Multiplicative Improved Coherence Factor Delay Multiply and Sum Algorithm for Clutter Removal in a Microwave Breast Tumor Imaging System
Abstract
:1. Introduction
2. Methods
2.1. Time Delay
2.2. Computation of MICF Using Adaptive OTSU Algorithm
2.3. MICF Multiplied by DMAS
3. Experiment
3.1. Experimental Setup
3.2. Experimental Model
3.3. Evaluation Indicators
3.4. Dielectric Constant Measurement
3.5. Experimental Results
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Moloney, B.M.; O’Loughlin, D.; Elwahab, S.A.; Kerin, M.J. Breast Cancer Detection—A Synopsis of Conventional Modalities and the Potential Role of Microwave Imaging. Diagnostics 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Lee, S. Instantaneous microwave imaging with time-domain measurements for breast cancer detection. Electron. Lett. 2013, 49, 639–641. [Google Scholar] [CrossRef]
- Mahmud, M.Z.; Islam, M.T.; Misran, N.; Kibria, S.; Samsuzzaman, M. Microwave Imaging for Breast Tumor Detection Using Uniplanar AMC based CPW-fed Microstrip Antenna. IEEE Access 2018, 6, 44763–44775. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Stindl, J.; Slanina, T.; Zimmer, G. High Frequency Breast Imaging: Experimental Analysis of Tissue Phantoms. IEEE Open J. Antennas Propag. 2021, 2, 1098–1107. [Google Scholar] [CrossRef]
- Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Benjamin, R. Radar-Based Breast Cancer Detection Using a Hemispherical Antenna Array—Experimental Results. IEEE Trans. Antennas. Propag. 2009, 57, 1692–1704. [Google Scholar] [CrossRef]
- Lim, H.B.; Nhung, N.T.T.; Li, E.P.; Thang, N.D. Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm. IEEE Trans. Biomed. Eng. 2008, 55, 1697–1704. [Google Scholar] [PubMed]
- Fear, E.C.; Li, X.; Hagness, S.C.; Stuchly, M.A. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 2002, 49, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Fear, E.C.; Bourqui, J.; Curtis, C.; Mew, D.; Docktor, B.; Romano, C. Microwave Breast Imaging with a Monostatic Radar-Based System: A Study of Application to Patients. IEEE Trans. Microw. Theory Tech. 2013, 61, 2119–2128. [Google Scholar] [CrossRef]
- Shere, M.; Lyburn, I.; Sidebottom, R.; Massey, H.; Gillett, C.; Jones, L. MARIA M5: A multicentre clinical study to evaluate the ability of the Micrima radio-wave radar breast imaging system (MARIA) to detect lesions in the symptomatic breast. Eur. J. Radiol. 2019, 116, 61–67. [Google Scholar] [CrossRef]
- Adachi, M.; Nakagawa, T.; Fujioka, T.; Mori, M.; Kubota, K.; Oda, G.; Kikkawa, T. Feasibility of portable microwave imaging device for breast cancer detection. Diagnostics 2021, 12, 27. [Google Scholar] [CrossRef]
- Byrne, D.; O’Halloran, M.; Glavin, M.; Jones, E. Data independent radar beamforming algorithms for breast cancer detection. Prog. Electromagn. Res. 2010, 107, 331–348. [Google Scholar] [CrossRef]
- Fear, E.C.; Stuchly, M.A. Confocal microwave imaging for breast tumor detection: A study of resolution and detection ability. In Proceedings of the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2021. [Google Scholar]
- Moein, M.; Ali, M.; Vijitha, P.; Manojit, P.; Mahdi, O. Eigenspace-Based Minimum Variance Combined with Delay Multiply and Sum Beamformer: Application to Linear-Array Photoacoustic Imaging. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–8. [Google Scholar]
- Mozaffarzadeh, M.; Yan, Y.; Mehrmohammadi, M.; Makkiabadi, B. Enhanced linear-array photoacoustic beamforming using modified coherence factor. J. Biomed. Opt. 2018, 23, 026005. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Park, E.Y.; Choi, W.; Managuli, R.; Jong Lee, K.; Kim, C. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. Photoacoustics 2019, 15, 100136. [Google Scholar] [CrossRef] [PubMed]
- Nilavalan, R.; Gbedemah, A.; Craddock, I.; Li, X.; Hagness, S.C. Numerical investigation of breast tumour detection using multi-static radar. Electron. Lett. 2003, 39, 1787–1789. [Google Scholar] [CrossRef]
- Li, P.C.; Li, M.L. Adaptive imaging using the generalized coherence factor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 128–141. [Google Scholar] [PubMed]
- Hollman, K.; Rigby, K.; O’donnell, M. Coherence factor of speckle from a multi-row probe. In Proceedings of the 1999 IEEE Ultrasonics Symposium, Proceedings. International Symposium (Cat. No. 99CH37027), Tahoe, NV, USA, 17–20 October 1999; IEEE: New York, NY, USA, 1999; Volume 2, pp. 1257–1260. [Google Scholar]
- Wang, S.L.; Chang, C.H.; Yang, H.C.; Chou, Y.H.; Li, P.C. Performance evaluation of coherence-based adaptive imaging using clinical breast data. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1669–1679. [Google Scholar] [CrossRef]
- Klemm, M.; Leendertz, J.; Gibbins, D.; Craddock, I.; Preece, A.; Benjamin, R. Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1349–1352. [Google Scholar] [CrossRef]
- Zhang, Y.; Candra, P.; Wang, G.; Xia, T. 2-D entropy and short-time Fourier transform to leverage GPR data analysis efficiency. IEEE Trans. Instrum. Meas. 2014, 64, 103–111. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Zhao, L. Motion track enhancement method of sports video image based on otsu algorithm. Wirel. Commun. Mob. Comput. 2022, 2022, 8354075. [Google Scholar] [CrossRef]
- Zamani, A.; Abbosh, A. Hybrid clutter rejection technique for improved microwave head imaging. IEEE Trans. Antennas Propag. 2015, 63, 4921–4931. [Google Scholar] [CrossRef]
- Elahi, M.A.; Glavin, M.; Jones, E.; O’Halloran, M. Artifact removal algorithms for microwave imaging of the breast. Prog. Electromagn. Res. 2013, 141, 185–200. [Google Scholar] [CrossRef]
- Guo, L.; Abbosh, A.M. Optimization-based confocal microwave imaging in medical applications. IEEE Trans. Antennas Propag. 2015, 63, 3531–3539. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Bai, Y.; Xu, H.; Fan, Y. Distance compensation-based dual adaptive artifact removal algorithm in microwave breast tumor imaging system. Biomed. Signal Process. Control 2024, 88, 105598. [Google Scholar] [CrossRef]
- Li, X.; Bond, E.J.; Van Veen, B.D.; Hagness, S.C. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propag. Mag. 2005, 47, 19–34. [Google Scholar]
- Kibria, S.; Samsuzzaman, M.; Islam, M.T.; Mahmud, M.Z.; Misran, N.; Islam, M.T. Breast phantom imaging using iteratively corrected coherence factor delay and sum. IEEE Access 2019, 7, 40822–40832. [Google Scholar] [CrossRef]
- Shao, W.; McCollough, T. Advances in microwave near-field imaging: Prototypes, systems, and applications. IEEE Microw. Mag. 2020, 21, 94–119. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, M.; Li, Z.; An, Q.; Hou, K.; Wang, J. The Vivaldi Antenna Design for Ultra-Wideband Biomedical Breast Imaging. In Proceedings of the 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), Qingdao, China, 21–24 July 2023; IEEE: New York, NY, USA, 2023; pp. 309–312. [Google Scholar]
- Arteaga-Marrero, N.; Villa, E.; González-Fernández, J.; Martín, Y.; Ruiz-Alzola, J. Polyvinyl alcohol cryogel phantoms of biological tissues for wideband operation at microwave frequencies. PLoS ONE 2019, 14, e0219997. [Google Scholar] [CrossRef]
- Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Islam, M.T. Experimental breast phantoms for estimation of breast tumor using microwave imaging systems. IEEE Access 2018, 6, 78587–78597. [Google Scholar] [CrossRef]
- Özmen, V. Breast cancer in Turkey: Clinical and histopathological characteristics (analysis of 13.240 patients). J. Breast Health 2014, 10, 98. [Google Scholar] [CrossRef]
- Klemm, M.; Craddock, I.; Leendertz, J.; Preece, A.; Gibbins, D.; Shere, M.; Benjamin, R. Clinical trials of a UWB imaging radar for breast cancer. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; IEEE: New York, NY, USA, 2010; pp. 1–4. [Google Scholar]
- Sultan, K.S.; Abbosh, A.M. Wearable dual polarized electromagnetic knee imaging system. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Khoshdel, V.; Asefi, M.; Ashraf, A.; LoVetri, J. Full 3D microwave breast imaging using a deep-learning technique. J. Imaging 2020, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Bárbara, O.; Daniela, G.; Martin, O.; Martin, G.; Edward, J.; Raquel, C. Diagnosing Breast Cancer with Microwave Technology: Remaining Challenges and Potential Solutions with Machine Learning. Diagnostics 2018, 8, 36. [Google Scholar] [CrossRef]
- Li, Y.; Xi, J.; Leung, C.K.W.; Li, T.; Tam, W.Y.; Li, J. Imaging by unsupervised feature learning of the wave equation. Phys. Rev. Appl. 2021, 16, 064039. [Google Scholar] [CrossRef]
Material | Normal Tissue | Tumor | Purpose |
---|---|---|---|
distilled water (mL) | 420 | 420 | solvent |
polyethylene powder (g) | 480 | 430 | adjusts the dielectric constant |
agar (g) | 20 | 20 | maintains model shape |
NaCl (g) | 6.8 | 28.3 | increases electrical conductivity |
xanthan gum (g) | 6.25 | 6.25 | thickening agent |
sodium dehydroacetate (g) | 0.25 | 0.25 | preservative |
Material | Skin | Fat | Tumor | Purpose |
---|---|---|---|---|
distilled water (mL) | 420 | 420 | 420 | solvent |
polyethylene powder (g) | 450 | 500 | 430 | adjusts the dielectric constant |
agar (g) | 20 | 20 | 20 | maintains model shape |
NaCl (g) | 20 | 2.3 | 28.3 | increases electrical conductivity |
xanthan gum (g) | 6.25 | 6.25 | 6.25 | thickening agent |
sodium dehydroacetate (g) | 0.25 | 0.25 | 0.25 | preservative |
Method | D (mm) | X (mm) | SCR (dB) | CR |
---|---|---|---|---|
MICF-DMAS | 8.1 | (18,−25) | 14.72 | 23.14 |
CF-DAS | 10.7 | (18,−25) | 5.52 | 11.46 |
DMAS | 11.3 | (19,−24) | 6.09 | 11.92 |
CF-DMAS | 9.6 | (19,−25) | 10.61 | 17.68 |
Method | D (mm) | X (mm) | SCR (dB) | CR |
---|---|---|---|---|
MICF-DMAS | 8.5 | (21,−20) | 13.64 | 21.32 |
CF-DAS | 10.9 | (22,−20) | 5.03 | 9.41 |
DMAS | 11.4 | (21,−21) | 5.36 | 10.39 |
CF-DMAS | 10.2 | (21,−20) | 7.93 | 15.51 |
Method | MICF-DMAS | CF-DAS | DMAS | CF-DMAS |
---|---|---|---|---|
D1 (mm) | 8.1 | 9.7 | 10.1 | 9.6 |
D2 (mm) | 9.2 | 12.1 | 12.6 | 11.6 |
X1 (mm) | (22,−20) | (22,−20) | (21,−20) | (22,−21) |
X2 (mm) | (−19,17) | (−19,18) | (−19,18) | (−19,17) |
SCR (dB) | 10.26 | 4.03 | 4.21 | 5.91 |
CR | 19.4 | 10.46 | 10.92 | 18.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Wang, J.; Liu, H.; Bai, Y.; Li, Y.; Liu, W. Multiplicative Improved Coherence Factor Delay Multiply and Sum Algorithm for Clutter Removal in a Microwave Breast Tumor Imaging System. Appl. Sci. 2024, 14, 3820. https://doi.org/10.3390/app14093820
Guo D, Wang J, Liu H, Bai Y, Li Y, Liu W. Multiplicative Improved Coherence Factor Delay Multiply and Sum Algorithm for Clutter Removal in a Microwave Breast Tumor Imaging System. Applied Sciences. 2024; 14(9):3820. https://doi.org/10.3390/app14093820
Chicago/Turabian StyleGuo, Donghao, Jingjing Wang, Huanqing Liu, Yuxi Bai, Yongcheng Li, and Weihao Liu. 2024. "Multiplicative Improved Coherence Factor Delay Multiply and Sum Algorithm for Clutter Removal in a Microwave Breast Tumor Imaging System" Applied Sciences 14, no. 9: 3820. https://doi.org/10.3390/app14093820
APA StyleGuo, D., Wang, J., Liu, H., Bai, Y., Li, Y., & Liu, W. (2024). Multiplicative Improved Coherence Factor Delay Multiply and Sum Algorithm for Clutter Removal in a Microwave Breast Tumor Imaging System. Applied Sciences, 14(9), 3820. https://doi.org/10.3390/app14093820