Potential for Biofilm Formation and Antibiotic Resistance of Staphylococci Isolated from Bulk Tank Milk Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of Staphylococcus spp.
2.3. Molecular Analyses
2.3.1. DNA Isolation
2.3.2. PCR Assay
2.4. Assessment of Antibiotic Resistance
2.5. Determination of Methicillin Resistance-Detection of PB2 Protein
2.6. Determination of the Ability to Produce Biofilm
2.6.1. Congo Red Agar (CRA)
2.6.2. Spectrophotometric Method
3. Results
3.1. Isolation and Identification of Staphylococcus spp.
3.2. Antibiotic Resistance
3.3. Biofilm Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velasco, V.; Buyukcangaz, E.; Sherwood, J.S.; Stepan, R.M.; Koslofsky, R.J.; Logue, C.M. Characterization of Staphylococcus aureus from humans and a comparison with isolates of animal origin in North Dakota, United States. PLoS ONE 2015, 20, e0140497. [Google Scholar] [CrossRef]
- Vitale, M.; Scatassa, M.L.; Cardamone, C.; Oliveri, G.; Piraino, C.; Alduina, R.; Napoli, C. Staphylococcal food poisoning case and molecular analysis of toxin genes in Staphylococcus aureus strains isolated from food in Sicily, Italy. Foodborne Pathog. Dis. 2015, 12, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Santos, C.; Meireles, H.; Silva, J.; Teixeira, P. Food handlers as potential sources of dissemination of virulent strains of Staphylococcus aureus in the community. J. Infect. Public Heal. 2016, 9, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Hennekinne, J.A.; De Buyser, M.L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [PubMed]
- Heikkilä, A.M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef] [PubMed]
- Holko, I.; Tančin, V.; Vršková, M.; Tvarožková, K. Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovaki. J. Dairy Res. 2019, 86, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lu, H.; Wang, X.; Gao, Q.; Dai, Y.; Shang, J.; Li, M. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front. Cell Infect Microbiol. 2017, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Gravelanda, H.; Duim, B.; van Duijkeren, E.; Heederik, D.; Wagenaar, J.A. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int. J. Med. Microbiol. 2011, 301, 630–634. [Google Scholar] [CrossRef]
- Moretro, T.; Langsrud, S. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Compr. Rev. Food Sci. Food Safety 2017, 16, 1022–1041. [Google Scholar] [CrossRef]
- Mørk, T.; Jørgensen, H.J.; Sunde, M.; Kvitle, B.; Sviland, S.; Waage, S.; Tollersrud, T. Persistence of staphylococcal species and genotypes in the bovine udder. Vet. Microbiol. 2012, 159, 171–180. [Google Scholar] [CrossRef]
- Garza-González, E.; Morfín-Otero, R.; Llaca-Díaz, J.M.; Rodriguez-Noriega, E. Staphylococcal cassette chromosome mec (SCCmec) in methicillin-resistant coagulase-negative staphylococci. A review and the experience in a tertiary-care setting. Epidemiol. Infect. 2010, 138, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, A.M.; Ericson Sollid, J.U. SCCmec in staphylococci: Genes on the move. FEMS Immunol. Med. Microbiol. 2006, 46, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Evolving Appetites: An In-Depth Look at European Attitudes towards Plant-Based Eating. Available online: www.smartproteinproject.eu (accessed on 10 November 2023).
- Antimicrobial Resistance: A Global Threat, United Nations Environment Programme. Available online: https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health/antimicrobial-resistance-global-threat (accessed on 25 March 2024).
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying down Specific Hygiene Rules for Food of Animal Origin. OJ L 2004, 139, 1–55. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02004R0853-20230215 (accessed on 12 January 2023).
- PN-EN ISO 6888-1:2022-03; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. The Polish Committee for Standardization: Warsaw, Poland, 2022.
- PN-EN ISO 6888-3:2004; Microbiology of Food and Animal Feeding Stuff—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus Aureus and Other Species)—Part 3: Detection and Enumeration of Small Numbers by the Most Probable Number (MPN) Technique. The Polish Committee for Standardization: Warsaw, Poland, 2004.
- Akineden, O.; Annemuller, C.; Hassan, A.A.; Lammler, C.; Wolter, W.; Zschock, M. Toxin genes and other characteristics of Staphylococcus aureus isolated from milk of cows with mastitis. Clin. Diagn. Lab. Immun. 2001, 8, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Klimiene, I.; Virgailis, M.; Pavilonis, A.; Siugzdiniene, R.; Mockeliunas, R.; Ruzauskas, M. Phenotypical and genotypical antimicrobial resistance of coagulase-negative staphylococci isolated from cow mastitis. Pol. J. Vet. Sci. 2016, 19, 639–646. [Google Scholar] [CrossRef]
- Ng, L.-K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossanno, A.; Jaquer, V.; Panchaud, Y.; Doherr, M.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef]
- Depardieu, F.; Perichon, B.; Courvalin, P. Detection of the van Alphabet and Identification of Enterococci and Staphylococci at the Species Level by Multiplex PCR. J. Clin. Microbiol. 2004, 24, 5857–5860. [Google Scholar] [CrossRef]
- Vitale, M.; Galluzzo, P.; Buffa, P.G.; Carlino, E.; Spezia, O.; Alduina, R. Comparison of antibiotic resistance profile and biofilm production of Staphylococcus aureus isolates derived from human specimens and animal-derived samples. Antibiotics 2019, 8, 97. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Gamberini, S.; Cervellati, M.; Donati, E.; Montanaro, L. Detection of slim production by means of an optimised Congo red agar plate test based on a colorimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials 2002, 23, 4233–4239. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Mohamed, A.; Lotfalian, S.; Mishokrei, P. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district. Iran. Vet. Res. Forum 2013, 4, 269–272. [Google Scholar]
- Stepanović, S.; Vukovi, D.; Hola, V.; di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Genus Staphylococcus. Available online: http://www.bacterio.net/staphylococcus.html (accessed on 12 January 2023).
- Gordon, Y.C.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Senn, L.; Clerc, O.; Zanetti, G.; Basset, P.; Prod’hom, G.; Gordon, N.C.; Sheppard, A.E.; Crook, D.W.; James, R.; Thorpe, H.A.; et al. The Stealthy Superbug: The role of asymptomatic enteric carriage in maintaining a long-term hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. mBio 2016, 7, e02039-15. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.L.; Otto, M.; Cheung, G.Y.C. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front. Microbiol. 2018, 9, 436. [Google Scholar] [CrossRef] [PubMed]
- McCullers, J.A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. Rev. Microbiol. 2014, 12, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J. Infect. Dis. 2008, 198, 962–970. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6, 10. [Google Scholar] [CrossRef]
- Thurlow, L.R.; Hanke, M.L.; Fritz, T.; Angle, A.; Aldrich, A.; Williams, S.H.; Engebretsen, I.L.; Bayles, K.W.; Horswill, A.R.; Kielian, T. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 2011, 186, 6585–6596. [Google Scholar] [CrossRef]
- Hanke, M.L.; Kielian, T. Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Front. Cell Infect. Microbiol. 2012, 2, 62. [Google Scholar] [CrossRef]
- Vargová, M.; Zigo, F.; Výrostková, J.; Farkašová, Z.; Rehan, I.F. Biofilm-producing ability of Staphylococcus aureus obtained from surfaces and milk of mastitic cows. Vet. Sci. 2023, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. Antibiotic resistance in staphylococci. Int. J. Antimicrob. Agents 2000, 16, 3–10. [Google Scholar] [CrossRef]
- Duran, N.; Ozer, B.; Duran, G.G.; Onlen, Y.; Demir, C. Antibiotic resistance genes and susceptibility patterns in staphylococci. Indian J. Med. Res. 2012, 135, 389–396. [Google Scholar] [PubMed]
- Patel, K.; Godden, S.M.; Royster, E.; Crooker, B.A.; Timmerman, J.; Fox, L. Relationships among bedding materials, bedding bacteria counts, udder hygiene, milk quality, and udder health in US dairy herds. J. Dairy Sci. 2019, 102, 10213–10234. [Google Scholar] [CrossRef] [PubMed]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and classification of mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Qi Chen, Q.; Xie, S.; Lou, X.; Cheng, S.; Liu, X.; Zheng, W.; Zheng, Z.; Wang, H. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiol. Open. 2020, 9, e946. [Google Scholar]
- Pishtiwan, A.H. Phenotypic and molecular detection of biofilm formation in methicillin-resistant Staphylococcus aureus isolated from different clinical sources in Erbil city. Mediterr. J. Hematol. Infect. Dis. 2023, 15, e2023016. [Google Scholar] [CrossRef]
- Sahoo, S.; Behera, M.R.; Mishra, B.; Sahoo, P.; Kar, S. Antibiotic-resistant bacteria in bovine milk in India. J. Adv. Vet. Anim. Res. 2023, 10, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Mubarack, H.M.; Doss, A.; Vijayasanthi, M.; Venkataswamy, R. Antimicrobial drug susceptibility of Staphylococcus aureus from subclinical bovine mastitis in Coimbatore, Tamil Nadu, South India. Vet. World 2012, 5, 352–355. [Google Scholar] [CrossRef]
- Sharma, I.; Brinty, A. Isolation and identification of Staphylococcus aureus from bovine mastitis milk and their drug resistance patterns in Silchar town dairy farms, NE India. Online Int. Interdiscipl. Res. J. 2014, 4, 256–260. [Google Scholar]
- Brahma, U.; Suresh, A.; Murthy, S.; Bhandari, V.; Sharma, P. Antibiotic resistance and molecular profiling of the clinical isolates of Staphylococcus aureus causing bovine mastitis from India. Microorganisms 2022, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Capri, F.C.; Di Leto, Y.; Presentato, A.; Mancuso, I.; Scatassa, M.L.; Alduina, R. Characterization of Staphylococcus species isolates from sheep milk with subclinical mastitis: Antibiotic resistance, enterotoxins, and biofilm production. Foodborne Pathog. Dis. 2024, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Hamid, S.; Bhat, M.A.; Mir, I.A.; Taku, A.; Badroo, G.A.; Nazki, S.; Malik, A. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus from bovine mastitis. Vet. World 2017, 10, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.S.; Qureshi, S.; Kashoo, Z.; Farooq, S.; Wani, S.A.; Hussain, M.I.; Banday, M.S.; Khan, A.A.; Gull, B.; Habib, A.; et al. Methicillin resistance genes and in vitro biofilm formation among Staphylococcus aureus isolates from bovine mastitis in India. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 117–124. [Google Scholar] [CrossRef]
- Buowari, Y.D. Antibiotic resistance in the elderly. J. Aging Res. Healthc. 2017, 1, 1. [Google Scholar] [CrossRef]
Primer | Sequence (5′-3′) | Product Size | Annealing Temperature | References |
---|---|---|---|---|
23S rRNA Staur4 Staur6 | ACG GAG TTA CAA AGG ACG AC AGC TCA GCC TTA ACG AGT AC | 1250 | 55 °C/2 min 72 °C/5 min | [18] |
coa coa1-F coa2-R | ATA GAG ATG CTG GTA CAG G GCT TCC GAT TGT TCG ATG C | 440, 600, 840 variable | 55 °C/2 min 72 °C/5 min | [18] |
mecA mecA1-F mecA2-R | GGG ATC ATA GCG TCA TTA TTC AAC GAT TGT GAC ACG ATA GCC | 527 | 56.1 °C/1 min | [19] |
tetM tetM1–F tetM2-R | GTT AAA TAG TGT TCT TGG AG CTAAGATATGGCTCTAACAA | 656 | 45 °C/1 min | [19] |
tetK tetK1-F tetK2-R | TTA GGT GAA GGG TTA GGT CC GCA AAC TCA TTC CAG AAG CA | 718 | 55 °C/1 min | [19] |
tetO tetO1-F tetO1-R | AAC TTA GGC ATT CTG GCTCAC TCC CAC TGT TCC ATA TCG TCA | 515 | 55 °C/1 min | [20] |
blaZ blaZ1-F blaZ2-R | CAG TTC ACA TGC CAA AGA G TAC ACT CTT GGC GGT TTC | 772 | 50 °C/1 min | [21] |
vanA vanA1-F vanA2-R | GGG AAA ACG ACA ATT GC GTA CAA TGC GGC CGT TA | 732 | 54 °C/1 min | [22] |
vanB vanB3-F vanB4-R | ACG GAA TGG GAA GCC GA TGC ACC CGA TTT CGT TC | 647 | 54 °C/1 min | [22] |
VanC1/2 vanC5-F vanC8-R | ATG GAT TGG TAY TKG TAT c TAG CGG GAG TGM CYM GTA A c | 815/827 | 54 °C/1 min | [22] |
VanD vanD1-F vanD2-R | TGT GGG ATG CGA TAT TCA A TGC AGC CAA GTA TCC GGT AA | 500 | 54 °C/1 min | [22] |
Ica Ica-F Ica-R | TATACCTTTCTTCGATGTCG CTTTCGTTATAACAGGCAAG | 700 | 54 °C/1 min | [23] |
agr agr-F agr-R | TATGCTCCTGCAGCAACTAA CTTGCGCATTTCGTTGTTGA | 1070 | 50 °C/1 min | [23] |
sasC sas-F sas-R | GCAACGAATCAAGCATTGG TGACAGCACTTCGTTAGG | 600 | 54 °C/1 min | [23] |
Strain Type | Strains | Species Identification | Hemolysis Type | Coagulase (24 h Test) | ||
---|---|---|---|---|---|---|
Stuart | Coag | α | β | |||
Coagulase-negative Staphylococcus (CNS) strains | 68/2, 30/2, 35/1, 89/1, 13/2, 28/2, 24/1, 37/1, 68/1, 61/1, 75/1 | + | − | + | − | − |
73/2, 23/2 | + | − | − | + | − | |
73/3, 61/2, 72/3, 39/2, 28/1 | + | − | − | − | − | |
20/3, 18/1, 36/3, 2/3, 72/2, 10/2 | − | − | + | − | − | |
13/1 | − | − | − | + | − | |
28/3, 20/2, 20/1 | − | − | − | − | − | |
Coagulase-positive Staphylococcus (CPS) strains | 13/3, 2/2, 41/1, 72/1, 51/3, 15/1, 11/1, 73/1, 87/2, 97/3, 11/2, 15/3, 41/2, 51/1, 18/2, 74/3, 41/3, 51/2, 97/1 | + | + | − | + | + |
75/2, 74/2, 2/1, 87/3, 87/1, 97/2, 15/2, 18/3, 75/3 | + | + | + | − | + |
Strains | Molecular Method | Disc Diffusion Test | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mecA | tetM | tetK | tetO | ermA | ermC | aph | blaZ | vanA | vanB | vanC1/2 | vanD | Erytromycin | Amocsycylin | Ampicylin | Vancomycin | |
72/3, 39/2, 2/2, 74/2, 15/1, 11/1, 18/2, 97/2, 18/3, | − | − | − | − | − | − | − | − | − | − | − | − | R | R | R | S |
11/2 | − | − | − | − | − | − | − | − | − | − | − | − | R | R | S | S |
68/2, 61/2, 72/2, 15/2, 41/3 | − | − | + | − | − | − | − | − | − | − | − | − | R | R | R | S |
35/1, 24/1, 37/1, 23/2, | − | − | + | − | − | − | − | − | − | − | − | − | R | R | S | S |
30/2, 61/1, | − | − | − | − | − | − | − | − | + | − | − | − | R | R | R | R |
89/1 | − | + | − | − | − | − | − | − | + | − | − | + | R | R | R | R |
13/2 | − | − | + | − | − | − | − | − | + | − | − | + | R | R | R | R |
28/2 | − | + | + | + | − | − | + | − | + | − | − | + | R | R | R | R |
68/1 | − | − | + | − | − | − | − | − | + | − | − | − | R | R | R | R |
73/2 | − | − | − | − | − | − | − | + | − | − | − | − | R | R | R | S |
73/3 | − | + | − | − | − | − | + | − | + | − | − | − | R | R | R | R |
75/1 | − | + | − | − | − | − | − | − | + | − | − | − | R | R | R | R |
28/1 | − | + | + | − | − | − | + | − | + | − | − | − | R | R | R | R |
20/3 | − | − | + | − | − | + | + | + | − | − | − | − | R | R | R | S |
13/1 | − | − | + | − | − | − | − | − | + | − | − | + | R | R | R | R |
28/3 | − | − | − | − | − | − | + | − | + | − | − | + | R | R | R | R |
20/2, 36/3 | − | + | − | − | − | − | − | − | − | − | − | − | R | R | R | S |
20/1 | − | − | + | − | − | + | + | − | − | − | − | − | R | R | R | S |
18/1 | − | − | − | − | − | + | − | − | + | − | − | + | R | R | R | R |
2/3 | − | − | − | − | − | − | − | − | + | − | − | + | R | R | R | R |
10/2 | − | + | + | − | − | + | − | − | + | − | − | − | R | R | R | R |
13/3, 51/3, 87/2, 2/1, 41/2, 51/1 | − | − | − | − | − | − | − | − | − | + | − | − | R | R | R | R |
75/2 | − | − | + | − | − | − | − | − | − | + | − | − | R | R | R | R |
41/1 | − | − | + | − | − | + | − | − | − | − | − | − | R | R | R | S |
72/1 | − | − | − | − | − | − | − | + | − | + | − | − | R | R | R | R |
73/1 | − | − | + | − | − | − | − | + | + | − | − | − | R | R | R | R |
97/3, 87/1, 51/2, 97/1, 75/3 | − | − | + | − | − | − | − | − | − | + | − | − | R | R | R | R |
87/3, 15/3 | − | − | + | − | − | − | − | − | − | − | − | − | R | R | R | S |
74/3 | − | − | + | − | − | − | − | + | − | + | − | − | R | R | R | R |
Strain Type | Gene Pattern | Strains |
---|---|---|
CNS | tetK | 68/2, 35/1, 24/1, 37/1, 20/1, 61/2, 23/2, 72/2, 13/2, 28/2, 68/1, 28/1, 20/3, 13/1, 10/2 |
tet M | 20/2, 36/3, 89/1, 28/2, 73/3, 75/1, 28/1, 10/2 | |
blaZ | 73/2, 20/3 | |
vanA | 30/2, 61/1, 89/1, 13/2, 28/2, 68/1, 73/3, 75/1, 28/1, 13/1, 28/3, 18/1, 2/3, 10/2 | |
tetM, van A | 89/1, 28/2, 73/3, 75/1, 28/1, 10/2 | |
vanA, vanD | 89/1, 28/2 | |
tetM, vanA, vanD | 89/1, 28/2 | |
tetK, vanA, vanD | 13/1, 13/2, 28/2 | |
tetK, vanA | 13/1, 13/2, 28/2, 68/1, 28/1, 10/2 | |
tetM, tetK, vanA | 28/1, 28/2, 10/2 | |
tetK, blaZ | 20/3 | |
tetM, tetK, tetO, vanA, vanD | 28/2 | |
CPS | tetK | 75/2, 41/1, 73/1, 97/3, 87/3, 15/3, 87/1, 74/3, 15/2, 41/3, 51/2, 97/1, 75/3 |
vanB | 13/3, 75/2, 72/1, 51/3, 87/2, 2/1, 97/3, 41/2, 87/1, 51/1, 74/3, 51/2, 97/1, 75/3 | |
tetK, vanB | 75/2, 97/3, 87/1, 74/3, 51/2, 97/1, 75/3 | |
blaZ, vanB | 72/1, 74/3 | |
tetK, vanA | 73/1 | |
tet K, blaZ, vanA | 73/1 | |
tetK, blaZ, vanB | 74/3 |
CNS | CPS | ||||||
---|---|---|---|---|---|---|---|
Strain | CRA | Spectrophotometric Method | Strain | CRA | Spectrophotometric Method | ||
OD | Result | OD | Result | ||||
68/2 | N | 0.634 | ++ | 75/2 | P | 0.676 | ++ |
30/2 | N | 0.352 | + | 2/2 | N | 0.579 | ++ |
89/1 | N | 0.602 | ++ | 41/1 | P | 0.551 | ++ |
13/2 | N | 0.275 | + | 74/2 | N | 0.552 | ++ |
68/1 | N | 0.620 | ++ | 51/3 | N | 0.586 | ++ |
73/3 | N | 0.470 | + | 15/1 | N | 0.294 | + |
61/2 | P | 1.184 | +++ | 11/1 | N | 0.246 | + |
72/3 | P | 0.536 | ++ | 73/1 | N | 0.238 | + |
23/2 | N | 0.685 | ++ | 87/2 | N | 0.220 | + |
75/1 | P | 0.688 | ++ | 2/1 | P | 0.752 | ++ |
28/1 | N | 0.527 | ++ | 87/3 | P | 0.679 | ++ |
20/3 | P | 0.611 | ++ | 11/2 | N | 0.615 | ++ |
28/3 | N | 0.395 | + | 15/3 | N | 0.559 | ++ |
20/2 | P | 0.519 | ++ | 41/2 | N | 0.392 | + |
20/1 | P | 0.662 | ++ | 87/1 | P | 0.524 | ++ |
18/1 | N | 0.608 | ++ | 57/1 | N | 0.651 | ++ |
2/3 | N | 0.329 | + | 18/2 | N | 0.595 | ++ |
72/2 | N | 0.003 | − | 97/2 | P | 0.539 | ++ |
35/1 | N | 0.024 | − | 74/3 | N | 0.456 | ++ |
28/2 | P | 0.468 | ++ | 15/2 | N | 0.242 | + |
24/1 | N | 0.164 | − | 13/3 | N | 0.003 | − |
37/1 | P | 0.689 | ++ | 72/1 | N | 0.003 | − |
73/2 | N | 0.004 | − | 97/3 | N | 0.090 | − |
61/1 | N | 0.032 | − | 41/3 | N | 0.015 | − |
39/2 | N | 0.075 | − | 51/2 | N | 0.021 | − |
13/1 | N | 0.175 | − | 97/1 | N | 0.090 | − |
10/2 | N | 0.113 | − | 18/3 | P | 0.595 | ++ |
36/3 | N | 0.157 | − | 75/3 | P | 0.676 | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiszniewska-Łaszczych, A.; Szteyn, J.; Sołtysiuk, M.; Kowalik, J.; Modzelewska-Kapituła, M. Potential for Biofilm Formation and Antibiotic Resistance of Staphylococci Isolated from Bulk Tank Milk Samples. Appl. Sci. 2024, 14, 3027. https://doi.org/10.3390/app14073027
Wiszniewska-Łaszczych A, Szteyn J, Sołtysiuk M, Kowalik J, Modzelewska-Kapituła M. Potential for Biofilm Formation and Antibiotic Resistance of Staphylococci Isolated from Bulk Tank Milk Samples. Applied Sciences. 2024; 14(7):3027. https://doi.org/10.3390/app14073027
Chicago/Turabian StyleWiszniewska-Łaszczych, Agnieszka, Joanna Szteyn, Marta Sołtysiuk, Jarosław Kowalik, and Monika Modzelewska-Kapituła. 2024. "Potential for Biofilm Formation and Antibiotic Resistance of Staphylococci Isolated from Bulk Tank Milk Samples" Applied Sciences 14, no. 7: 3027. https://doi.org/10.3390/app14073027
APA StyleWiszniewska-Łaszczych, A., Szteyn, J., Sołtysiuk, M., Kowalik, J., & Modzelewska-Kapituła, M. (2024). Potential for Biofilm Formation and Antibiotic Resistance of Staphylococci Isolated from Bulk Tank Milk Samples. Applied Sciences, 14(7), 3027. https://doi.org/10.3390/app14073027