Investigation of Pre-Pulse Effects on Ultrashort-Pulse Laser Interaction with Structured Targets
Abstract
1. Introduction
2. Experiment Details
3. Experiment Results
4. Simulations
5. Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Higginson, A.; Gray, R.; King, M.; Dance, R.; Williamson, S.; Butler, N.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J.; et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 2018, 9, 724. [Google Scholar] [CrossRef]
- Esirkepov, T.; Yamagiwa, M.; Tajima, T. Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 2006, 96, 105001. [Google Scholar] [CrossRef]
- Shaikh, M.; Lad, A.D.; Jana, K.; Sarkar, D.; Dey, I.; Kumar, G.R. Megagauss magnetic fields in ultra-intense laser generated dense plasmas. Plasma Phys. Control. Fusion 2016, 59, 014007. [Google Scholar] [CrossRef]
- O’Shea, B.; Andonian, G.; Barber, S.; Fitzmorris, K.; Hakimi, S.; Harrison, J.; Hoang, P.; Hogan, M.; Naranjo, B.; Williams, O.; et al. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators. Nat. Commun. 2016, 7, 12763. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Neumann, N.W.; Döhl, L.N.; Jarrett, J.; Baird, C.; Heathcote, R.; Hesse, M.; Hughes, A.; McKenna, P.; Neely, D.; et al. Enhanced brightness of a laser-driven x-ray and particle source by microstructured surfaces of silicon targets. Phys. Plasmas 2020, 27, 043106. [Google Scholar] [CrossRef]
- Ceccotti, T.; Floquet, V.; Sgattoni, A.; Bigongiari, A.; Klimo, O.; Raynaud, M.; Riconda, C.; Heron, A.; Baffigi, F.; Labate, L.; et al. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett. 2013, 111, 185001. [Google Scholar] [CrossRef]
- Rocca, J.J.; Capeluto, M.G.; Hollinger, R.C.; Wang, S.; Wang, Y.; Kumar, G.R.; Lad, A.D.; Pukhov, A.; Shlyaptsev, V.N. Ultra-intense femtosecond laser interactions with aligned nanostructures. Optica 2024, 11, 437–453. [Google Scholar] [CrossRef]
- Torrisi, L.; Rosinski, M.; Cutroneo, M.; Torrisi, A. Target normal sheath acceleration by fs laser and advanced carbon foils with gold films and nanoparticles. Phys. Plasmas 2020, 27, 043107. [Google Scholar] [CrossRef]
- Schwoerer, H.; Pfotenhauer, S.; Jäckel, O.; Amthor, K.U.; Liesfeld, B.; Ziegler, W.; Sauerbrey, R.; Ledingham, K.; Esirkepov, T. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 2006, 439, 445–448. [Google Scholar] [CrossRef]
- Bailly-Grandvaux, M.; Kawahito, D.; Mcguffey, C.; Strehlow, J.; Edghill, B.; Wei, M.; Alexander, N.; Haid, A.; Brabetz, C.; Bagnoud, V.; et al. Ion acceleration from microstructured targets irradiated by high-intensity picosecond laser pulses. Phys. Rev. E 2020, 102, 021201. [Google Scholar] [CrossRef]
- Margarone, D.; Klimo, O.; Kim, I.; Prokupek, J.; Limpouch, J.; Jeong, T.; Mocek, T.; Psikal, J.; Kim, H.; Proška, J.; et al. Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett. 2012, 109, 234801. [Google Scholar] [CrossRef]
- Bin, J.; Ma, W.; Wang, H.; Streeter, M.; Kreuzer, C.; Kiefer, D.; Yeung, M.; Cousens, S.; Foster, P.; Dromey, B.; et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 2015, 115, 064801. [Google Scholar] [CrossRef]
- Giuffrida, L.; Svensson, K.; Psikal, J.; Dalui, M.; Ekerfelt, H.; Gallardo Gonzalez, I.; Lundh, O.; Persson, A.; Lutoslawski, P.; Scuderi, V.; et al. Manipulation of laser-accelerated proton beam profiles by nanostructured and microstructured targets. Phys. Rev. Accel. Beams 2017, 20, 081301. [Google Scholar] [CrossRef]
- Palchan, T.; Henis, Z.; Faenov, A.Y.; Magunov, A.; Pikuz, S.; Gasilov, S.; Skobelev, I.Y.; Zigler, A. Generation of fast ions by an efficient coupling of high power laser into snow nanotubes. Appl. Phys. Lett. 2007, 91, 251501. [Google Scholar] [CrossRef]
- Dalui, M.; Kundu, M.; Trivikram, T.M.; Rajeev, R.; Ray, K.; Krishnamurthy, M. Bacterial cells enhance laser driven ion acceleration. Sci. Rep. 2014, 4, 6002. [Google Scholar] [CrossRef] [PubMed]
- Bulanov, S.V.; Wilkens, J.J.; Esirkepov, T.Z.; Korn, G.; Kraft, G.; Kraft, S.D.; Molls, M.; Khoroshkov, V.S. Laser ion acceleration for hadron therapy. Physics-Uspekhi 2014, 57, 1149. [Google Scholar] [CrossRef]
- Macchi, A.; Borghesi, M.; Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013, 85, 751–793. [Google Scholar] [CrossRef]
- Fedeli, L.; Formenti, A.; Cialfi, L.; Pazzaglia, A.; Passoni, M. Ultra-intense laser interaction with nanostructured near-critical plasmas. Sci. Rep. 2018, 8, 3834. [Google Scholar] [CrossRef] [PubMed]
- Gizzi, L.A.; Boella, E.; Labate, L.; Baffigi, F.; Bilbao, P.J.; Brandi, F.; Cristoforetti, G.; Fazzi, A.; Fulgentini, L.; Giove, D.; et al. Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma. Sci. Rep. 2021, 11, 13728. [Google Scholar] [CrossRef]
- Babjak, R.; Psikal, J. The role of standing wave in the generation of hot electrons by femtosecond laser beams incident on dense ionized target. Phys. Plasmas 2021, 28, 023107. [Google Scholar] [CrossRef]
- Park, J.; Jiang, S.; Divol, L.; Nagel, S.; Andrews, D.; Hazi, A.; Marley, E.; Kerr, S.; Shepherd, R.; Williams, G.; et al. The effects of pre-plasma scale length on the relativistic electron beam directionality. Phys. Plasmas 2023, 30, 053110. [Google Scholar] [CrossRef]
- Wang, P.; Gao, Y.; Shou, Y.; Pan, Z.; Xu, S.; Wang, D.; Liu, J.; Cao, Z.; Mei, Z.; Kong, D.; et al. A simple way to introduce an adjustable femtosecond pre-pulse to enhance laser-driven proton acceleration. Proc. J. Phys. Conf. Ser. 2019, 1350, 012063. [Google Scholar] [CrossRef]
- Huang, T.W.; Kim, C.; Zhou, C.; Ryu, C.; Nakajima, K.; Ruan, S.; Nam, C. Tabletop laser-driven gamma-ray source with nanostructured double-layer target. Plasma Phys. Control. Fusion 2018, 60, 115006. [Google Scholar] [CrossRef]
- Esirkepov, T.Z.; Koga, J.K.; Sunahara, A.; Morita, T.; Nishikino, M.; Kageyama, K.; Nagatomo, H.; Nishihara, K.; Sagisaka, A.; Kotaki, H.; et al. Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 745, 150–163. [Google Scholar] [CrossRef]
- Utsumi, T.; Matsukado, K.; Daido, H.; Esirkepov, T.Z.; Bulanov, S. Numerical simulation of melting and evaporation of a cold foil target irradiated by a pre-pulse. Appl. Phys. A 2004, 79, 1185–1187. [Google Scholar] [CrossRef]
- Hadjisolomou, P.; Tsygvintsev, I.; Sasorov, P.; Gasilov, V.; Korn, G.; Bulanov, S. Preplasma effects on laser ion generation from thin foil targets. Phys. Plasmas 2020, 27, 013107. [Google Scholar] [CrossRef]
- Sentoku, Y.; Bychenkov, V.Y.; Flippo, K.; Maksimchuk, A.; Mima, K.; Mourou, G.; Sheng, Z.; Umstadter, D. High-energy ion generation in interaction. of short laser pulse with high-density plasma. Appl. Phys. B 2002, 74, 207–215. [Google Scholar] [CrossRef]
- Matsukado, K.; Esirkepov, T.; Kinoshita, K.; Daido, H.; Utsumi, T.; Li, Z.; Fukumi, A.; Hayashi, Y.; Orimo, S.; Nishiuchi, M.; et al. Energetic protons from a few-micron metallic foil evaporated by an intense laser pulse. Phys. Rev. Lett. 2003, 91, 215001. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, A.; Borghesi, M.; Hatchett, S.; Key, M.; Patel, P.; Campbell, H.; Schiavi, A.; Snavely, R.; Wilks, S.; Willi, O. Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 2001, 86, 1769. [Google Scholar] [CrossRef] [PubMed]
- Gizzi, L.; Altana, C.; Brandi, F.; Cirrone, P.; Cristoforetti, G.; Fazzi, A.; Ferrara, P.; Fulgentini, L.; Giove, D.; Koester, P.; et al. Role of laser contrast and foil thickness in target normal sheath acceleration. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 829, 144–148. [Google Scholar] [CrossRef]
- Kaluza, M.; Schreiber, J.; Santala, M.I.; Tsakiris, G.D.; Eidmann, K.; Meyer-ter Vehn, J.; Witte, K.J. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 2004, 93, 045003. [Google Scholar] [CrossRef] [PubMed]
- McKenna, P.; Carroll, D.; Lundh, O.; Nürnberg, F.; Markey, K.; Bandyopadhyay, S.; Batani, D.; Evans, R.; Jafer, R.; Kar, S.; et al. Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 2008, 26, 591–596. [Google Scholar] [CrossRef]
- Culfa, O.; Tallents, G.; Korkmaz, M.; Rossall, A.; Wagenaars, E.; Ridgers, C.; Murphy, C.; Booth, N.; Carroll, D.; Wilson, L.; et al. Plasma scale length effects on protons generated in ultra-intense laser–plasmas. Laser Part. Beams 2017, 35, 58–63. [Google Scholar] [CrossRef]
- Lécz, Z.; Singh, P.; Ter-Avetisyan, S. Threshold target thickness in high-contrast laser-driven ion acceleration. Phys. Plasmas 2022, 29, 103104. [Google Scholar] [CrossRef]
- Baton, S.; Koenig, M.; Fuchs, J.; Benuzzi-Mounaix, A.; Guillou, P.; Loupias, B.; Vinci, T.; Gremillet, L.; Rousseaux, C.; Drouin, M.; et al. Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets. Phys. Plasmas 2008, 15, 042706. [Google Scholar] [CrossRef]
- Cristoforetti, G.; Londrillo, P.; Singh, P.; Baffigi, F.; D’Arrigo, G.; Lad, A.D.; Milazzo, R.; Adak, A.; Shaikh, M.; Sarkar, D.; et al. Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets. Sci. Rep. 2017, 7, 1479. [Google Scholar] [CrossRef] [PubMed]
- Zigler, A.; Palchan, T.; Bruner, N.; Schleifer, E.; Eisenmann, S.; Botton, M.; Henis, Z.; Pikuz, S.; Faenov, A., Jr.; Gordon, D.; et al. 5.5–7.5 MeV Proton Generation by a Moderate-Intensity Ultrashort-Pulse Laser Interaction with H2O Nanowire Targets. Phys. Rev. Lett. 2011, 106, 134801. [Google Scholar] [CrossRef]
- Zigler, A.; Eisenman, S.; Botton, M.; Nahum, E.; Schleifer, E.; Baspaly, A.; Pomerantz, I.; Abicht, F.; Branzel, J.; Priebe, G.; et al. Enhanced Proton Acceleration by an Ultrashort Laser Interaction with Structured Dynamic Plasma Targets. Phys. Rev. Lett. 2013, 110, 215004. [Google Scholar] [CrossRef] [PubMed]
- Schleifer, E.; Botton, M.; Nahum, E.; Eisenman, S.; Zigler, A.; Henis, Z. Density measurements of laser interaction with ordered structured ‘snow’ targets. High Power Laser Sci. Eng. 2014, 2, e15. [Google Scholar] [CrossRef]
- Schleifer, E.; Henis, Z.; Botton, M.; Shavit, O.; Gordon, D.F.; Zigler, A. Proton Acceleration by Ultrashort Intense Laser Interaction with Microstructured Snow Targets. Appl. Sci. 2015, 5, 459–471. [Google Scholar] [CrossRef]
- Bespaly, A.; Dey, I.; Papeer, J.; Shaham, A.; Komm, P.; Hadad, I.; Marcus, G.; Zigler, A. Control of amorphous solid water target morphology induced by deposition on a charged surface. High Power Laser Sci. Eng. 2021, 9, e37. [Google Scholar] [CrossRef]
- Shavit, O.; Ferber, Y.; Papeer, J.; Schleifer, E.; Botton, M.; Zigler, A.; Henis, Z. Femtosecond laser-induced damage threshold in snow micro-structured targets. High Power Laser Sci. Eng. 2018, 6, e7. [Google Scholar] [CrossRef]
- Arber, T.; Bennett, K.; Brady, C.; Lawrence-Douglas, A.; Ramsay, M.; Sircombe, N.J.; Gillies, P.; Evans, R.; Schmitz, H.; Bell, A.; et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 2015, 57, 113001. [Google Scholar] [CrossRef]
- Gamaly, E.G.; Rode, A.V.; Luther-Davies, B.; Tikhonchuk, V.T. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 2002, 9, 949–957. [Google Scholar] [CrossRef]
- Jeong, T.M.; Choi, I.W.; Sung, J.H.; Kim, H.T.; Hong, K.H.; Yu, T.J.; Kim, J.H.; Noh, Y.C.; Ko, D.K.; Lee, J.; et al. Measurement of the electron density produced by the prepulse in an experiment of high energy proton beam generation. J. Korean Phys. Soc. 2007, 50, 34–39. [Google Scholar] [CrossRef]
- Cai, H.B.; Yu, W.; Zhu, S.P.; Zheng, C.Y. Short-pulse laser absorption via J× B heating in ultrahigh intensity laser plasma interaction. Phys. Plasmas 2006, 13, 113105. [Google Scholar] [CrossRef]
- Gizzi, L.; Giulietti, D.; Giulietti, A.; Audebert, P.; Bastiani, S.; Geindre, J.P.; Mysyrowicz, A. Simultaneous measurements of hard x rays and second-harmonic emission in fs laser-target interactions. Phys. Rev. Lett. 1996, 76, 2278. [Google Scholar] [CrossRef] [PubMed]
- Kruer, W. The Physics of Laser Plasma Interactions; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Meyerhofer, D.; Chen, H.; Delettrez, J.; Soom, B.; Uchida, S.; Yaakobi, B. Resonance absorption in high-intensity contrast, picosecond laser–plasma interactions. Phys. Fluids Plasma Phys. 1993, 5, 2584–2588. [Google Scholar] [CrossRef]
- Boyd, T. The trouble with laser-plasma interactions. Plasma Phys. Control. Fusion 1986, 28, 1887. [Google Scholar] [CrossRef]
- Singh, P.K.; Adak, A.; Lad, A.D.; Chatterjee, G.; Brijesh, P.; Ravindra Kumar, G. Controlling two plasmon decay instability in intense femtosecond laser driven plasmas. Phys. Plasmas 2015, 22, 113114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, A.; Dey, I.; Bespaly, A.; Komm, P.; Shaham, A.; Papeer, J.; Botton, M.; Zigler, A. Investigation of Pre-Pulse Effects on Ultrashort-Pulse Laser Interaction with Structured Targets. Appl. Sci. 2025, 15, 237. https://doi.org/10.3390/app15010237
Kim A, Dey I, Bespaly A, Komm P, Shaham A, Papeer J, Botton M, Zigler A. Investigation of Pre-Pulse Effects on Ultrashort-Pulse Laser Interaction with Structured Targets. Applied Sciences. 2025; 15(1):237. https://doi.org/10.3390/app15010237
Chicago/Turabian StyleKim, Artem, Indranuj Dey, Alexander Bespaly, Pavel Komm, Assaf Shaham, Jenya Papeer, Mordechai Botton, and Arie Zigler. 2025. "Investigation of Pre-Pulse Effects on Ultrashort-Pulse Laser Interaction with Structured Targets" Applied Sciences 15, no. 1: 237. https://doi.org/10.3390/app15010237
APA StyleKim, A., Dey, I., Bespaly, A., Komm, P., Shaham, A., Papeer, J., Botton, M., & Zigler, A. (2025). Investigation of Pre-Pulse Effects on Ultrashort-Pulse Laser Interaction with Structured Targets. Applied Sciences, 15(1), 237. https://doi.org/10.3390/app15010237