South (157.5°–202.5°) | 0.3546 | |
Southwest (202.5°–247.5°) | 0.2904 | |
West (247.5°–292.5°) | −0.1036 | |
Northwest (292.5°–337.5°) | −0.1003 | |
Slope Morphology | Concave Slope | 0.4197 |
Zigzag Slope, Straight Slope° | −0.7646 | |
Convex Slope | −0.1037 | |
Topographic Relief | 0–10 m | −1.4132 |
10–20 m | 0.3037 | |
20–30 m | 0.3521 | |
>30 m | −0.7748 | |
Engineering Geological Rock Group | Sandy soils, clayey soils, and other sedimentary soil bodies | 0.4648 |
Layered relatively soft metamorphic rock groups | −0.0725 | |
Layered relatively soft red bed rock groups | −0.5125 | |
Blocky, relatively hard to hard intrusive rock groups | 0.0269 | |
Vegetation Cover | <0.1 | 0.6956 |
0.1–0.3 | 2.4445 | |
0.3–0.5 | −0.0047 | |
>0.5 | −2.9056 | |
Cover Layer Thickness | <1 m | 0.1161 |
1–3 m | −0.2501 | |
3–6 m | 0.6221 | |
6–9 m | 0.5256 | |
9–12 m | 0.2853 | |
>12 m | 0.3925 | |
Land Use Type | Agricultural Land | −0.8750 |
Construction Land | 2.4287 | |
Forest Land | −0.4141 | |
Water Bodies | −1.5377 | |
Grassland | 0.1356 | |
Barren Land | 2.3691 | |
Slope Structure | Transverse Slope | −0.5750 |
Oblique Slope | −0.1173 | |
Blocky Rock Slope | −0.0202 | |
Downhill Slope | 0.8197 | |
Uphill Slope | −0.1511 | |
Slope Height | <3 m | −2.2672 |
3–6 m | 1.2183 | |
6–12 m | 2.2297 | |
12–25 m | 2.4369 | |
>25 m | 2.46917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, G.; Xia, H.; Du, A.; Ma, J. Risk Assessment of Geological Hazards Based on Multi-Condition Development Scenarios: A Case Study of Huangshi Town, Guangdong Province. Appl. Sci. 2025, 15, 5298. https://doi.org/10.3390/app15105298
Duan G, Xia H, Du A, Ma J. Risk Assessment of Geological Hazards Based on Multi-Condition Development Scenarios: A Case Study of Huangshi Town, Guangdong Province. Applied Sciences. 2025; 15(10):5298. https://doi.org/10.3390/app15105298
Chicago/Turabian StyleDuan, Gonghao, Hui Xia, Anqi Du, and Juan Ma. 2025. "Risk Assessment of Geological Hazards Based on Multi-Condition Development Scenarios: A Case Study of Huangshi Town, Guangdong Province" Applied Sciences 15, no. 10: 5298. https://doi.org/10.3390/app15105298
APA StyleDuan, G., Xia, H., Du, A., & Ma, J. (2025). Risk Assessment of Geological Hazards Based on Multi-Condition Development Scenarios: A Case Study of Huangshi Town, Guangdong Province. Applied Sciences, 15(10), 5298. https://doi.org/10.3390/app15105298