Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Differential Speed Rolling
2.2. Electron Backscatter Diffraction
2.3. Orientation Analysis
2.3.1. Crystal Adjustment
2.3.2. Data Selection Among Pixels
2.4. Viscoplastic Self-Consistent
3. Results
3.1. Microstructure and Texture
3.2. Slip System Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segal, V. Review: Modes and Processes of Severe Plastic Deformation (SPD). Materials 2018, 11, 1175. [Google Scholar] [CrossRef]
- Jacobs, L.; van Dam, K.; Wentink, D.; de Rooij, M.; van der Lugt, J.; Schipper, D.J.; Hoefnagels, J.P.M. Effect of Asymmetric Material Entrance on Lubrication in Cold Rolling. Tribol. Int. 2022, 175, 107810. [Google Scholar] [CrossRef]
- Su, H.; Hou, L.; Tian, Q.; Wang, Y.; Zhuang, L. Understanding the Bending Behavior and Through-Thickness Strain Distribution during Asymmetrical Rolling of High-Strength Aluminium Alloy Plates. J. Mater. Res. Technol. 2023, 22, 1462–1475. [Google Scholar] [CrossRef]
- Huh, M.Y.; Cho, Y.S.; Engler, O. Effect of Lubrication on the Evolution of Microstructure and Texture during Rolling and Recrystallization of Copper. Mater. Sci. Eng. A 1998, 247, 152–164. [Google Scholar] [CrossRef]
- Suwas, S.; Mondal, S. Texture Evolution in Severe Plastic Deformation Processes. Mater. Trans. 2019, 60, 1457–1471. [Google Scholar] [CrossRef]
- Tandon, V.; Park, K.S.; Khatirkar, R.; Gupta, A.; Choi, S.H. Evolution of Microstructure and Crystallographic Texture in Deformed and Annealed BCC Metals and Alloys: A Review. Metals 2024, 14, 149. [Google Scholar] [CrossRef]
- Gibson, J.S.K.L.; Pei, R.; Heller, M.; Medghalchi, S.; Luo, W.; Korte-Kerzel, S. Finding and Characterising Active Slip Systems: A Short Review and Tutorial with Automation Tools. Materials 2021, 14, 407. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shankar, R.M.; Liu, Z. Visco-Plastic Self-Consistent Modeling of Crystallographic Texture Evolution Related to Slip System Activated during Machining Ti-6Al-4V. J. Alloys Compd. 2021, 853, 157336. [Google Scholar] [CrossRef]
- Mishin, V.V.; Shishov, I.A.; Stolyarov, O.N.; Kasatkin, I.A.; Glukhov, P.A. Effect of Cold Rolling Route on Deformation Mechanism and Texture Evolution of Thin Beryllium Foils: Experiment and VPSC Simulation. Mater. Charact. 2020, 164, 110350. [Google Scholar] [CrossRef]
- Engler, O.; Huh, M.Y.; Tomé, C.N. A Study of Through-Thickness Texture Gradients in Rolled Sheets. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2000, 31, 2299–2315. [Google Scholar] [CrossRef]
- Takajo, S.; Tomé, C.N.; Vogel, S.C.; Beyerlein, I.J. Texture Simulation of a Severely Cold Rolled Low Carbon Steel Using Polycrystal Modeling. Int. J. Plast. 2018, 109, 137–152. [Google Scholar] [CrossRef]
- de Moura, A.N.; de Alcântara, C.M.; de Oliveira, T.R.; da Cunha, M.A.; Machado, M.L.P. Effect of Cold Rolling Reduction on Texture, Recrystallization and Mechanical Properties of UNS S32304 Lean Duplex Stainless Steel. Mater. Sci. Eng. A 2021, 802, 140577. [Google Scholar] [CrossRef]
- Hill, R. Continuum Micro-Mechanics of Elastoplastic Polycrystals. J. Mech. Phys. Solids 1965, 13, 89–101. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Tomé, C.N. A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys. Acta Metall. Mater. 1993, 41, 2611–2624. [Google Scholar] [CrossRef]
- Mareau, C.; Berbenni, S. An Affine Formulation for the Self-Consistent Modeling of Elasto-Viscoplastic Heterogeneous Materials Based on the Translated Field Method. Int. J. Plast. 2015, 64, 134–150. [Google Scholar] [CrossRef]
- Liu, Y.; Ponte Castañeda, P. Second-Order Theory for the Effective Behavior and Field Fluctuations in Viscoplastic Polycrystals. J. Mech. Phys. Solids 2004, 52, 467–495. [Google Scholar] [CrossRef]
- Vincze, G.; Simões, F.; Butuc, M. Asymmetrical Rolling of Aluminum Alloys and Steels: A Review. Metals 2020, 10, 1126. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Tomé, C.N.; Castañeda, P.P. Self-Consistent Modelling of the Mechanical Behaviour of Viscoplastic Polycrystals Incorporating Intragranular Field Fluctuations. Philos. Mag. 2007, 87, 4287–4322. [Google Scholar] [CrossRef]
- Tóth, L.S.; Molinari, A.; Raabe, D. Modeling of Rolling Texture Development in a Ferritic Chromium Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1997, 28, 2343–2351. [Google Scholar] [CrossRef]
- Chou, C.T.; Rolland, P.; Dicks, K.G. A New Method for Analyzing Electron Backscatter Diffraction (EBSD) Data for Texture Using Inverse Pole Figures. Microsc. Microanal. 2002, 8, 686–687. [Google Scholar] [CrossRef]
- Deeparekha, N.; Gupta, A.; Demiral, M.; Khatirkar, R.K. Cold Rolling of an Interstitial Free (IF) Steel—Experiments and Simulations. Mech. Mater. 2020, 148, 103420. [Google Scholar] [CrossRef]
- Raabe, D.; Lüucke, K. Textures of Ferritic Stainless Steels. Mater. Sci. Technol. 1993, 9, 302–312. [Google Scholar] [CrossRef]
- Inagaki, H. Fundamental Aspect of Texture Formation in Low Carbon Steel. ISIJ Int. 1994, 34, 313–321. [Google Scholar] [CrossRef]
- Tóth, L.S.; Jonas, J.J.; Daniel, D.; Ray, R.K. Development of Ferrite Rolling Textures in Low- and Extra Low-Carbon Steels. Metall. Trans. A 1990, 21, 2985–3000. [Google Scholar] [CrossRef]
- Caillard, D.; Martin, J.L. Some Aspects of Cross-Slip Mechanisms in Metals and Alloys. J. Phys. Fr. 1989, 50, 2455–2473. [Google Scholar] [CrossRef]
- Vermeij, T.; Peerlings, R.H.J.; Geers, M.G.D.; Hoefnagels, J.P.M. Automated Identification of Slip System Activity Fields from Digital Image Correlation Data. Acta Mater. 2023, 243, 118502. [Google Scholar] [CrossRef]
- Kamikawa, N.; Sakai, T.; Tsuji, N. Effect of Redundant Shear Strain on Microstructure and Texture Evolution during Accumulative Roll-Bonding in Ultralow Carbon IF Steel. Acta Mater. 2007, 55, 5873–5888. [Google Scholar] [CrossRef]
- Tamimi, S.; Gracio, J.J.; Lopes, A.B.; Ahzi, S.; Barlat, F. Asymmetric Rolling of Interstitial Free Steel Sheets: Microstructural Evolution and Mechanical Properties. J. Manuf. Process. 2018, 31, 583–592. [Google Scholar] [CrossRef]
- Tiem, S.; Berveiller, M.; Canova, G.R. Grain Shape Effects on the Slip System Activity and on the Lattice Rotations. Acta Metall. 1986, 34, 2139–2149. [Google Scholar] [CrossRef]
- Rodriguez, P. Grain Size Dependence of the Activation Parameters for Plastic Deformation: Influence of Crystal Structure, Slip System, and Rate-Controlling Dislocation Mechanism. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004, 35, 2697–2705. [Google Scholar] [CrossRef]
Hkl | uvw |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatimah, S.; Bahanan, W.; Kang, J.-H.; Widiantara, I.P.; Ko, Y.G. Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition. Appl. Sci. 2025, 15, 155. https://doi.org/10.3390/app15010155
Fatimah S, Bahanan W, Kang J-H, Widiantara IP, Ko YG. Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition. Applied Sciences. 2025; 15(1):155. https://doi.org/10.3390/app15010155
Chicago/Turabian StyleFatimah, Siti, Warda Bahanan, Jee-Hyun Kang, I Putu Widiantara, and Young Gun Ko. 2025. "Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition" Applied Sciences 15, no. 1: 155. https://doi.org/10.3390/app15010155
APA StyleFatimah, S., Bahanan, W., Kang, J.-H., Widiantara, I. P., & Ko, Y. G. (2025). Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition. Applied Sciences, 15(1), 155. https://doi.org/10.3390/app15010155