Investigating the Out-of-Plane Bending Stiffness Properties in Hybrid Species Diagonal-Cross-Laminated Timber Panels
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Theoretical Investigations
2.2. DCLT Panel Preparation
2.3. Four-Point Bending Test
2.4. Finite Element Method
3. Results and Discussion
3.1. Hankinson’s Theory Results
3.2. Four-Point Bending Test Results
3.3. Finite Element Analysis
3.4. DCLT’s Bending Stiffness Comparison between the Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejtka, I. Cross (CLT) and Diagonal (DLT) Laminated Timber as Innovative Material for Beam Elements; Karlsruher Institut für Technologie (KIT) Scientific Publishing: Karlsruhe, Germany, 2011. [Google Scholar]
- Arnold, M.; Dietsch, P.; Maderebner, R.; Winter, S. Diagonal laminated timber: Experimental; analytical, and numerical studies on the torsional stiffness. Constr. Build. Mater. 2022, 322, 126455. [Google Scholar] [CrossRef]
- Kurzinski, S.; Crovella, P.; Smith, W. Evaluating the Effect of Inner Layer Grain Orientation on Dimensional Stability in Hybrid Species Cross-and Diagonal-Cross-laminated Timber (DCLT). Mass Timber Constr. J. 2023, 6, 11–16. [Google Scholar]
- Buck, D.; Wang, X.A.; Hagman, O.; Gustafsson, A. Bending properties of Cross Laminated Timber (CLT) with a 45° alternating layer configuration. BioResources 2016, 11, 4633–4644. [Google Scholar] [CrossRef]
- Buck, D.; Hagman, O. Mechanics of Diagonally Layered Cross-laminated Timber. In Proceedings of the World Conference on Timber Engineering WCTE 2018, Seoul, Republic of Korea, 20–23 August 2018. [Google Scholar]
- Bahmanzad, A.; Clouston, P.L.; Arwade, S.R.; Schreyer, A.C. Shear Properties of Symmetric Angle-Ply Cross-Laminated Timber Panels. J. Mater. Civ. Eng. 2020, 32. [Google Scholar] [CrossRef]
- Yoshito, M.; Hiroe, K.; Yukari, T.; Yasue, N. Relationship between the Strength and Grain Orientation of Wood: Examination and modification of the Hankinson’s Formula. Univ. Tokyo Grad. Sch. Agric. Life Sci. Exerc. Forest. 1995, 93, 1–5. [Google Scholar]
- Bahmanzad, A.; Clouston, P.L.; Arwade, S.R.; Schreyer, A.C. Shear Properties of Eastern Hemlock with Respect to Fiber Orientation for Use in Cross Laminated Timber. J. Mater. Civ. Eng. 2020, 32, 04020165. [Google Scholar] [CrossRef]
- Franzoni, L.; Lebée, A.; Lyon, F.; Foret, G. Influence of orientation and number of layers on the elastic response and failure modes on CLT floors: Modeling and parameter studies. Eur. J. Wood Wood Products. 2016, 74, 671–684. [Google Scholar] [CrossRef]
- Kreuzinger, H. Platten, Scheiban und Schalen. 1999, 101, 34–39. (In German)
- Karacebeyli, E.; Douglas, B. CLT Handbook—US Edition; FPInnovations and Binational Softwood Lumber Council: Point-Claire, QC, Canada, 2013. [Google Scholar]
- Kurzinski, S.; Crovella, P.L. Predicting the Strength and Serviceability Performance of Cross-Laminated Timber (CLT) Panels Fabricated with High-Density Hardwood. In Proceedings of the World Conference on Timber Engineering, WCTE 2021, Santiago, Chile, 9–12 August 2021. [Google Scholar]
- American Wood Council’s (AWC) Wood Design Standards Committee. National Design Specification (NDS) for Wood Construction; AWC: Leesburg, VA, USA, 2018.
- American Lumber Standard Committee (ALSC). Northeastern Lumber Manufacturers Association, Standard Grading Rules for Northeastern Lumber; Northeastern Lumber Manufacturers Association: Cumberland Center, ME, USA, 2021. [Google Scholar]
- ANSI-APA/PRG 320; Standard for Performance-Rated Cross-Laminated Timber. American National Standard Institute & APA—The Engineered Wood Association: New York, NY, USA, 2019.
- Shoberg, R.S. Engineering Fundamentals of Threaded Fastener Design and Analysis; RS Technologies, a Division of PCB Load & Torque, Inc., 2000; pp. 1–39. Available online: http://www.hexagon.de/rs/engineeringfundamentals.pdf (accessed on 5 March 2024).
- ASTM D 198-15; Standard Test Methods of Static Tests of Lumber in Structural Sizes. American Society for Testing and Materials Committee: West Conshohocken, PA, USA, 2015.
- National Instruments Corporation. Software Recording the Test; LabVIEW 2020 Version: Austin, TX, USA, 2021. [Google Scholar]
- ANSYS Inc. ANSYS® Workbench; ANSYS Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Forest Products Laboratory. USDA Wood Handbook—Wood as an Engineering Material; General Technical Report FPL-GTR-190; Forest Products Laboratory: Madison, WI, USA, 2021. [CrossRef]
- Microsoft Corporation. Microsoft Excel; Microsoft Corporation: Redmond, WA, USA, 2021. [Google Scholar]
- Kurzinski, S.; Crovella, P.L. Theoretical and Experimental Investigation on Predicting Longitudinal and Tangential Elastic Constants and Ratios of Wood. In Proceedings of the World Conference on Timber Engineering, WCTE 2023, Oslo, Norway, 19–22 June 2023. [Google Scholar] [CrossRef]
Species | Poisson’s Ratio | Shear Modulus (MPa) | Young’s Modulus (MPa) | Specific Gravity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
νlt | νlr | νtr | Glr | Glt | Grt | Et | Er | El | SG | |
Black locust (Wood Handbook MoE) | 0.286 | 0.220 | 0.196 | 1301 | 899 | 274 | 862 | 1697 | 14,134 | 0.69 |
Eastern white pine (Wood Handbook MoE) | 0.233 | 0.223 | 0.220 | 624 | 592 | 76 | 467 | 766 | 8549 | 0.35 |
Black locust (Measured MoE) | 0.286 | 0.220 | 0.196 | 1587 | 1096 | 334 | 1051 | 2070 | 17,236 | 0.69 |
Eastern white pine (Measured MoE) | 0.233 | 0.223 | 0.220 | 548 | 520 | 67 | 411 | 673 | 7515 | 0.35 |
Group | Bounding Box Diagonal Size (cm) | Average Surface Area (cm2) | Minimum Edge Length Size (cm) | Number of Nodes | Number of Elements |
---|---|---|---|---|---|
DCLT ± 10 | 276.93 | 803.67 | 0.96 | 2,111,626 | 413,142 |
DCLT ± 20 | 276.93 | 584.96 | 0.12 | 1,983,392 | 387,159 |
DCLT ± 40 | 277.08 | 383.61 | 0.43 | 1,466,501 | 283,758 |
DCLT ± 70 | 276.93 | 322.12 | 1.90 | 388,696 | 66,528 |
CLT | 276.93 | 307.03 | 1.90 | 913,030 | 174,240 |
EIApp (N-mm2 × 1011) | Grain Orientation | ||||
---|---|---|---|---|---|
10° | 20° | 40° | 70° | 90° | |
Handbook Values | 1.45 | 1.39 | 1.31 | 1.21 | 1.18 |
MoE of the Layers | 1.74 | 1.68 | 1.58 | 1.43 | 1.40 |
% Increase to CLT | 23% | 18% | 12% | 3% | -- |
EIApp. (N-mm2 × 1011) | Grain Orientation | ||||
---|---|---|---|---|---|
10° | 20° | 40° | 70° | 90° | |
Mean | 2.28 | 2.14 | 1.95 | 1.76 | 1.71 |
% Increase to CLT | 33% | 25% | 14% | 3% | -- |
COV (%) | 2.62 | 5.93 | 3.37 | 7.42 | -- |
Min | 2.23 | 2.00 | 1.90 | 1.67 | 1.71 |
Max | 2.35 | 2.26 | 2.02 | 1.91 | 1.71 |
EIApp (N-mm2 × 1011) | Grain Orientation | ||||
---|---|---|---|---|---|
10° | 20° | 40° | 70° | 90° | |
Handbook Values | 1.94 | 1.85 | 1.65 | 1.53 | 1.46 |
MoE of the Layers | 2.32 | 2.18 | 1.96 | 1.81 | 1.72 |
% Increase to CLT | 33% | 26% | 13% | 6% | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurzinski, S.; Crovella, P.L. Investigating the Out-of-Plane Bending Stiffness Properties in Hybrid Species Diagonal-Cross-Laminated Timber Panels. Appl. Sci. 2024, 14, 2718. https://doi.org/10.3390/app14072718
Kurzinski S, Crovella PL. Investigating the Out-of-Plane Bending Stiffness Properties in Hybrid Species Diagonal-Cross-Laminated Timber Panels. Applied Sciences. 2024; 14(7):2718. https://doi.org/10.3390/app14072718
Chicago/Turabian StyleKurzinski, Shaghayegh, and Paul L. Crovella. 2024. "Investigating the Out-of-Plane Bending Stiffness Properties in Hybrid Species Diagonal-Cross-Laminated Timber Panels" Applied Sciences 14, no. 7: 2718. https://doi.org/10.3390/app14072718
APA StyleKurzinski, S., & Crovella, P. L. (2024). Investigating the Out-of-Plane Bending Stiffness Properties in Hybrid Species Diagonal-Cross-Laminated Timber Panels. Applied Sciences, 14(7), 2718. https://doi.org/10.3390/app14072718