Current Applications and Future Perspectives of Photobiomodulation in Ocular Diseases: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Current Applications
3.1. Ocular Surface System
3.1.1. Dry Eye Disease—Treatment and Prophylaxis
3.1.2. Chalazion
3.2. Retina
3.2.1. Age-Related Macular Degeneration
3.2.2. Diabetic Retinopathy
3.2.3. Retinopathy of Prematurity
3.3. Myopia
3.4. Amblyopia
3.5. Glaucoma
4. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Yadav, A.; Gupta, A. Noninvasive Red and Near-Infrared Wavelength-Induced Photobiomodulation: Promoting Impaired Cutaneous Wound Healing. Photodermatol. Photoimmunol. Photomed. 2017, 33, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Mester, E.; Spiry, T.; Szende, B.; Tota, J.G. Effect of Laser Rays on Wound Healing. Am. J. Surg. 1971, 122, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Mester, E.; Szende, B.; Gärtner, P. Die Wirkung der Lasstrahlen auf den Haarwuchs der Maus [The Effect of Laser Beams on the Growth of Hair in Mice]. Radiobiol. Radiother. 1968, 9, 621–626. (In German) [Google Scholar]
- Whelan, H.T. The NASA Light-Emitting Diode Medical Program-Progress in Space Flight and Terrestrial Applications. Space Technol. Appl. Int. Forum. 2000, 504, 37–43. [Google Scholar] [CrossRef]
- Sommer, A.P. Mitochondrial Cytochrome c Oxidase Is Not the Primary Acceptor for Near Infrared Light-It Is Mitochondrial Bound Water: The Principles of Low-Level Light Therapy. Ann. Transl. Med. 2019, 7 (Suppl. S1), S13. [Google Scholar] [CrossRef]
- AlGhamdi, K.M.; Kumar, A.; Moussa, N.A. Low-Level Laser Therapy: A Useful Technique for Enhancing the Proliferation of Various Cultured Cells. Lasers Med. Sci. 2012, 27, 237–249. [Google Scholar] [CrossRef]
- Anders, J.J.; Arany, P.R.; Baxter, G.D.; Lanzafame, R.J. Light-Emitting Diode Therapy and Low-Level Light Therapy Are Photobiomodulation Therapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 63–65. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 7000417. [Google Scholar] [CrossRef]
- Karu, T.I. Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochem. Photobiol. 2008, 84, 1091–1099. [Google Scholar] [CrossRef]
- Hamblin, M.R. Photobiomodulation or Low-Level Laser Therapy. J. Biophotonics 2016, 9, 1122–1124. [Google Scholar] [CrossRef]
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low-Level Laser (Light) Therapy (LLLT) in Skin: Stimulating, Healing, Restoring. Semin. Cutan. Med. Surg. 2013, 32, 41–52. [Google Scholar] [PubMed]
- Hode, T.; Duncan, D.; Kirkpatrick, S.; Jenkins, P.; Hode, L. The Importance of Coherence in Phototherapy; Hamblin, M.R., Waynant, R.W., Anders, J., Eds.; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2009; Volume 7165. [Google Scholar] [CrossRef]
- Hode, L. The Importance of Coherency. Photomed. Laser Surg. 2005, 23, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.-K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Chhadva, P.; Goldhardt, R.; Galor, A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology 2017, 124, S20–S26. [Google Scholar] [CrossRef] [PubMed]
- Knop, E.; Knop, N.; Millar, T.; Obata, H.; Sullivan, D.A. The International Workshop on Meibomian Gland Dysfunction: Report of the Subcommittee on Anatomy, Physiology, and Pathophysiology of the Meibomian Gland. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1938–1978. [Google Scholar] [CrossRef]
- Bron, A.J.; Yokoi, N.; Gafney, E.; Tiffany, J.M. Predicted Phenotypes of Dry Eye: Proposed Consequences of Its Natural History. Ocul. Surf. 2009, 7, 78–92. [Google Scholar] [CrossRef]
- Schaumberg, D.A.; Nichols, J.J.; Papas, E.B.; Tong, L.; Uchino, M.; Nichols, K.K. The International Workshop on Meibomian Gland Dysfunction: Report of the Subcommittee on the Epidemiology of, and Associated Risk Factors for, MGD. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1994–2005. [Google Scholar] [CrossRef]
- Park, Y.; Kim, H.; Kim, S.; Cho, K.J. Effect of Low-Level Light Therapy in Patients with Dry Eye: A Prospective, Randomized, Observer-Masked Trial. Sci. Rep. 2022, 12, 3575. [Google Scholar] [CrossRef]
- Giannaccare, G.; Pellegrini, M.; Carnovale Scalzo, G.; Borselli, M.; Ceravolo, D.; Scorcia, V. Low-Level Light Therapy Versus Intense Pulsed Light for the Treatment of Meibomian Gland Dysfunction: Preliminary Results from a Prospective Randomized Comparative Study. Cornea 2023, 42, 141–144. [Google Scholar] [CrossRef]
- Giannaccare, G.; Vaccaro, S.; Pellegrini, M.; Borselli, M.; Carnovale Scalzo, G.; Taloni, A.; Pietropaolo, R.; Odadi, A.S.; Carnevali, A. Serial Sessions of a Novel Low-Level Light Therapy Device for Home Treatment of Dry Eye Disease. Ophthalmol. Ther. 2023, 12, 459–468. [Google Scholar] [CrossRef]
- Gomes, J.A.P.; Azar, D.T.; Baudouin, C.; Efron, N.; Hirayama, M.; Horwath-Winter, J.; Kim, T.; Mehta, J.S.; Messmer, E.M.; Pepose, J.S.; et al. TFOS DEWS II Iatrogenic Report. Ocul. Surf. 2017, 15, 511–538. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Rossi, C.; Borselli, M.; Carnovale Scalzo, G.; Scalia, G.; Pietropaolo, R.; Fratto, B.; Pellegrini, M.; Yu, A.C.; Scorcia, V. Outcomes of Low-Level Light Therapy Before and After Cataract Surgery for the Prophylaxis of Postoperative Dry Eye: A Prospective Randomised Double-Masked Controlled Clinical Trial. Br. J. Ophthalmol. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Borselli, M.; Rossi, C.; Carnovale Scalzo, G.; Pellegrini, M.; Vaccaro, S.; Scalia, G.; Lionetti, G.; Mancini, A.; Bianchi, P.; et al. Noninvasive Screening of Ocular Surface Disease in Otherwise Healthy Patients Scheduled for Cataract Surgery. Eur. J. Ophthalmol. 2024, in press. [CrossRef] [PubMed]
- Jordan, G.A.; Beier, K. Chalazion. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499889/ (accessed on 10 January 2024).
- Gilchrist, H.; Lee, G. Management of Chalazia in General Practice. Aust. Fam. Physician 2009, 38, 311–314. [Google Scholar] [PubMed]
- Cottrell, D.G.; Bosanquet, R.C.; Fawcett, I.M. Chalazions: The Frequency of Spontaneous Resolution. Br. Med. J. (Clin. Res. Ed.) 1983, 287, 1595. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Guo, M.X.; Xiang, D.M.; Yan, L.F.; Yu, Y.; Han, L.; Wang, J.X.; Lu, X.H. The Association of Demodex Infestation with Pediatric Chalazia. BMC Ophthalmol. 2022, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Stonecipher, K.; Potvin, R. Low-Level Light Therapy for the Treatment of Recalcitrant Chalazia: A Sample Case Summary. Clin. Ophthalmol. 2019, 13, 1727–1733. [Google Scholar] [CrossRef]
- Flores, R.; Carneiro, Â.; Vieira, M.; Tenreiro, S.; Seabra, M.C. Age-Related Macular Degeneration: Pathophysiology, Management, and Future Perspectives. Ophthalmologica 2021, 244, 495–511. [Google Scholar] [CrossRef]
- Thomas, C.J.; Mirza, R.G.; Gill, M.K. Age-Related Macular Degeneration. Med. Clin. North Am. 2021, 105, 473–491. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The Age-Related Eye Disease Study Report Number 6. Am. J. Ophthalmol. 2001, 132, 668–681. [Google Scholar] [CrossRef]
- Davis, M.D.; Gangnon, R.E.; Lee, L.-Y.; Hubbard, L.D.; Klein, B.E.; Klein, R.; Ferris, F.L.; Bressler, S.B.; Milton, R.C.; Age-Related Eye Disease Study Group. The Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration: AREDS Report No. 17. Arch. Ophthalmol. 2005, 123, 1484–1498. [Google Scholar] [PubMed]
- Wong-Riley, M.T.; Liang, H.L.; Eells, J.T.; Chance, B.; Henry, M.M.; Buchmann, E.; Kane, M.; Whelan, H.T. Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins: Role of Cytochrome c Oxidase. J. Biol. Chem. 2005, 280, 4761–4771. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.A.; Castello, P.R.; Poyton, R.O. Low Intensity Light Stimulates Nitrite-Dependent Nitric Oxide Synthesis but Not Oxygen Consumption by Cytochrome c Oxidase: Implications for Phototherapy. J. Photochem. Photobiol. B 2011, 102, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Ivandic, B.T.; Ivandic, T. Low-Level Laser Therapy Improves Vision in Patients with Age-Related Macular Degeneration. Photomed. Laser Surg. 2008, 26, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.G.; Margrain, T.H.; Dunn, M.J.; Bailey, C.; Binns, A.M. Low-Level Nighttime Light Therapy for Age-Related Macular Degeneration: A Randomized Clinical Trial. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4531–4541. [Google Scholar] [CrossRef] [PubMed]
- Henein, C.; Steel, D.H. Photobiomodulation for non-exudative age-related macular degeneration. Cochrane Database Syst. Rev. 2021, 5, CD013029. [Google Scholar] [CrossRef] [PubMed]
- Merry, G.F.; Dotson, R.; Devenyi, R.; Markowitz, S.; Reyes, S. Photobiomodulation as a New Treatment for Dry Age-Related Macular Degeneration. Results from the Toronto and Oak Ridge Photobimodulation Study in AMD (TORPA). Investig. Ophthalmol. Vis. Sci. 2012, 53, 2049. [Google Scholar]
- Merry, G.F.; Munk, M.R.; Dotson, R.S.; Walker, M.G.; Devenyi, R.G. Photobiomodulation Reduces Drusen Volume and Improves Visual Acuity and Contrast Sensitivity in Dry Age-Related Macular Degeneration. Acta Ophthalmol. 2017, 95, e270–e277. [Google Scholar] [CrossRef]
- Markowitz, S.N.; Devenyi, R.G.; Munk, M.R.; Croissant, C.L.; Tedford, S.E.; Rückert, R.; Walker, M.G.; Patino, B.E.; Chen, L.; Nido, M.; et al. A Double-Masked, Randomized, Sham-Controlled, Single-Center Study with Photobiomodulation for the Treatment of Dry Age-Related Macular Degeneration. Retina 2020, 40, 1471–1482. [Google Scholar] [CrossRef]
- Grisanti, S.; Bartz-Schmidt, K.-U.; Heimann, H.; Lommatzsch, A.; Walter, P.; Ach, T. Letter to the Editor Regarding “LIGHTSITE II Randomized Multicenter Trial: Evaluation of Multiwavelength Photobiomodulation in Non-exudative Age-Related Macular Degeneration”. Ophthalmol. Ther. 2024, 13, 1051–1053. [Google Scholar] [CrossRef]
- Burton, B.; Parodi, M.B.; Jürgens, I.; Zanlonghi, X.; Hornan, D.; Roider, J.; Lorenz, K.; Munk, M.R.; Croissant, C.L.; Tedford, S.E.; et al. LIGHTSITE II Randomized Multicenter Trial: Evaluation of Multiwavelength Photobiomodulation in Non-exudative Age-Related Macular Degeneration. Ophthalmol. Ther. 2023, 12, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Boyer, D.; Hu, A.; Warrow, D.; Xavier, S.; Gonzalez, V.; Lad, E.; Rosen, R.B.; Do, D.; Schneiderman, T.; Munk, M.R.; et al. LIGHTSITE III: 13-Month Efficacy and Safety Evaluation of Multiwavelength Photobiomodulation in Nonexudative (Dry) Age-Related Macular Degeneration Using the LumiThera Valeda Light Delivery System. Retina 2023, 44, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Grewal, M.K.; Sivapathasuntharam, C.; Chandra, S.; Gurudas, S.; Chong, V.; Bird, A.; Jeffery, G.; Sivaprasad, S. A Pilot Study Evaluating the Effects of 670 nm Photobiomodulation in Healthy Ageing and Age-Related Macular Degeneration. J. Clin. Med. 2020, 9, 1001. [Google Scholar] [CrossRef]
- Benlahbib, M.; Cohen, S.Y.; Torrell, N.; Colantuono, D.; Crincoli, E.; Amoroso, F.; Semoun, O.; Jung, C.; Souied, E.H. Photobiomodulation Therapy for Large Soft Drusen and Drusenoid Pigment Epithelial Detachment in Age-Related Macular Degeneration: A Single-Center Prospective Pilot Study. Retina 2023, 43, 1246–1254. [Google Scholar] [CrossRef]
- Parodi, M.B.; Antropoli, A.; Arrigo, A.; Cicinelli, M.V.; Bianco, L.; Saladino, A.; Moretti, E.; Bandello, F.; Mansour, A. Acute Atrophic Evolution of Drusenoid Pigment Epithelium Detachment after Photobiomodulation. Retin. Cases Brief Rep. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Cheung, C.M.; Larsen, M.; Sharma, S.; Simó, R. Diabetic Retinopathy. Nat. Rev. Dis. Primers 2016, 2, 16012. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef]
- Ting, D.S.; Cheung, G.C.; Wong, T.Y. Diabetic Retinopathy: Global Prevalence, Major Risk Factors, Screening Practices and Public Health Challenges: A Review. Clin. Exp. Ophthalmol. 2016, 44, 260–277. [Google Scholar] [CrossRef]
- Tang, J.; Herda, A.A.; Kern, T.S. Photobiomodulation in the Treatment of Patients with Non-Center-Involving Diabetic Macular Edema. Br. J. Ophthalmol. 2014, 98, 1013–1015. [Google Scholar] [CrossRef]
- Shen, W.; Teo, K.Y.C.; Wood, J.P.M.; Vaze, A.; Chidlow, G.; Ao, J.; Lee, S.R.; Yam, M.X.; Cornish, E.E.; Fraser-Bell, S.; et al. Preclinical and Clinical Studies of Photobiomodulation Therapy for Macular Edema. Diabetologia 2020, 63, 1900–1915. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, B.; Hu, P.; Liu, H.; Zheng, D. A Preliminary Observation on Rod Cell Photobiomodulation in Treating Diabetic Macular Edema. Adv. Ophthalmol. Pr. Res. 2022, 2, 100051. [Google Scholar] [CrossRef]
- Kaymak, H.; Munk, M.R.; Tedford, S.E.; Croissant, C.L.; Tedford, C.E.; Ruckert, R.; Schwahn, H. Non-Invasive Treatment of Early Diabetic Macular Edema by Multiwavelength Photobiomodulation with the Valeda Light Delivery System. Clin. Ophthalmol. 2023, 17, 3549–3559. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Glassman, A.R.; Josic, K.; Melia, M.; Aiello, L.P.; Baker, C.; Eells, J.T.; Jampol, L.M.; Kern, T.S.; Marcus, D.; et al. A Randomized Trial of Photobiomodulation Therapy for Center-Involved Diabetic Macular Edema with Good Visual Acuity (Protocol AE). Ophthalmol. Retin. 2022, 6, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.A.; Sei, M.; Sampaio, M.W.; Kara-José, N. Causes of Visual Impairment in Children: A Study of 3,210 Cases. J. Pediatr. Ophthalmol. Strabismus 2007, 44, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Kent, A.L.; Abdel-Latif, M.E.; Cochrane, T.; Broom, M.; Dahlstrom, J.E.; Essex, R.W.; Shadbolt, B.; Natoli, R. A Pilot Randomised Clinical Trial of 670 nm Red Light for Reducing Retinopathy of Prematurity. Pediatr. Res. 2020, 87, 131–136. [Google Scholar] [CrossRef]
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef]
- Haarman, A.E.G.; Enthoven, C.A.; Tideman, J.W.L.; Tedja, M.S.; Verhoeven, V.J.M.; Klaver, C.C.W. The Complications of Myopia: A Review and Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 49. [Google Scholar] [CrossRef]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef]
- Lin, Z.; Gao, T.Y.; Vasudevan, B.; Ciuffreda, K.J.; Liang, Y.B.; Jhanji, V.; Fan, S.J.; Han, W.; Wang, N.L. Near Work, Outdoor Activity, and Myopia in Children in Rural China: The Handan Offspring Myopia Study. BMC Ophthalmol. 2017, 17, 203. [Google Scholar] [CrossRef]
- Yang, M.; Luensmann, D.; Fonn, D.; Woods, J.; Jones, D.; Gordon, K.; Jones, L. Myopia Prevalence in Canadian School Children: A Pilot Study. Eye 2018, 32, 1042–1047. [Google Scholar] [CrossRef]
- Cao, K.; Wan, Y.; Yusufu, M.; Wang, N. Significance of Outdoor Time for Myopia Prevention: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. Ophthalmic Res. 2020, 63, 97–105. [Google Scholar] [CrossRef]
- Cohen, Y.; Peleg, E.; Belkin, M.; Polat, U.; Solomon, A.S. Ambient Illuminance, Retinal Dopamine Release and Refractive Development in Chicks. Exp. Eye Res. 2012, 103, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Schaeffel, F.; Jiang, B.; Feldkaemper, M. Effects of Light of Different Spectral Composition on Refractive Development and Retinal Dopamine in Chicks. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4413–4424. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhou, M.; Kong, X.; Luo, L.; Lv, H. A Meta-Analysis of Randomized Controlled Trials Evaluating the Effectiveness and Safety of Repeated Low-Level Red Light Therapy in Slowing the Progression of Myopia in Children and Adolescents. Indian J. Ophthalmol. 2024, 72 (Suppl. S2), S203–S210. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Liao, Y.; Yan, N.; Dereje, S.B.; Wang, J.; Luo, Y.; Wang, Y.; Zhou, W.; Wang, X.; Wang, W. Efficacy of Repeated Low-Level Red-Light Therapy for Slowing the Progression of Childhood Myopia: A Systematic Review and Meta-analysis. Am. J. Ophthalmol. 2023, 252, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Peng, W.; Jiang, Z. Repeated Low-Level Red Light Therapy for the Control of Myopia in Children: A Meta-Analysis of Randomized Controlled Trials. Eye Contact Lens 2023, 49, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, Z.; Tan, X.; Kong, X.; Zhong, H.; Zhang, J.; Xiong, R.; Yuan, Y.; Zeng, J.; Morgan, I.G.; et al. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial. Ophthalmology 2022, 129, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Xuan, M.; Zhu, Z.; Jiang, Y.; Wang, W.; Zhang, J.; Xiong, R.; Shi, D.; Bulloch, G.; Zeng, J.; He, M. Longitudinal Changes in Choroidal Structure Following Repeated Low-Level Red-Light Therapy for Myopia Control: Secondary Analysis of a Randomized Controlled Trial. Asia Pac. J. Ophthalmol. 2023, 12, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Zhu, Z.; Jiang, Y.; Wang, W.; Zhang, J.; Chen, Y.; Bulloch, G.; Yuan, Y.; Zhang, S.; Xuan, M.; et al. Longitudinal Changes and Predictive Value of Choroidal Thickness for Myopia Control after Repeated Low-Level Red-Light Therapy. Ophthalmology 2023, 130, 286–296. [Google Scholar] [CrossRef]
- Xiong, R.; Zhu, Z.; Jiang, Y.; Kong, X.; Zhang, J.; Wang, W.; Kiburg, K.; Yuan, Y.; Chen, Y.; Zhang, S.; et al. Sustained and Rebound Effect of Repeated Low-Level Red-Light Therapy on Myopia Control: A 2-Year Post-Trial Follow-Up Study. Clin. Exp. Ophthalmol. 2022, 50, 1013–1024. [Google Scholar] [CrossRef]
- Duke-Elder, S.; Wybar, K. System of Ophthalmology. Vol. VI. Ocular Motility and Strabismus. Optom. Vis. Sci. 1973, 51, 437. [Google Scholar] [CrossRef]
- Epelbaum, M.; Milleret, C.; Buisseret, P.; Dufier, J.L. The sensitive period for strabismic amblyopia in humans. Ophthalmology 1993, 100, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Ivandic, B.T.; Ivandic, T. Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia. Photomed. Laser Surg. 2012, 30, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, A.R.; Mt-Isa, S.; Owen, C.G.; Cook, D.G.; Ashby, D. Variations in primary open-angle glaucoma prevalence by age, gender, and race: A Bayesian meta-analysis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4254–4261. [Google Scholar] [CrossRef]
- Surma, M.; Anbarasu, K.; Dutta, S.; Olivera Perez, L.J.; Huang, K.C.; Meyer, J.S.; Das, A. Enhanced mitochondrial biogenesis promotes neuroprotection in human pluripotent stem cell-derived retinal ganglion cells. Commun. Biol. 2023, 6, 218. [Google Scholar] [CrossRef]
- Tao, J.X.; Zhou, W.C.; Zhu, X.G. Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. Oxid. Med. Cell. Longev. 2019, 2019, 6435364. [Google Scholar] [CrossRef]
- Osborne, N.N. Mitochondria: Their role in ganglion cell death and survival in primary open-angle glaucoma. Exp. Eye Res. 2010, 90, 750–757. [Google Scholar] [CrossRef]
- Del Olmo-Aguado, S.; Núñez-Álvarez, C.; Osborne, N.N. Blue Light Action on Mitochondria Leads to Cell Death by Necroptosis. Neurochem. Res. 2016, 41, 2324–2335. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005, 73, 1907–1916. [Google Scholar] [CrossRef]
- Lane, N. Cell biology: Power games. Nature 2006, 443, 901–903. [Google Scholar] [CrossRef]
- Ahn, S.H.; Suh, J.S.; Lim, G.H.; Kim, T.J. The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy. Bioengineering 2023, 10, 223. [Google Scholar] [CrossRef]
- Zhu, Q.; Xiao, S.; Hua, Z.; Yang, D.; Hu, M.; Zhu, Y.T.; Zhong, H. Near Infrared (NIR) Light Therapy of Eye Diseases: A Review. Int. J. Med. Sci. 2021, 18, 109–119. [Google Scholar] [CrossRef]
- Boudghene, A.C.; Ahmed, T.I.B.; Belbachir, K.; Ghalia, H.B. The Beneficial Effects of Photobiomodulation to Reduce Intraocular Pressure in Primary Open-Angle Glaucoma. Ophthalmol. Res. Int. J. 2023, 18, 17–26. [Google Scholar] [CrossRef]
- Santana-Blank, L.; Rodríguez-Santana, E. Photobiomodulation in Light of Our Biological Clock’s Inner Workings. Photomed. Laser Surg. 2018, 36, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Yeung, M. Effect of Photobiomodulation on Mice with Acute Ocular Hypertension. Master’s Thesis, University of Hong Kong Libraries, Hong Kong, China, 2021. [Google Scholar]
- Fantaguzzi, F.; Tombolini, B.; Servillo, A.; Zucchiatti, I.; Sacconi, R.; Bandello, F.; Querques, G. Shedding Light on Photobiomodulation Therapy for Age-Related Macular Degeneration: A Narrative Review. Ophthalmol. Ther. 2023, 12, 2903–2915. [Google Scholar] [CrossRef] [PubMed]
Treatment | Disease | |
---|---|---|
“Photobiomodulation” OR “Low-level light therapy” | AND | “Dry eye disease” OR “Chalazion” OR “Cataract” OR “Meibomian gland dysfunction” OR “Age related macular degeneration” OR “Diabetic retinopathy” OR “Myopia” OR “Amblyopia” “Glaucoma” OR “Retinopathy of prematurity” OR “Ophthalmology” OR “Eye” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannas, C.; Pintus, B.; Corgiolu, L.; Borrelli, E.; Boscia, G.; Toro, M.D.; Giannaccare, G. Current Applications and Future Perspectives of Photobiomodulation in Ocular Diseases: A Narrative Review. Appl. Sci. 2024, 14, 2623. https://doi.org/10.3390/app14062623
Cannas C, Pintus B, Corgiolu L, Borrelli E, Boscia G, Toro MD, Giannaccare G. Current Applications and Future Perspectives of Photobiomodulation in Ocular Diseases: A Narrative Review. Applied Sciences. 2024; 14(6):2623. https://doi.org/10.3390/app14062623
Chicago/Turabian StyleCannas, Claudia, Benedetta Pintus, Lina Corgiolu, Enrico Borrelli, Giacomo Boscia, Mario Damiano Toro, and Giuseppe Giannaccare. 2024. "Current Applications and Future Perspectives of Photobiomodulation in Ocular Diseases: A Narrative Review" Applied Sciences 14, no. 6: 2623. https://doi.org/10.3390/app14062623
APA StyleCannas, C., Pintus, B., Corgiolu, L., Borrelli, E., Boscia, G., Toro, M. D., & Giannaccare, G. (2024). Current Applications and Future Perspectives of Photobiomodulation in Ocular Diseases: A Narrative Review. Applied Sciences, 14(6), 2623. https://doi.org/10.3390/app14062623